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There is no long-term treatment strategy for young and active patients with cartilage

defects. Early and effective joint preserving treatments in these patients are crucial

in preventing the development of osteoarthritis. Tissue engineering over the past few

decades has presented hope in overcoming the issues involved with current treatment

strategies. Novel advances in 3D bioprinting technology have promoted more focus on

efficient delivery of engineered tissue constructs. There have been promising in-vitro

studies and several animal studies looking at 3D bioprinting of engineered cartilage tissue.

However, to date there are still no human clinical trials using 3D printed engineered

cartilage tissue. This review begins with discussion surrounding the difficulties with

articular cartilage repair and the limitations of current clinical management options which

have led to research in cartilage tissue engineering. Next, the major barriers in each

of the 4 components of cartilage tissue engineering; cells, scaffolds, chemical, and

physical stimulation will be reviewed. Strategies that may overcome these barriers will

be discussed. Finally, we will discuss the barriers surrounding intraoperative delivery of

engineered tissue constructs and possible solutions.
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INTRODUCTION

Articular cartilage defects pose a significant burden to patients both symptomatically and
functionally, leading to reduced quality of life. Younger patients particularly have no long-term
treatment strategy and face multiple operations and possible complications in their lifetime due to
the inevitable development of osteoarthritis (1, 2).

Several surgical options exist in current practice (Discussed in detail under the current treatment
strategies section); however, they only provide short-term benefit in certain subsets of patients
based on the nature of the defect and host factors. Fibrocartilage production is the major barrier in
long-term viability of these methods and is detrimental to joint function (3).

Treatment strategies currently being pursued in research, focus on the development of 3D
bioprinting of engineered cartilage tissue. This is a diverse field with many factors warranting
optimization and integration to deliver the ultimate 3D tissue structure. However, there are several
obstacles with each individual component, collectively leading to a barrier with respect to clinical
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use of cartilage tissue engineering and 3D bioprinting for
cartilage repair. These hurdles will need to be addressed prior to
any design of a human clinical trial.

ARTICULAR CARTILAGE: STRUCTURE
AND REPAIR

Articular cartilage is primarily composed of hyaline tissue.
Hyaline cartilage is a specialized tissue found in most joints
and provides low friction and shock absorption. It also provides
a structural and biological barrier between two bone surfaces
leading to smooth uniform range of motion (4).

Articular cartilage has unique biomechanical properties
stemming from its structure (Figure 1) and composition. The
lubricated surface provides low friction for articular motion.
The extracellular matrix (ECM) and large water content from
the effect of proteoglycans provides resistance to strong and
repetitive loads of compression and shear. Variations of structure
and composition in the different zones allow articular cartilage to
resist complex loads and forces encountered in daily activity (4).

Damaged hyaline cartilage is unable to self-repair (5) due
to its avascular nature. This characteristic of articular cartilage
represents a major challenge in the field of orthopedics.
Overtime, either with or without treatment the defect is filled
with fibrocartilage, which represents a stiff tissue that doesn’t
provide the specialized properties of hyaline cartilage (3).

CURRENT TREATMENT STRATEGIES

Surgically many techniques have been developed in an attempt
to repair/regenerate cartilage. These can be classified into
bone marrow stimulation techniques (drilling, abrasion, and
microfracture), direct chondral replacement (mosaicplasty and
osteochondral allograft transplantation) and cell culture-based
treatment (Autologous Chondrocyte Implantation and Matrix-
induced Autologous Chondrocyte Implantation).

Microfracture is the most commonly used technique whilst
Autologous Chondrocyte Implantation (ACI) and Matrix-
induced Autologous Chondrocyte Implantation (MACI) are
used by some surgeons in specific cases. Microfracture is
an arthroscopic technique in which holes are created in the
subchondral bone to allow blood and bone marrow to proximate,
clot, and stimulate cartilage repair (6). ACI involves cartilage
being harvested from non/low-weight bearing regions from
which chondrocytes are isolated and expanded over 6–8 weeks,
after which the cells are implanted back in surgically (7). MACI is
a progression of the ACI technique characterized by the delivery
of cells in association with a scaffold (8).

