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introduction: Intraoperative neuromonitoring (IONM) has become a standard of care in 
spinal deformity surgeries to minimize the incidence of new onset neurological deficit. 
Stagnara wake up test and ankle clonus test are the oldest techniques described for spi-
nal cord monitoring, but they cannot be solely relied upon as a neuromonitoring modality. 
Somatosensory evoked potentials monitor only dorsal tracts and give high false positive 
and negative alerts. Transcranial motor evoked potentials (TcMEPs) monitor the more 
useful motor pathways. The purpose of our study was to report the safety, efficacy, 
limitations of TcMEPs in spine deformity surgeries, and the role of a checklist.

study design: Retrospective review of all spinal deformity surgeries performed with 
TcMEPs from 2011 to 2015.

Materials and methods: All patients were subjected to IONM by TcMEPs during the 
spinal deformity surgery. Patients were included in the study only if complete operative 
reports and neuromonitoring data and postoperative neurological data were available for 
review. An alert was defined as 80% or more decrement in the motor evoked potential 
amplitude, or increase in threshold of 100 V or more from baseline. The systemic and 
surgical causes of IONM alerts and the postoperative neurological status were recorded.

results: In total, 61 patients underwent surgery for spinal deformities with TcMEPs. The 
average age was 12.6 years (6–36 years) and male:female ratio was 1:1.3. Diagnoses 
included idiopathic scoliosis (n = 35), congenital scoliosis (n = 13), congenital kyphosis 
(n = 7), congenital kyphoscoliosis (n = 4), post-infectious kyphosis (n = 1), and post- 
traumatic kyphosis (n = 1). The average kyphosis was 72° (45°–101°) and the average 
scoliosis was 84° (62°–128°). There were in total 33 alerts in 22 patients (36%). The most 
common causes were hypotension (n = 7), drug induced (n = 5), deformity correction 
(n = 5), osteotomies (n = 3), tachycardia (n = 1), screw placement (n = 2), and electrodes 
disconnection (n = 1). Reversal of the inciting event cause resulted in complete reversal 
of the alert in 90% of the times. Three patients showed persistent alerts, out of whom 
one had a positive wake up test and woke up with neurodeficit, which recovered over 
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inTrODUcTiOn

Neurological deficit following surgical correction of deformity 
is a major concern for any spine surgeon (1, 2). Ankle clonus 
test (3, 4) and Stagnara wake up test (5) are the earliest tests 
described for assessing the spinal cord function. These tests 
assess only gross motor deficits and they also require emergence 
from anesthesia (cannot be applied multiple times) and hence 
these tests cannot be solely relied upon as a neuromonitoring 
modality. Role of somatosensory evoked potentials (SSEPs) in 
spinal cord monitoring was first demonstrated by Tamaki et al. 
(6) However, there can be a motor deficit without any concomi-
tant sensory change due to vascular injury (7–12). SSEPs have 
high false positive (FP) and false negative (FN) alerts (12–16) 
and also need averaging before alerting the surgeon and are thus 
time consuming (12). Transcranial motor evoked potentials 
(TcMEPs) on the other hand monitor the more useful motor 
pathways and are easily administered with high reliability and 
validity (7). TcMEPs provide feedback almost instantaneously 
and thus have a good ease of applicability. One of the most 
important goals of any surgeon performing deformity correc-
tion is to maintain the preoperative neurological status (1, 17). 
Intraoperative neuromonitoring (IONM) system is the means to 
identify spinal cord injury at the time when corrective measures 
could reverse it and also to define the nature of insult allow-
ing the surgeon to minimize further injury (18). Controversy 
still continues regarding the efficacy of TcMEPs alone and few 
authors prefer multimodality monitoring (19). The purpose of 
this study was to report the safety, efficacy, and limitations of 
TcMEPs in spine deformity correction surgeries, and also to 
establish the role of a checklist.

