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objective: This study aimed to compare postoperative cone beam CT (CBCT) imaging 
to implant stability quotient (ISQ) measurement and direct caliper measurements as 
a suitable technique to assess bone conduction hearing implant (BCHI) seating and 
insertion depth.

Methods: In vitro, BCHIs were completely (n = 9) and partially inserted (n = 9) in bone 
blocks of different densities and subsequently scanned. Scans were processed using 
3DSlicer 4.3.1 and Mathematica 10.3. ISQ measurements were obtained for all BCHIs 
mounted with different abutment lengths (9, 12, and 14 mm). CBCT imaging was per-
formed for patients with a clinical indication.

Results: In vitro, 95% prediction intervals for partially inserted and completely inserted 
BCHIs were determined. ISQ values significantly decreased with partial insertion,
low-density artificial bone, and longer abutment lengths. Evaluation of in vitro and in vivo 
3D models allowed for assessment of insertion depth and inclination.

conclusion: CBCT imaging allows to study implant seating and insertion depth after 
BCHI surgery. This can be useful when visual confirmation is limited. It is possible to 
distinguish a partial BCHI insertion from a complete insertion in artificial bone blocks. 
This technique could prove to be a valuable research tool. In vitro, ISQ values for Ponto 
BCHIs relate to abutment length, insertion depth, and artificial bone density.

 

Keywords: bone-anchored hearing implants, radiology, BAhA, osstell, implant stability, resonance frequency 
analysis

InTRoDUcTIon

In recent years, surgical placement of bone conduction hearing implants (BCHIs) has become 
less invasive with the introduction of the linear incision technique with tissue preservation (1). In 
an attempt to further improve outcomes, punch only techniques have been described with good 
initial results (2–4). In line with these developments, the punch only minimally invasive Ponto 
surgery (MIPS) technique was recently introduced (5, 6) to standardize this procedure.
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During BCHI surgery, the implant should be placed perpen-
dicular to the skull to allow for full and straight insertion. Using 
conventional techniques, the bone bed is visible which allows 
for visual feedback regarding insertion depth and implant 
angle. However, with tissue preservation, surgical technique 
visibility is reduced and with punch only techniques visual 
confirmation is even further obstructed by the surrounding 
tissue. In absence of visual confirmation, we sought to obtain 
an objective feedback tool to verify complete insertion and 
angulation.

Imaging techniques might provide objective feedback regard-
ing insertion depth and angulation of BCHI seating. However, 
traditional plain radiography techniques cannot show the neces-
sary 3D detail and conventional CT imaging is difficult to justify 
due to its radiation burden and scattering sensitivity. Cone beam 
CT (CBCT) is characterized by high resolution, reduced sensitiv-
ity to scattering artifacts, lower overall radiation doses compared 
to conventional CT imaging. CBCT imaging has been described 
as an appropriate technique for the evaluation of peri-implant 
bone for dental implants and cochlear implant position (7–10).

Another possibility to assess implant insertion is the Implant 
Stability Quotient (ISQ), a non-invasive method based on 
resonance frequency analysis (11). This method is being propa-
gated as a method to assess implant stability in temporal bones 
(12). ISQ measurements can be obtained during surgery, pos-
sibly allowing direct intraoperative feedback and intervention. 
Although ISQ values are regularly reported in BCHI studies 
(12–14), a high level of uncertainty surrounds the clinical utility 
of ISQ for BCHIs. Limited consistent information is available 
on the multivariable interplay of clinically relevant or irrelevant 
factors for BCHIs. Factors described in dental studies include 
drilling protocol, abutment length, abutment morphology, 
abutment weight, implant design and surface morphology, 
bone density, bone to implant contact, and most importantly: 
osseointegration (15). Moreover, how and to what extent, ISQ 
measurements are affected by incomplete or angulated insertion 
is unknown. Before ISQ measurements can be used as a clinical 
diagnostic, studies proving unambiguous interpretation and 
validity are needed. At the moment, these are not available.