Comparison between all three methods have shown no
superiority of the newer techniques compared to the less
expensive microfractures. A randomized control trial comparing
ACI to microfracture showed no significant improvement in

Abbreviations: 3D, Three dimensional; ACI, Autologous Chondrocyte

Implantation; MACI, Matrix-induced Autologous Chondrocyte Implantation;

MSC, Mesenchymal Stem Cell; TGF, Transforming Growth Factor; BMP, Bone

Morphogenetic Protein.

cartilage repair outcomes (9), furthermore, no difference was
shown comparing ACI to MACI (10). With no significant
difference prevailing amongst the three techniques the general
surgical inclination has been to opt for microfracture which is a
simpler and cheaper option.

Studies involving microfracture show better outcome in
patients <40 years old with isolated lesions averaging 2 cm2

in size, however at 36 months follow up there was significant
reduction in clinical outcome (11). This technique can therefore
only be provided to a small subset of patients and lacks long-term
outcome data. Reasons for poor long-term outcomes include
fibrocartilage production, patient age, functional level, location,
and size of the defect (3, 11–13).

THE EMERGENCE OF CARTILAGE TISSUE
ENGINEERING

Poor long-term results and outcomes from bone marrow
stimulation techniques like microfracture introduced the field
of cartilage tissue engineering (Figure 2). The general principle
of tissue engineering involves the use of cells, scaffolds,
growth factors, and physical stimulation (diamond concept) to
regenerate living tissue (13).

In the field of cartilage, the aim is to develop bio-
mimetic tissue that can reliably perform, both biologically
and biomechanically, as hyaline cartilage. There is a long
history of cartilage tissue engineering attempts with initially
engineered components resembling hyaline cartilage, however
compared to native cartilage they lacked in mechanical
properties (14, 15). Over time there has been additional
focus on the biomechanical properties and cell-matrix/scaffold
properties. The biomechanical forces being replicated in cartilage
engineering include shear, tension, and compression which are
endured in day to day activity within native joints (16).

3D bioprinting has emerged as a new technique to
overcome some of the difficulties encountered in standard
tissue engineering strategies, thanks to its speed, reliability,
and precision (17). With respect to cartilage regeneration, the
potential superiority of 3D bioprinting is in the ability to provide
an efficient and tailored approach in the treatment of unique
defect patterns.

Cartilage engineering-based techniques would be indicated in
those with pure chondral lesions. If stem cells are used for such a
repair approach, then any size of isolated chondral injury can be
repaired due to the high replicative ability of these cells, meaning
an abundant cell number can be obtained with expansion. With
research progression osteochondral defects could theoretically be
repaired by building distinct layers with cells differentiated into
cartilage or bone.

Cells–Barriers
Many different cell lineages of various potencies and sources
(Figure 3) have been studied; advantages and disadvantages of
the types are outlined in Table 1. Mesenchymal stem cells (MSC)
have emerged as a major line with respect to cartilage engineering
and show excellent chondrogenic potential (18, 19).
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FIGURE 1 | H&E stain and schematic representation of hyaline cartilage morphology and structure. SZ, superficial zone; MZ, middle zone; DZ, deep zone; CZ,

calcified zone; SB, subchondral bone. Picture used with permission obtained from J Cytochem Biochem.

The optimal tissue sources for harvesting MSCs has
traditionally been the bone marrow and adipose tissue, due
to easier access and the amount of tissue available. Adipose
derivedMSCs has been shown to produce superior chondrogenic
differentiation when compared to bone marrow derived MSCs
(20, 21), furthermore, more MSCs can be isolated per tissue
volume when using adipose compared to bone. Abdominal
subcutaneous tissue and the infrapatellar fat pad (IFP) are
the most commonly used adipose tissue harvest sites for
MSC isolation. Although abdominal subcutaneous fat is more
abundant, IFP tissue has been shown to be more superior with
respect to chondrogenic potential (22).

Irrespective of final cell choice and source there are several key
barriers that need to be addressed for clinical translation using
cell-based cartilage engineering.

Concerns Around in-vitro Lab-Based Cell Expansion
Cell expansion systems are timely and currently require in-vitro
lab-based cell culture. This opens up concerns with respect to
lab sterility, ethics, and risks associated with the use of animal
serum-based media products (23–26). Development of a rapid
isolation approach may allow avoidance of any in-vitro lab-based
cell culture if enough cells can be isolated and implanted directly

in theater (27, 28), eliminating concerns surrounding sterility and
limiting the exposure to animal serum-based media.