MaTerials anD MeThODs

After approval from Ethics committee (ID: EC/01/17/1107), 
retrospective review of all spine deformity surgeries performed 
in our institute during the period 2011–2015 was done. Our 
study included 67 deformity correction surgeries performed 
by three senior spine surgeons with a minimum experience of 
15 years. Surgeries performed with TcMEP monitoring alone are 
included in our study. All the surgeries were performed under 

total intravenous anesthesia (TIVA) protocol developed by the 
institute, and a trained neurophysiologist who monitors IONM 
with TcMEPs. Age at the time of surgery, gender, diagnosis, dura-
tion of surgery, preoperative neurology, type of instrumentation, 
blood loss and the number of alerts during surgery, nature of 
insult, corrective measures done, and postoperative neurology 
were reviewed. From anesthesia records, depth of anesthesia and 
mean arterial pressure (MAP) at the time of alert plus anesthesia 
drug bolus usage were noted.

anesthesia Protocol
Before induction, the Stagnara wake up test is explained to each 
patient; TIVA was employed for induction and maintenance in 
all the patients. Anesthesia is induced with propofol 1–2 mg/kg 
i.v., fentanyl 2–3  μg/kg i.v., and dexmedetomidine 1  μg/kg i.v. 
Intubation is facilitated with only a small, single, short-acting 
dose of muscle relaxant. The patient’s eyes are taped shut and pad-
ded for protection from injury in the prone position. A urinary 
catheter is placed, an arterial line inserted, two large bore i.v. lines 
are secured, a temperature probe inserted, and appropriate sized 
bite blocks are wedged in place between the molars to prevent 
injury to the contents of the oral cavity (the teeth, tongue, and 
endotracheal tube). Intraoperative depth of anesthesia was judged 
by the bispectral index. All used sponges were weighed and saline 
washes measured, so that accurate assessment of intraoperative 
blood loss is made. Arterial blood gas analysis and hemoglobin 
estimations are done as and when required. Anesthesia main-
tenance is done with i.v. propofol 100–150  μg/kg/h, fentanyl 
1–2 μg/kg/h i.v., and dexmedetomidine 0.5 μg/kg/h i.v.

iOnM Technique
Potentials were elicited by transcranial stimulation using cork-
screw electrodes placed subcutaneously over the motor cortex 
(Nim-Eclipse, Medtronic). Motor evoked potentials (MEPs) 
were obtained from intramuscular electrodes (13  mm, 27G, 
dual electrodes) placed in four (sometimes five) bilateral muscle 
groups. One muscle group above the level of surgery was always 
used as a control (thenar muscles). Other electrodes were placed 
in rectus abdominis, vastus lateralis, tibialis anterior, and abduc-
tor hallucis. The most distal electrodes were placed in the anal 
sphincter in one case with S2 hemivertebrae. Ultrasound guided 

few weeks, while the other patients showed persistent alerts but woke up without any 
deficit. Sensitivity and specificity of TcMEP in deformity correction surgery were 100 and 
96.6%, respectively, in our study.

conclusion: IONM alerts are frequent during spinal deformity surgery. In our study, 
more than 50% of the alerts were associated with anesthetic management. IONM with 
TcMEPs is a safe and effective monitoring technique and wake up test still remains a 
valuable tool in cases of a persistent alert.

Keywords: motor evoked potentials, neuromonitoring, spine deformities, transcranial evoked potentials, 
deformity correction

http://www.frontiersin.org/Surgery/
http://www.frontiersin.org
http://www.frontiersin.org/Surgery/archive


FigUre 1 | checklist showing the protocol taken in response to an alert.
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placement of electrodes into the rectus abdominis muscle was 
done in six patients.

Biphasic stimuli were given starting at three pulse, 200  V, 
and 0.5  ms duration with 2.0  ms interval between stimuli, 
and if needed increments were done each time by 25 V (up to 
400 V) and at five- or seven-pulse train till a satisfactory baseline 
amplitude (50 μV) was obtained. The same protocol was followed 
during intraoperative monitoring and the maximal stimulus 
intensity needed was noted. The initiation of MEP stimulation 
and recording was done after intubation while the patient was in 
supine position and once again after patient was placed prone. 
The MEP recording obtained just before incision was taken as 
the baseline for future reference. The final MEP was obtained 
after the closure of wound but before application of dressing.

An “alert” was defined as a decrease in amplitude by 80% or 
more, or 100  V increase in threshold, or latency prolongation 
>10% from baseline in one or more electrodes. This need not 
necessarily be due to a surgical maneuver.

  Parallel alert: a similar change (increase/decrease) seen in all 
the recording electrodes.

  Non-parallel alert: a decrease or loss seen in only one or few 
recording electrodes.