This explorative study aimed to investigate if postoperative 
CBCT imaging is a suitable technique to assess BCHI seating and 
insertion depth either in vitro or in vivo. In vitro validation of this 
technique was done in an experimental setting. In the clinical 
part of this study, CBCT imaging of the BCHI was performed in 
patients when the surgeon was uncertain about either insertion 
depth or insertion angle. To interpret in vivo seating, we matched 
these retrospectively to our in vitro results. Additionally, it was 
determined how ISQ values are affected by degree of insertion, 
abutment length and artificial bone density in vitro.

MATeRIAlS AnD MeThoDS

ethics
The procedures in this study were in accordance with legislation 
(the Medical Research Involving Human Subjects Act) and ethical 
standards on human experimentation in the Netherlands. CBCT 

scans were made to assess BCHI seating on clinical indication. 
According to the Medical Research Involving Human Subjects 
Act, ethical approval was not required due to the nature and 
anonymization of the data.

Imaging Analysis
All CBCT scans were acquired using the I-CAT scanner (Imaging 
Sciences International, Hatfield, PA, USA) with 0.125  mm 
isometric resolution. Tube current was 37.07  mAs with a tube 
voltage of 120 Kv. A full rotation took 26.7 s. Scans were processed 
with 3D Slicer 4.3.1 (http://slicer.org). A region of interest was 
selected, containing the BCHI and (artificial) bone adjacent to 
the BCHI. Fixed threshold gray-level values were used to create 
segmented volumes of the BCHI (artificial or real) bone and soft 
tissue. The segmented volumes were imported in Mathematica 
10.3 (Wolfram Research, Champaign, IL, USA) to create 3D 
models.

In Vitro Validation
Artificial Bone Blocks
Bone conduction hearing implants were installed in polyurethane 
artificial bone blocks (13  cm  ×  8.8  cm  ×  4  cm) with different 
densities (Sawbones, USA) (Figure  1A). Two high-density  
(50 pounds per cubic foot) and one low-density (40 pounds 
per cubic foot) artificial bone blocks were created. Installation 
of 4  mm wide implants (Oticon Medical AB, Askim, Sweden) 
mounted with 14  mm abutments (Oticon Medical AB, Askim, 
Sweden) were carried out using the surgical instrument designed 
for MIPS (5). Implants were fully inserted with 4.5 rotations or 
partially inserted with 3.5 rotations (Figure 1B).

BCHI Insertion Measurements
Virtual insertion depth measurements on the CBCT and direct 
manual caliper measurements were completed for 18 implants 
placed in three bone blocks (Figure 1C). According to speci-
fications provided by the manufacturer, the distance from the 
top of the abutment (14 mm) and the implant rim should range 
between 14.43 and 14.59 mm when fully inserted. The middle 
(14.51 mm) was used as a comparative reference value for full 
insertion in the analysis. In 3D Slicer, virtual markings were 
placed indicating the highest point of the abutment top, the 
bottom of the implant rim, and bone surface in four quadrants 
(Figure  1D). Per quadrant, the virtual bone surface to abut-
ment top distance and the virtual bone surface to implant rim 
distance were calculated. Manual caliper measurements were 
obtained at every quadrant from the abutment top to the level 
of the artificial bone and thereafter averaged per implant. The 
distance of the implant rim to artificial bone was estimated by 
subtracting the abutment length from the caliper measurements.