Irrespective of isolation timeframes it will be critical to
establish protocols for cell culture without animal serum-
based media products in view of human clinical translation.
The development of animal serum-free culture media using
human derived growth supplements for MSC expansion, such
as human platelet lysates (29–33) presents a promising solution.
Furthermore, development of animal and human serum-free
culture media for the expansion of MSC toward clinical
applications is another promising strategy (34–36).

How Many Cells Are Needed Based on Defect Size?
Cell-free cartilage repair techniques such as microfracture are
based primarily on lesion thickness (37, 38). Current cell
implantation techniques such as ACI andMACI use an expanded
number of chondrocytes based on either surgeon preference
or rough physiological cartilage cell counts with preference
leaning toward higher than normal cell densities (39). The use of
higher chondrocyte densities in-vitro can inhibit matrix synthesis
leading to reduced ECM production (40, 41), whilst using lower
densities will not produce enough ECM in-vitro (42, 43). Only
a few in-vivo and in-vitro studies report cell densities used and
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the use of higher cell densities has not been shown to be superior
to lower densities, therefore, no optimal clinical cell density has
been identified (39).

FIGURE 2 | General components used in cartilage tissue engineering.

There is no data on the desired stem cell density in the
literature, with research groups tending to use cell counts based
on anatomical human data which shows roughly 1 × 104

chondrocytes in 1 mm3 of tissue (44). Stem cells have a higher
proliferate ability compared to chondrocytes (45), therefore, use
of chondrocyte based cell numbers with stem cells will not be
an accurate measure of the optimal cell density needed at time
of repair. It will be imperative to investigate the optimal cell
density per defect volume when using stem cells and taking into
consideration other factors such as the matrix type and volumes
used.

Scaffold Materials–Barriers
The vast majority of cartilage tissue engineering techniques
use scaffolds, which help support and create 3D structures of
the cellular matrix. Successful scaffold designs optimize certain
requirements (46–48) including; biocompatibility, environment,
toxicity, degradation rate, pore size, pore geometry, and scaffold
stiffness.

Scaffolds can be classified as natural polymers, synthetic
polymers, or a hybrid. In cartilage engineering softer polymers,
which can initially fill in defects and then solidify at later
stages, are the bio-scaffolds that show most promise for clinical
application due to their ability to fill complex morphologies
which present at the time of surgical repair (49). Soft polymers
such as hydrogels have biomimetic properties similar to soft

FIGURE 3 | Different cell types used in cartilage tissue engineering based on potency. ESC, Embryonic stem cell; iPSC, Induced pluripotent stem cell; and MSC,

Mesenchymal stem cell.

Frontiers in Surgery | www.frontiersin.org 4 November 2018 | Volume 5 | Article 70

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Francis et al. Cartilage Tissue Engineering—Clinical Barriers

TABLE 1 | Advantages and disadvantages of different cell potencies that have

been used in cartilage tissue engineering.

Potency Types Advantages Disadvantages

Pluripotent

stem cells

ESCs Indefinite

self-renewal

Multiple cell/tissue

lineages

Ethical concerns

Tumorigenicity

Immune rejection

IPSCs Autologous

Indefinite

self-renewal

Tumorigenicity

Cellular

reprogramming

Mesenchymal

stem cells

– Autologous

Abundant

Easily

accessible/harvested

Donor site

morbidity

Chondrocytes Fetal Low

immunogenicity

Limited availability

Neonatal Low

immunogenicity

Limited availability

Juvenile Low

immunogenicity

Limited availability

Adult Autologous Limited availability

Donor site

morbidity

De-differentiation

ESC, Embryonic stem cell; IPSC, Induced pluripotent stem cells.

tissue (50), however, at their starting point, i.e., liquid phase,
hydrogels have relatively poor mechanical stability, which
represents a limitation of their use in this state (51).

Can Hydrogels Provide Biomimetic Mechanical

Strength?
Normally hydrogels are printed in a liquid state, which can
then solidify after a phase transformation induced by chemical
or non-chemical reactions. Cross-linking can be undertaken
via photo, thermal or chemical induction (52). This process
allows molecules to crosslink and provides increased mechanical
stability to the tissue (53, 54).