There is an ongoing protocol in the hospital as a part of 
neuromonitoring program in Department of Spine Surgery 
that defined these alerts and also a protocol taken in response 
to an alert (Figure 1). MEPs were obtained at periodic intervals 
(10–20 min) during the entire procedure, at lesser intervals dur-
ing instrumentation, and also immediately after any high-risk 

maneuver (pedicle breach, distraction, derotation, osteotomy). 
Once an alert was elicited, the teams performed their set protocols 
developed by the authors as shown in the checklist (Figure 1).

When an alert was noted immediately following a high-risk 
maneuver and if recovery of amplitudes was noted after undo-
ing that maneuver, rest of the parameters in the checklist being 
normal, then it was considered to be the cause. However, if an 
alert was noted during a routine monitoring protocol, respective 
teams evaluated all the parameters and the corrective maneuver 
by which the amplitudes were restored was taken as the most 
probable cause of an alert.

If the alert persisted even after all the corrective measures 
were undertaken for up to 30 min, the Stagnara wake up test was 
done. If the test was negative, the surgery was continued while 
MEPs were obtained at regular short intervals and if the wake up 
test was positive, surgery was aborted and the attendants were 
explained regarding the same.

Outcome Parameters
The success of IONM (TcMEPs in our study) in determining cord 
compression at an early stage is expressed with true positive (TP), 
true negative (TN), false positive (FP), and negative (FN).

  TP: an alert that persisted despite corrective measures or 
returned to baseline after corrective measures, but patient had 
a positive wake up test (if performed) or postoperative new 
neurological deficit.

  FP: an alert that persisted during surgery despite corrective 
measures, but patient had a negative wake up test (if per-
formed) or developed no new postoperative deficit.
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TaBle 3 | Various inciting events for a TcMeP alert (n = 33).

inciting events for TcMeP alert

number (n = 33) Percentage

Hypotension 7 22
Tachycardia 1 3
Drug boluses 5 15
Distraction 4 12
Deformity correction 5 15
Osteotomies 3 9
Screw misplacement 2 6
Deep anesthesia 2 6
Electrodes disconnection 1 3
Hypothermia 1 3
Unknown 2 6

TaBle 2 | Minimal stimulus intensity required for obtaining baseline 
potential (n = 61).

Minimal stimulus intensity required for baseline potential

number (n = 61) Percentage

200 V 8 13
250 V 10 17
275 V 16 26
300 V 22 36
350 V 5 8

TaBle 1 | characteristics of patient population (n = 61).

characteristics of patient population

Age (years) 12.8
Male:female 1:1.3
Diagnosis No. of patients
Idiopathic scoliosis 35
Congenital scoliosis 13
Congenital kyphosis 7
Congenital kyphoscoliosis 4
Post-infectious kyphosis 1
Post-traumatic kyphosis 1
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  TN: no alert was recorded during surgery and patient devel-
oped no new neurological deficit following surgery.

  FN: no alert was recorded during surgery, but patient devel-
oped neurological deficit following surgery.

  Indeterminate: An alert that returned to baseline value follow-
ing corrective measures and patient had no new postoperative 
neurological deficit.

Specificity (Sp), sensitivity (Sn), negative predictive value 
(NPV), and positive predictive value (PPV) were calculated in 
our study. Sp and Sn give the percentage of negative and positive 
outcomes correctly indicated by the technique. PPV and NPV 
describe the probability that a patient has an injury if the test 
is positive and does not if the test is negative, respectively. PPV 
and NPV describe the performance of the technique (chance of a 
positive or negative neurological event).

Safety was evaluated by observation for scalp burns, arrhyth-
mias, or injuries due to movements induced by TcMEPs like 
tongue or lip lacerations, seizures, and whether these movements 
interfered with surgery.

resUlTs

A total of 67 patients underwent deformity correction surgery 
with TcMEP monitoring, 6 patients had preoperative neurologi-
cal deficit and were excluded. A total of 61 patients are included 
in this study, with an average age of 12.8  years (6–36  years). 
Most common cause of deformity was idiopathic scoliosis 
(n  =  35) (Table  1), other causes being congenital scoliosis 
(n = 13), congenital kyphosis (n = 7), congenital kyphoscoliosis 
(n  =  4), post-infection kyphosis (n  =  1), and post-traumatic 
kyphosis (n = 1). Only posterior instrumentation was done in 
all the cases. Voltage required for obtaining a baseline MEP 
was generally between 200 and 300  V in our study. Maximal 
stimulus intensity needed was 200 V in 8 patients (13%), 250 V 
in 10 patients (17%), 275  V in 16 patients (26%), 300  V in 
22 patients (36%), and 350  V in 5 patients (8%) (Table  2). 
Average kyphosis and scoliosis were 72° (45°–101°) and 84° 
(62°–128°), respectively.