ISQ Measurements
The Osstell ISQ (Ostell, Gothenburg, Sweden) was used to 
measure ISQ values by mounting a Smartpeg Type 55 on the 
abutments. Two perpendicular ISQ measurements (ISQ hori-
zontal, ISQ vertical) were obtained for all implants (12). To test 
the influence of abutment length, ISQ values were obtained for 
each implant mounted consecutively with 9, 12, and 14  mm 
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FIgURe 1 | Overview of the system and the measurement points. (A) Overview of artificial bone block with installed implant. (B) Overview of fully seated bone 
conduction hearing implant (BCHI) (left) and partially seated BCHI (right). (c) Overview of artificial bone blocks. BCHI insertion measurements were performed on all 
bone blocks. \ indicates implants not used for implant stability quotient (ISQ) measurements due to gross implant mobility. (D) Coronal cross section plane of the 
BCHI. Measurement points are placed at the abutment top, bottom of the implant rim, and (artificial) bone at four equally spaced quadrants. In this exemplary case, 
the implant is partially seated.
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abutments, resulting in six measurements per implant. Twelve 
implants were tested for the high-density bone configuration, half 
of them fully seated and half partially seated. For the low-density 
bone configuration, six implants were placed, half fully seated, 
and half partially seated (Figure 1C). For the high-density bone 
configurations, one fully and one partially seated implant moved 
during abutment replacement. Consequently, in high-density 
bone, 10 BCHIs were evaluated (n = 5 fully seated, n = 5 partially 
seated) (Figure 1C). Due to gross implant mobility during abut-
ment replacement, it was not possible to change the abutment 
in the low-density artificial bone block that was implanted with 
partially inserted BCHIs, hence only fully inserted BCHIs were 
tested (n = 3).

In Vivo Application
After in  vitro validation, CBCT scans were retrieved retro-
spectively from subjects in the outpatient clinic of Maastricht 
University Medical Center. The scanning protocol was identi-
cal to the in vitro scans. Subjects were included when a CBCT 

scan was performed in a clinical setting to evaluate postsurgical 
implant seating.

Statistical Analysis
Statistics were performed using SPSS software (SPSS V22.0 SPSS 
Inc., Chicago, IL, USA). Statistical significance was established 
at p ≤ 0.05.

In Vitro—BCHI Insertion Measurements
Analyses were used for in  vitro validation of CBCT imaging 
before they could be applied in vivo. For direct caliper measure-
ments and CBCT measurements, mean (M) and SD for full 
insertion and partial insertion were calculated for abutment 
top to bone surface distances and implant rim to bone surface 
distances. Mean distances for abutment top to bone surface of 
CBCT measurements and caliper measurements for full and par-
tial insertion were compared to each other and to the theoretical 
average for full insertion. Regression analysis in which the CBCT 
abutment top to bone surface distance and CBCT implant rim to 
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FIgURe 2 | Measurements between the abutment top or implant rim and artificial bone in vitro. Mean (±SD) are displayed for fully (n = 9) and partially (n = 9) 
inserted 14 mm bone conduction hearing implants. (A) Distances between implant top and artificial bone surface as measured using a caliper or performed digitally 
on cone beam CT (CBCT) scans. The approximated theoretical area for full insertion according to the manufacturer specifications is displayed in gray. (B) Distances 
between the implant rim and artificial bone surface as virtually measured on CBCT.
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bone surface distance were regressed to insertion depth (full or 
partial) was performed. 95% Prediction interval for fully inserted 
and partially inserted BCHIs were determined. Discriminant 
analysis with equal prior probabilities was applied to determine 
the optimal cutoff point for classification of BCHIs as fully or 
partially inserted.

In Vitro—ISQ Measurements
For ISQ measurements, linear mixed model analyses with implant 
as random factor and abutment length (9, 12, and 14  mm), 
artificial bone density (high, low), and insertion depth (full, 
partial) as fixed factors and a compound symmetry covariance 
matrix of the residuals. Because in the low-density artificial bone 
block, only fully inserted BCHIs could be measured, the effect of 
insertion depth could only be determined at high bone density. 
Similarly, the effect of bone density could only be determined for 
fully inserted BCHIs. When statistically significant effects were 
identified, Bonferroni adjusted post hoc comparisons between the 
different factor levels were additionally performed.

ReSUlTS

In Vitro
BCHI Insertion Measurements
Direct caliper measurements from abutment top to the bone 
surface of fully inserted BCHIs (M = 14.62, SD = 0.06, n = 9) 
were 0.11 mm greater than the theoretical average for full inser-
tion in vitro (Figure 2A). CBCT measurements of fully inserted 
BCHIs (M = 14.83, SD = 0.08, n = 9) were on average 0.32 mm 
greater than the theoretical average for full insertion in  vitro. 
For the partially inserted implants, direct caliper measure-
ments (M = 15.06, SD = 0.09, n = 9) and CBCT measurements 
(M = 15.27, SD = 0.10, n = 9) were both 0.44 mm greater com-
pared to the fully inserted BCHIs.