Over time tunable hydrogel composites have been formulated
which can be tweaked to enhance the mechanical properties
of the material (55–57) and allow vertical construction of a
3D shape which was another initial limitation of hydrogel use
(57). However, each addition or modification that is made can
interact and effect the biocompatibility and therefore needs to be
thoroughly tested.

Can Cross-Linking of the Scaffold Be Incorporated

Intraoperatively?
Cross linking can be performed prior to implantation, meaning
the engineered construct is made on a bench then implanted
separately. This will prevent normal human tissue from being
affected directly by cross-linking reactions and the sources
used. To date, most in-vivo animal models have utilized bench-
based formation of cross-linked pre-formed cartilage tissue,
with subsequent implantation into simple non-complex defect
morphologies which are man-made at time of surgery (58–60).

However, as mentioned earlier implanting pre-formed tissue
will be difficult due to the complexity associated with cartilage

defect morphology and therefore if at time surgical printing is
preferred then the ability to cross link needs to be performed
during surgery also leading to the issue of safe intraoperative
cross-linking.

A recent pilot study (61) showed an intraoperative direct
hand-held repair technique in a sheep model where tissue was
formed and cross-linked directly into a defect at time of repair,
thus avoiding any pre-printed bench-based tissue engineering
techniques. In this study an ultraviolet light was used to cross
link the hydrogel material which was preloaded with a photo
initiating material, the light source was used as a separate
component to the hand-held bioprinter. Macroscopically the use
of the light source didn’t affect surrounding healthy tissue. This
study also used simple man-made defects and therefore doesn’t
confirm the ability to directly bio-print engineered cartilage into
complex morphologies, however, if validated with more complex
lesion patterns provides a more suitable option compared to
implanting pre-formed cartilage tissue.

In future studies it will be ideal to directly add such a source
to a hand-held printing device limiting the need for additional
components and complexity to the surgical approach.

Chondrogenic Stimulation–Barriers
Molecules including growth factors and soluble non-protein
chemical compounds chemically regulate cell behavior.
Molecules bind to surface receptors on stem cells to activate
intracellular signal pathways controlling cellular proliferation,
differentiation, and synthesis. Mesenchymal stem cells have an
important paracrine effect on cartilage formation and promoting
an anti-inflammatory environment (62, 63).

Many combinations such as transforming growth factor
(TGF) beta-3 with bone morphogenetic protein (BMP) 2 have
induced chondrogenesis in adult stem cell use (64). Irrespective
of the combination used, during in-vitro experimentation
chemical stimulants can be provided (via culture media)
periodically, producing consistent chondrogenic differentiation.

However, regular delivery andmonitoring of stimulation can’t
be translated into an in-vivo setting as the native knee synovium
must take over nutritional control. The native synovium in an
adult is not catered to newly growing cartilage, meaning the
desired growth factors and respective concentrations provided
in in-vitro studies will not be present in-vivo, therefore, synovial
take-over of nutritional regulation becomes an unknown obstacle
in the way of human clinical trials.

Can Engineered Cartilage Tissue Be Maintained in

the Body in the Long Term?
With a view of translating tissue engineered cartilage into the
human knee, a major barrier will be with the formation of reliable
and consistent chondrogenic tissue over time. Human blood
supply will have growth factors and chemical stimulants that can
assist with chondrogenic stimulation, however, highest activity is
during fetal/young stages of life with increasing age associated
with less stimulation and organization of chondrocytes and
extracellular matrix (65). Therefore, theoretically if engineered
tissue (composed of newly forming cartilage cells from a stem cell
base) is used in adolescent cartilage repair we have no certainty of
cellular control and regulation in-vivo.
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Short term results are promising with respect to the
use of cartilage tissue engineering methods in an in-vivo
animal model (58, 59, 61). However, no mid/long-term
(>12 weeks) in-vivo animal studies using cartilage tissue
engineering and 3D bioprinting methods have been
performed, therefore, no superiority compared to current
clinical techniques such as microfracture and ACI can be
ascertained. Mid/long-term in-vivo animal studies using
tissue engineering techniques will be crucial in validating the
ability of the native synovium in nourishing and maintaining
engineered cartilage over large periods of time, this data will
be pivotal to obtain prior to any progression to human clinical
trials.