We had a total of 33 alerts in 22 patients (36%) (Table  3), 
86% (19 out of 22) of alerts returned to baseline values follow-
ing corrective measures. Eight (25%) alerts were due to altered 
hemodynamics (hypotension-7, tachycardia-1) (Figure  2). 
Other causes were anesthetic drug boluses (5, 15%) and distrac-
tion of spinal cord (4, 12%) (Figure 3); derotation or deformity 

correction (5, 15%), osteotomy (3, 9%), hypothermia (1, 3%), 
screw misplacement (2, 6%), deep stage of anesthesia (2, 6%), and 
electrode disconnection (1, 3%) (Figure 4). Out of these 33 alerts, 
11 were parallel and the rest 22 were non-parallel (Figure 5). We 
had incidental dural tear in four patients (6.5%), but the authors 
noted no relation to the alerts.

Three patients (13.6%) had persistent alerts; sudden loss of 
MEPs in both lower limbs was seen in one patient following 
accidental injury to the spinal cord by pedicle sound through 
a misplaced screw tract and two patients had decreased MEPs 
from both lower limbs following distraction. Stagnara wake up 
test was performed in two patients, out of whom one patient 
had negative and one had a positive result, while the wake up 
test could not be performed in one patient. The surgeon decided 
to continue with surgery in the patient with negative wake up 
test and MEPs were taken at more frequent intervals; the MEPs 
restored to baseline value after 50 min and patient woke up with 
no new neurologic deficit. In the patient with positive wake up 
test, it was decided to abort the case at that stage and the patient 
woke up with postoperative deficit. Neurodeficit resolved after a 
duration of 4 months. Surgery was also aborted in third patient 
in whom the wake up test couldn’t be done, as the MEPs were 
persistently low even after all corrective measures had been 
instituted (Figure 5).

No significant differences were noted in age and gender 
between patients with no alerts and those who had alerts with 
or without postoperative deficits. Electrodes were displaced 
during surgery in three patients, in one case electrodes were rein-
serted, while in other two cases, surgery was continued without 
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FigUre 2 | loss of MePs following hypotension (above), recovery of MePs following correction of hypotension.
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reinsertion. We  had no complications with TcMEPs during or 
after the surgery. All the alerts are shown in Table 4.

Sensitivity and Sp of TcMEP in deformity correction surgery 
were 100 and 96.6%, respectively, in our study. NPV and PPV 
were 100 and 33.3%, respectively (Table 5).

There were no instances of tongue or lip lacerations, seizures, 
or any other complications during or after the surgery.

DiscUssiOn

The purpose of IONM is to provide real-time assessment of 
spinal cord function during surgery that involves cord manipu-
lation. Various mechanisms of spinal cord injury in deformity 
correction surgery are distraction, ischemia, and compression 
(20). IONM should alert the surgeon of spinal cord injury at a 
time when corrective measures could reverse it. Patients with 
congenital scoliosis, kyphosis, and preoperative deficits have 
a higher chance of neurological injury (1). Stagnara wake up 
test (5) and postoperative clonus test (3, 4) are the earliest 

techniques described for knowing the spinal cord integrity 
during complex deformity corrections. Both tests monitor 
only gross motor deficits, need emergence from anesthesia 
and hence they are not real time and cannot be used multiple 
number of times. There is the risk of self-extubation, loss of 
patient positioning (21), and is also difficult to perform in 
some patients (22–24). Despite all these disadvantages, wake 
up test still has a significant role in certain circumstances; 
wake up test was done in two patients who had persistent 
alerts despite corrective measures while wake up test couldn’t 
be performed in one patient. We routinely do not perform 
wake up test in all patients, though all except those with low 
understanding levels, like in very young patients, are counseled 
for the same. Tamaki et al. in year 1984 first reported the role 
of SSEPs in deformity corrections (6). SSEPs monitor only 
dorsal tracts and ventral column can be compromised without 
a concomitant sensory change (5, 7, 9–12). There are numerous 
reports of new postoperative deficit in absence of SSEP alerts 
(12, 16, 25–30). SSEPs require averaging of potentials before 
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FigUre 4 | loss of MeP due to disconnection of electrodes.