The implant rim to artificial bone surface distances as meas-
ured on CBCT were 0.47 mm larger in partially inserted BCHIs 

(M = 0.73, SD = 0.07, n = 9) compared to fully inserted BCHIs 
(M = 0.26, SD = 0.09, n = 9) (Figure 2B).

Regression analyses revealed that the type of artificial bone 
was a significant predictor for abutment top to bone surface 
distance (p < 0.015). 95% Prediction intervals for high density, 
low density, and the combined group are presented in Table 1. 
For implant rim to bone surface no significant difference between 
high and low density was found. By means of discriminant analy-
sis, cutoff points were obtained which could potentially be used 
to classify BCHI’s either as fully or partially inserted (Table 1). 
Mean abutment top to bone surface distance for fully inserted 
BCHIs in high-density bone was 14.85 mm (SD = 0.06, n = 6) 
compared to 14.78  mm (SD  =  0.10, n  =  3) for fully inserted 
BCHIs in low-density bone resulting in a difference of 0.07 mm. 
Mean abutment top to bone surface distance for partially inserted 
BCHIs in high-density bone was 15.32 mm (SD = 0.09, n = 6) 
compared to 15.18 mm (SD = 0.05, n = 3) for partially inserted 
BCHIs in low-density bone resulting in a difference of 0.14 mm.

In Vitro 3D Models
Evaluation of the in vitro 3D models allowed for a detailed quali-
tative assessment of the implant, artificial bone, and the implant-
artificial bone interface. BCHI insertion and angulation could be 
evaluated as well in the axial, coronal, or sagittal plane allowing 
to visually distinguish between partially and fully inserted BCHIs 
(Figure 3). Softening effects were visible directly under the BCHI 
in the artificial bone models (Figure 3C).

ISQ Measurements
Implant stability quotient measurements are shown in Figure 4, 
and the models are presented in Table 2. In a split plot ANOVA 
analysis, the ISQ in high-density artificial bone revealed a sig-
nificant negative relationship with abutment length (p < 0.001) 
and insertion depth (p = 0.001), whereas no interaction between 
abutment length and insertion depth was found (p  =  0.378) 
(Table 2). To evaluate the effect of bone density, a linear mixed 
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TABle 1 | Prediction intervals and cutoff points.

cone beam cT (cBcT) 
abutment top to bone 

surface distance

cBcT rim to bone 
surface distance

95%  
prediction 

interval

cut-off 
point

95% 
prediction 

interval

cut-off 
point

High, full insertion 14.67 15.04 15.09 0.04 0.39 0.47
High, partial insertion 15.14 15.50 0.56 0.91
Low, full insertion 14.53 15.04 14.98 0.13 0.57 0.53
Low, partial insertion 14.92 15.44 0.50 0.94
Combined, full insertion 14.63 15.03 15.05 0.07 0.44 0.49
Combined, partial 
insertion

15.07 15.48 0.54 0.91

Results for regression analysis. High, high-density bone; Low, low-density bone; Full, 
4.5 rotations; Partial, 3.5 rotations.

FIgURe 3 | 3D segmented models of bone conduction hearing implants (BCHIs) acquired by cone beam CT imaging. In vitro models: (A) 3D model of a fully 
inserted BCHI. Full insertion is qualitatively verified by the lack of gap between the implant rim and the artificial bone surface. (B) In contrast, 3D model of a bone 
surface is visible (arrowhead). (c) A cross-sectional model of a partially inserted BCHI where a gap between the implant rim and artificial bone surface is visible 
(arrowhead). In vivo models: (D) a 3D model of the implant–skull interface in subject 1 (full insertion). The skin was removed using a filter. (e) A 3D model of the 
implant–skull interface in subject 4 showing an angulated [full insertion on one side, distance between implant rim and surface on the opposing circumference 
(arrowhead)]. The skin was removed using a filter. (F) A 3D model of the bone, implant and soft tissue interface for subject 1. Skin sagging was present and can be 
discerned (arrow). Asterisks (*) indicate softening artifacts.
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model analysis was performed using the ISQ data of the fully 
inserted BCHIs. After removing the non-significant interaction 
(p  =  0.153) between abutment length and bone density, abut-
ment length (p < 0.001) and bone density (p = 0.024) were both 
significant predictors of ISQ (Table 2).