Physical/Environmental
Stimulation–Barriers
With respect to mechanical and environmental stimulation,
if tissue is to be printed directly in-vivo then native forces
encountered by the knee in conjunction with synovial
nourishment should directly take over adequate stimulation.
Therefore, with an approach avoiding lab-based tissue growth

there is no major concern with the ability to mimic the
environment of the human knee.

The replication and delivery of such an environment is
only important when trying to maintain a bench based in-
vitro model of repair research where a bio-printed piece of
tissue is maintained in a lab for in-vitro investigation or for
in-vivo models using pre-formed tissue which is maintained in
a lab then implanted at a later date. In these studies, tissue
will need to be maintained as close to the native in-vivo
environment as possible whilst in the lab. Therefore, ideally these
cartilage constructs should be exposed to the different types
of mechanical forces encountered by the native knee, such as
shear stress, perfusion, hydrostatic pressure, and compression
(16, 66).

Recreating the Properties of the Human Knee in a 3D

Culture Environment–3D Bioreactors
Well-designed bioreactor systems can provide stimulation
in one consistent and regular setting therefore
providing a culture environment that promotes cartilage
growth (67).

FIGURE 4 | Different types of 3D Bioprinting methods. (A) Inkjet bioprinter, (B) Micro-extrusion bioprinter, (C) Laser-assisted bioprinter, and (D) Stereolithography

bioprinter.
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Single stimulation bioreactor environments
Induction of shear force to promote cartilage growth has been
demonstrated using rotating vessels (68–70), spinner flasks (71,
72), and stirred double chambers (73). Induction of perfusion
to promote cartilage growth has been demonstrated using fluid
perfusion bioreactor systems either using a unidirectional (74)
or a bidirectional (75) bioreactor. Induction of hydrostatic
pressure to promote cartilage growth has been demonstrated
using fluid filled chambers with water pumps (76, 77). Induction
of compression to promote cartilage growth has been widely
demonstrated (78).

TABLE 2 | Characteristics and disadvantages of the different 3D Bioprinting

methods.

Bioprinter

type

Cell

viability

%

Resolution Speed Disadvantages

Inkjet 80–90 High Fast Clogging of head

Settling effect of bio ink

Micro

extrusion

<80 Moderate Slow Large mechanical

stressors

Laser

assisted

>90 High Medium Expensive

Immature field

Unknown effects of

laser on cells

Sterolithography>85 High Fast Limited compatibility

with liquid/gel

biomaterials

FIGURE 5 | Intra-operative photograph of the Biopen in action in a sheep

model. [Modified from and used with permission from Di Bella et al. (81), under

CC BL].

Bioreactors for inducing multiple/combined mechanical force
Bioreactors applying multiple mechanical properties are
currently being developed. One study combining intermittent
unconfined shear and compressive loading for 2.5 weeks showed
increase in glycosaminoglycan and collagen type II production
in human chondrocytes by 5.3- and 10-fold, respectively, after
simultaneous stimulation (74).

More development is warranted into the application of
multiple mechanical forces within bioreactor systems with
respect to in-vitro cartilage tissue engineering.

Construct Delivery—Barriers
Modern advancement in 3D bioprinting technology opens up
novel techniques with respect to the delivery of engineered
human tissue. As mentioned earlier with respect to cartilage
tissue engineering the ideal materials for printing are hydrogels
given their ability to accommodate complex morphologies (49).
With respect to 3D bioprinting of engineered cartilage tissue
the ideal printing device would need to be small, portable, and
operator friendly to allow for direct intraoperative printing into
defects.

Bioprinting has largely come about to combat the limitations
of past tissue engineering methods and allows for accurate
control of cell distribution, production of biomimetic geometry,
and rapid production of construct (79, 80). With respect to
cartilage tissue repair, it is impossible to accurately characterize
defects even with current advances in medical imaging, therefore
bioprinting techniques in this field need to be focused more
on flexibility rather than computer aided precision. Several
different types of bioprinters have been developed (Figure 4),
characteristics and disadvantages of each type are shown
in Table 2. Hand-held bioprinting used in conjunction with
hydrogels are best suited to achieve this as they can plug defects
of any nature easily like using a glue stick/gel, avoiding the need
for large and heavy machinery in the operating theater (81).