FigUre 3 | Decrease in MeP following distraction when compared to baseline value, restoration of MeP after release of distraction.
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FigUre 5 | Flow chart depicting all the alerts.

an alert is issued and hence lag behind TcMEPs (14, 31, 32). 
For monitoring with direct spinal cord stimulation (D-wave), 
electrodes have to be introduced into the dura, and the stimu-
lus unavoidably activates sensory tracts, producing antidromic 
and peripheral nerve sensory potentials (33). Hence potentials 
after spinal cord stimulation cannot be attributed to motor 
tracts alone (34, 35).

In TcMEPs, stimulus is delivered to the motor cortex from 
subcutaneously placed corkscrew electrodes, and potentials 
are recorded from electrodes placed in various bilateral muscle 
groups. The purpose of recording potentials from maximum 
number of possible muscles is to increase the Sn (36). We used 
four or five bilateral muscle groups in all cases. Electrodes placed 
in thenar muscles were always used as a control. In one patient 
with S2 hemivertebrae excision, the most distal electrodes were 
placed in anal sphincter on both sides, but during surgery 
electrodes on one side were displaced, but no attempt was made 
to reinsert these electrodes. In six patients, ultrasound guided 
insertion of electrodes was done as rectus abdominis muscle was 
not easily palpable for direct insertion. Multi-pulse stimulus was 
used in all cases, as it produces a short train of high frequency 
stimuli that summate to depolarize motor neurons, thus achiev-
ing specific responses (9, 37–42). We used three-, five- or seven-
pulse stimulus in all the cases. TcMEPs do not use supramaximal 
stimuli; hence as depth of anesthesia increases, suppression of 
lower motor neurons occurs, this may cause disappearance or 
fading of evoked potentials. Therefore, increasing the pulse 
number or stimulus intensity may be necessary sometimes to 
maintain responses (14). In one patient, MEPs were lost from 
all the electrodes on one side as the patient was at deeper stage 

of anesthesia. Lack of antidromic contamination in TcMEPs 
provides Sp and thus is effective and practical in intraoperative 
period (43). In a direct comparison of TcMEPs with SSEPs, 
MacDonald and Janusz (44) showed that the former technique 
provides a rapid feedback.

An 80% or greater decrease in the MEP amplitude to be taken 
as a criteria for “alert” was introduced by Langeloo et  al. (45), 
while present or absent criteria as an alert was proposed by  
Sala et al. (46) Various other criteria defined for an “alert” were 
MEP amplitude changes of 50% (47), 60% (13, 48), 70% (49), and 
even complete loss (50–53). In our study, alert was defined as 
a decrease in amplitude by 80% or more, or 100 V increase in 
threshold, or latency prolongation >10% from the baseline in one 
or more electrodes.

In all our cases, IONM with TcMEPs was done with strict 
adherence to anesthesia protocol (TIVA) and checklist. An alert 
not synchronous with any high-risk surgical maneuver could 
be likely due to various non-surgical factors and such an alert 
when not quickly identified and corrected could mislead and 
compel the surgeon to take unreasonable risk or to change the 
surgery plan. A checklist places emphasis on all the likely surgical 
and non-surgical factors that cause an alert and thus a checklist 
might not allow any potential risk factor to be missed and to 
mark an alert due to any cause as a FP alert. As the systemic 
state varies from time to time, baseline potentials obtained at 
the beginning of surgery may no longer be appropriate at later 
point. In the intraoperative period, MEP amplitude has high 
trial-by-trial variability (40) and even a mild drop in MAP can 
affect MEPs and produce an alert (54–56). These systemic altera-
tions can be identified by parallel alerts, regardless of degree of 
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change in the amplitude. In our study, out of a total 33 alerts, 11 
(33%) were parallel and all of these alerts returned to baseline 
values after restoration of blood volume, increasing the MAP, 
changing depth of anesthesia, and increasing core temperature. 
Out of 22 non-parallel alerts seen, 2 (9%) were due to systemic 
alterations. In our study, all parallel alerts were due to systemic 
alterations, while non-parallel alerts were due to systemic and 
focal alterations.