In Vivo
Subjects
Four subjects were selected 1-week post-surgery at the ENT out-
patient department of Maastricht University Medical Center to 

evaluate BCHI with a clinical indication. Subject characteristics 
are summarized in Table 3.

BCHI Insertion Measurements
Cone beam CT measurements are described in Table  4. 
Distances between the implant rim and bone surface were 
consistent with a full insertion (0.49 mm) for subjects 1, 2, and 
3. For subject 4, the measurements per quadrant were 1.0, 0.09, 
0.07, and 0.37 mm, respectively, resulting in a mean distance of 
0.38 mm. The mean distance was consistent with full insertion, 
but the distance of 1.0 mm for one quadrant was greater than the 
cutoff value of 0.49 which could indicate an angulated insertion 
(See 3D models).

We assumed that the abutment top to bone surface cutoff 
distan ces for the 14  mm abutments could be adjusted for 
9 and 12  mm abutments. The cutoff value for 14  mm abut-
ments (15.05 mm) was therefore adapted for 9 mm abutments 
(10.05  mm) and 12  mm abutments (13.05  mm). Distances 
between abutment top and bone were consistent with full inser-
tion in all subjects.

3D Models
Evaluation of the in vivo 3D models allowed for qualitative assess-
ment of the BCHI, bone, and soft tissue, allowing visual appraisal 
of implant seating and angulation (Figure 3). In the in vitro 3D 
models, the complete abutment could be evaluated, while soften-
ing effects around the abutment top made it difficult to evalu-
ate the location of the abutment top in the in vivo 3D models. 
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TABle 2 | Two mixed models for implant stability quotient (ISQ).

estimates 95% confidence 
interval

Degrees of 
Freedom

p

ISQ for high-density artificial bone (n = 10 implants)

Intercepta 46.47 44.96 47.97 9.10 <0.001

Insertion
Full (n = 5) – – – – –
Partial (n = 5) −4.83 −6.93 −2.73 8.00 <0.001

Abutment length
9 mm (n = 10) – – – –
12 mm (n = 10) −9.8 −10.41 −9.19 18.00 <0.001
14 mm (n = 10) −15.8 −16.41 −15.19 18.00 <0.001

ISQ for high and low-density artificial bone (n = 8 implants)
Interceptb 46.58 44.62 48.54 7.36 <0.001

Abutment length
9 mm (n = 8) – – – – –
12 mm (n = 8) −10.06 −11.04 −9.08 14.00 <0.001
14 mm (n = 8) −15.88 −16.85 −14.90 14.00 <0.001

Bone density
High (n = 5) – – – – –
Low (n = 3) −3.88 −7.05 −0.70 6.00 0.024

Results for two mixed models. ISQ for high-density artificial bone model contains 
insertion depth and abutment length. Density was not used in this model because only 
fully inserted bone conduction hearing implants could be measured in the low-density 
bone blocks. ISQ for high- and low-density artificial bone model contains bone density 
(High/Low) and abutment length.
aIntercept indicates reference value for full insertion implant mounted with 9 mm abutment.
bIntercept indicates reference value for implant mounted with 9 mm abutment in high-
density bone. – indicates reference variable.

FIgURe 4 | The influence of abutment length, bone density, and insertion on implant stability quotient (ISQ) in vitro. The mean ISQ values for high-density bone 
configurations (n = 5) and low-density bone configuration (n = 3) together with the SDs are plotted for different abutment lengths and artificial bone densities. ISQ 
values decrease significantly with increase in abutment length (p < 0.001), partial insertion (p = 0.001), and reduced bone density (p = 0.024). ISQ measurements of 
low-density partially inserted implants are missing due to an interaction between low density and partial insertion (Figure 1c).
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Qualitative evaluation of the post-surgery scans for subjects 1, 2, 
and 3 revealed a full non-angulated BCHI insertion (Figure 3D). 
In the postsurgery scan of subject 4, the 3D model revealed an 
angulated insertion of the BCHI (Figure 3E), which is consistent 
with the differences observed per quadrant. Unexpectedly, the 3D 
patient model also facilitated evaluation of the skin next to the 
implant. In subject 1, the presence of skin sagging, which entails 
excess skin superior to the abutment, was noticeable (Figure 3D).

DIScUSSIon

Using CBCT and image analysis software, it is possible to distin-
guish between a normal and incomplete insertion using CBCT 
measurements in vitro. Detailed 3D models were created to evalu-
ate BCHI seating in vitro and in vivo. In this study, we show that 
ISQ values are dependent on abutment length, insertion depth, 
and artificial bone density for Ponto implant/abutment combina-
tions. This is consistent with other (dental) studies showing the 
abutment design and bone density influence (primary) stability 
as measured with ISQ (15).

One potential drawback with punch only surgical approaches 
is the lack of reference for a straight and full insertion. Surgeons 
may estimate implant stability using a torque wrench, but the reli-
ability of this method is unclear. We initially tried using a small 
retractor to visually assess complete insertion. In our experience, 
this method is unreliable and may lead to undesirable tissue 
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damage. The installation indicator developed for MIPS may be 
useful to detect incomplete insertion (5), but was not investigated 
here. It guides counting the number of rotations during BCHI 
installation indicating full insertion. The surgeon can manually 
complete the installation of the BCHI using a torque wrench in 
case of incomplete insertion. However, since the skull is not flat 
angulated seating may be missed using this approach.

BchI Insertion Measurements
Here, we demonstrated that CBCT imaging allows for the evalu-
ation of implant insertion depth, seating, and angulation in an 
in vitro setting. We assume that these results could be applicable 
in vivo as well. In the in vitro model, the facet of the artificial 
bone block was flat. In the in vivo situation, this is however not 
the case due to the curvature of the scull. Nevertheless, CBCT 
imaging takes the curvature of the skull into account as well as 
demonstrated in Figures 3D,E. Although, we found statistically 
significant differences between bone blocks, these are relatively 
small. During insertion of an implant, in  vitro or in  vivo, the 
friction between the implant surface and surrounding bone 
will be influenced by the density, insertion torque and other 
properties of the bone. Hence, installing an implant with a 
specific insertion torque will likely result in a deeper inserted 
BCHI in soft compared to hard bone. Currently, new surgical 
techniques (5, 6), reduced time until loading of the BCHI (16), 
and new implants (17) are investigated. In these and other future 
studies, CBCT scanning techniques with image analysis might 
provide an opportunity for evaluation of the implant seating, 
implant–bone interface and possibly, temporal progression of 
osseointegration (8) or its decline. In this study, the diagnostic, 

predictive, and clinical values of CBCT imaging were not deter-
mined warranting further validation studies. Pending future vali-
dation, one might imagine its use in specific clinical indications 
(e.g., posttraumatic, loose implants).

ISQ Measurements
That ISQ measurements are sensitive to a partial insertion 
might be explained by the different pivoting point of the implant 
in relation to the bone level. Hypothetically, this could lead 
to a different pendular movement, amplitude, and resonance 
frequency induced by the (constant) force exerted by the ISQ 
probe upon the Smartpeg. We could not change the abutments 
in partially inserted implants in low-density bone. How ISQ 
measurements should be interpreted as a clinical tool remains 
unclear with no validated predictive cutoff value to indicate 
good stability or survival. In previous studies, no correction for 
abutment length has been performed and usually the sample 
size is limited (12). Further research is necessary to investigate 
the multivariate role of ISQ measurements in relation to clinical 
outcomes.