Skinner et al. (57) reported that in some cases, free-running 
EMGs were the only findings in patients with postoperative 
neurological deficits. Free-running EMGs were not used in 

our study, and authors have no experience with these. Relative 
contraindications to TcMEPs are skull defects, cardiac pacing, 
epilepsy, and presence of any implantable device (58). Although 
Schwartz et  al. (59) reported no episodes of seizure in 35 
patients with a history of epilepsy; TcMEPs were used in only 
one patient, and epilepsy still remains a contraindication for 
TcMEPs use in our institute. Wake up test alone cannot be relied 
as an only monitoring technique as it doesn’t provide real-time 
assessment of the spinal cord. An alert that persists even after 
protocol completion could be a FP alert and a negative wake 
up test can reassure the surgeon of no significant neurological 
injury (60–62). In three patients who had persistent alerts 
despite corrective measures, wake up test was performed and 
out of whom one patient had a negative result. Hence, surgery 
was continued and the patient woke up with no postoperative 
deficit. Surgery was abandoned in a patient with positive wake 
up test, and woke up with deficit in the lower limbs. Wake up 
test could not be performed in one patient of double major 
scoliosis due to anesthesia reasons; hence, we decided to abort 
the case. However, the patient woke up with no new post-
operative neurological deficit. Wilson-Holden et  al. (63) and 
Thuet et al. (64) defined alert that normalized after corrective 

TaBle 4 | complete list of all the 33 alerts in 22 patients.

s. no. 
(n = 33)

Patient 
number 
(n = 22)

age 
(years)

Diagnosis Type  
of alert

intraoperative 
motor evoked 

potential 
recovery (Y/n)

cause of alert Wake 
up test 

performed 
(Y/n)

postoperative 
neurological 
deficit (Y/n)

recovery 
at final 

follow-up

1 1 2–4 Congenital scoliosis Parallel Y Hypotension N N
2 Non-parallel Y Osteotomy
3 2 10–12 Idiopathic scoliosis Non-parallel Y Tachycardia N N
4 3 12–14 Kyphoscoliosis Non-parallel n Screw misplacement Y Y Complete
5 4 4–6 Congenital scoliosis Non-parallel Y Drug bolus N N
6 Non-parallel Y Deformity correction
7 5 50–51 Post traumatic kyphosis Non-parallel Y Distraction N N
8 6 14–16 Idiopathic scoliosis Non-parallel Y Deformity correction N N
9 7 9–11 Idiopathic scoliosis Parallel Y Deep anesthesia N N
10 Parallel Y Hypotension
11 8 13–15 Idiopathic scoliosis Non-parallel Y Screw misplacement N N
12 9 6–8 Congenital scoliosis Parallel Y Drug bolus N N
13 Non-parallel Y Hypotension
14 10 3–5 Congenital kyphosis Non-parallel Y Osteotomy N N
15 11 15–17 Idiopathic scoliosis Parallel Y Hypotension N N
16 12 7–9 Kyphoscoliosis Parallel Y Hypotension N N
17 Non-parallel Y Distraction
18 13 14–16 Idiopathic scoliosis Non-parallel Y Deformity correction N N
19 14 14–16 Idiopathic scoliosis Non-parallel Y Deep anesthesia N N
20 15 Idiopathic scoliosis Non-parallel Y Electrodes misplacement N N
21 16 9–11 Idiopathic scoliosis Non-parallel n Osteotomy Y N
22 Non-parallel Y Drug bolus
23 Non-parallel Y Distraction
24 17 4–6 Congenital kyphosis Parallel Y Hypothermia N N
25 Non-parallel Y Deformity correction
26 18 10–12 Idiopathic scoliosis Non-parallel n Distraction – N
27 19 5–7 Congenital scoliosis Parallel Y Hypotension N N
28 Parallel Y Drug bolus
29 20 13–15 Idiopathic scoliosis Non-parallel Y Unknown N N
30 Parallel Y Hypotension
31 21 8–10 Congenital scoliosis Non-parallel Y Deformity correction N N
32 Non-parallel Y Unknown
33 22 6–8 Congenital kyphosis Parallel Y Drug bolus N N

TaBle 5 | sensitivity (sn), specificity (sp), positive predictive value (PPV), 
and negative predictive value (nPV) of TcMeP alerts.

new neurological deficit no new neurological deficit

TcMEP alert 1 (true positive) 2 (false positive)
No TcMEP alert 0 (false negative) 58 (true negative)
Sn 100%
Sp 96.6%
PPV 33.3%
NPV 100%
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