limitations
This study suffers from several limitations. The mixed model 
results provide an estimation of the effect of abutment length, 
done density, and partial seating. Theoretically several interac-
tions may play a role as well, which were not statistically signifi-
cant in this model. These could relate to the small sample size of 
this investigation. Nonetheless, our results should be considered 
as approximations. CBCT measurements are known to under- or 
overestimate a distance (18, 19). Overestimation of CBCT meas-
urements compared to caliper measurements was the case here 
as well, although minor. The measured distance can be expected 
to rely heavily on the type of windowing. In our experience, each 
CBCT scanner has different parameters for different intensities 
unlike the standardized Hounsfield Units. Therefore, some cau-
tion is warranted for the implementation and translation of our 
results. A solution to this problem would be the development 
of uniformly well-calibrated CBCT scanning parameters and 
reconstruction for this specific setup. Another limitation is the 
presence of hardening and softening artifacts in the area adjacent 
to the implant, resulting in an impaired possibility to evaluate 
surface directly adjacent to the BCHI. Softening effects were 
objectified as well directly under the implant in vitro (Figure 3C) 
and around the abutment top in  vivo, resulting in a distorted 
3D reconstruction (Figures 3D,E). Due to the softening effects 
of the abutment top, the reliability of the abutment top to bone 

TABle 4 | Cone beam CT measurements.

Subject Abutment 
length

Mean abutment 
top to bone 

distance  
(cutoff value)

Mean implant 
rim to bone 

distance  
(cutoff value)

Interpretation

1 12 mm 12.45 mm 
(13.05 mm)

0.06 mm 
(0.49 mm)

Full, straight 
insertion

2 9 mm 9.48 mm 
(10.05 mm)

0.05 mm 
(0.49 mm)

Full, straight 
insertion

3 14 mm 14.11 mm 
(15.05 mm)

0.16 mm 
(0.49 mm)

Full, straight 
insertion

4 9 mm 9.63 mm 
(10.05 mm)

0.38 mm 
(0.49 mm)

Full, angulated 
insertiona

aVisually assessed.

TABle 3 | Subject characteristics and cone beam CT (CBCT) imaging indications.

Subject Demographics Indication Implant type Surgical technique Reason for cBcT

1 71-year-old male Mixed hearing loss Ponto wide implant with 
12 mm abutment

Linear incision with soft tissue 
preservation technique

Evaluation of bone conduction hearing implant 
(BCHI) seating 1-week post-surgery

2 32-year-old male Conductive hearing 
loss

Ponto wide implant with 
9 mm abutment

Linear incision with soft tissue 
preservation technique

Evaluation of BCHI seating 1-week post-surgery

3 63-year-old male Mixed hearing loss Ponto wide implant with 
14 mm abutment

Minimally invasive Ponto surgery 
(MIPS) technique

Evaluation of BCHI seating 1-week post-surgery

4 51-year-old female Conductive hearing 
loss

Ponto wide implant with 
9 mm abutment

MIPS technique Evaluation of BCHI seating 1-week post-surgery
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surface distances should be considered lower than the implant 
rim to bone surface distances for these cases. Although this is 
unfortunate, the implant rim to bone surface distances and 3D 
reconstruction of the implant adjacent to the skull hold the most 
relevant information for determining implant seating, angula-
tion, and implant–bone interface. The positioning of a subject 
in the CBCT scanner may influence softening effects of the abut-
ment top and should be considered when performing a CBCT 
scan. Additionally, bone thickness adjacent to an implant might 
be underestimated due to softening artifacts. Further reduction 
of these hardening and softening artifacts could allow for better 
evaluation of the tissues adjacent to the BCHI enabling research-
ers to investigate implant stability in vivo.

conclUSIon

Cone beam CT imaging allows to study implant seating and 
insertion depth after BCHI surgery. This can be useful when 
visual confirmation is limited. It is possible to distinguish a par-
tial BCHI insertion from a complete insertion in artificial bone 
blocks. This technique could prove to be a valuable research tool. 
In vitro, ISQ values for Ponto BCHIs relate to abutment length, 
insertion depth, and bone density.
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