The most suitable mechanism to fit a portable hand-held type
device would be extrusion printing given the compactable nature
of the mechanism, an example of this is the “bio pen” which
uses pneumatic extrusion-based technology to allow printing
of hydrogels (82), Figure 5 shows the intraoperative use of the
bio pen in an sheep model. This device can be loaded with
two cartridges allowing for a co-axial based printing method
(Figures 6A–D) which can concentrate cells in the middle core
with an outer hydrogel shell layer that can be crosslinked and
protect the inner cellular tissue (83).

Engineered tissue using a portable hand-held device can
be printed directly during surgery on the spot with the top
of the construct being immediately crosslinked using methods
mentioned earlier. This approach allows for implant stability
within the lesion (61). However, when using non-portable
printers and non-hydrogel-based scaffolds/materials the formed
implant will need to be manually positioned (requires precise
geometry when initially created) into the lesion and then
anchored with either sutures or a flap approach.

In-vivo animal delivery of engineered cartilage tissue has
been performed to-date using large incisions over the knee,
similar to thosemade in conventional knee replacement surgeries
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FIGURE 6 | Core/Shell 3D printing by co-axial extrusion. (A) Schematic representation of the 3D co-axial handheld printer. (B) Schematic representation of the

co-axial nozzle. (C) Picture of the cartridges dedicated to Core and Shell loading in the printer, with relative magnification of the nozzle during co-axial deposition. (D)

Representative 3D rendered confocal images of Core/Shell printed sample labeled with fluorescent beads. The hydrogel shell is shown in red channel, while the

cellular/hydrogel core is shown in green channel. The panel shows the same image representative of 3D rendered of superimposed green and red channels in three

different orientations. [Modified from and used with permission from Duchi et al. (83) under CC BL].

FIGURE 7 | Infrapatellar fat pad (IFP) location and harvested tissue. Sagittal

magnetic resonance imaging scan of the knee showing the relationship of the

IFP (arrow) to the articular cartilage (double arrow). [Modified from and used

with permission from Hindle et al. (22) under CC BL].

(61, 84). Larger incisions, however, increase the risk of wound
complications (e.g., infection and wound dehiscence) and reduce
cosmetic satisfaction, both of which are important factors to
consider in treatment of a young-middle aged population.

Can Engineered Cartilage Tissue Be Provided Using

Less Risk Adverse Minimally Invasive Techniques?
Arthroscopic knee surgery (85) (key-hole surgery) can provide
such a solution and is performed in a day surgery setting
allowing patients to return to daily activity almost immediately.
Technically speaking the desired bioprinting device would
therefore be incorporated as an attachment into an arthroscopic
kit, once again the most suited to this would be a small hand-
held bioprinter. This microsurgical kit/device will need adequate
valdiation and training prior to use.

If as mentioned earlier a rapid stem cell isolation can be
established to fit within a surgical time frame (28) then this
will open up the ability to harvest tissue, isolate stem cells then
directly re-implant a cell/scaffold interface into knee joint in one
single operation. Furthermore, if stem cells can be harvested
from a source like the infrapatellar fat pad (IFP) (86) which is
in close proximity to the knee joint (Figure 7) the operation can
be performed using one surgical site. Arthroscopic harvest of
the IFP for adipose-derived mesenchymal stem cells isolation has
been performed successfully in a rabbit model (22).

Will the Delivered Construct Integrate Effectively With

Host Tissue?
Another uncertainty is the ability of engineered cartilage tissue to
integrate with healthy tissue. It is evident that superior cartilage
repair can be achieved using a hand-held printing method,
however both hand-held and bench-based printing methods can

Frontiers in Surgery | www.frontiersin.org 8 November 2018 | Volume 5 | Article 70

https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org
https://www.frontiersin.org/journals/surgery#articles


Francis et al. Cartilage Tissue Engineering—Clinical Barriers

FIGURE 8 | Histology (Safranin/Fast green staining) showing better new cartilage formation in the HH group compared to the other groups. Subchondral cysts and

collapse are seen in the BB and MF group, with fibrocartilage formation. Voids at the implanted/native tissue interfaces are seen in the HH and BB groups indicated by

the yellow stars. HH, Hand held Biopen printed scaffold; BB, Bench Based 3D printed scaffold; MF, Microfractures; C, Negative Control (defect left empty). Voids at

the implanted/native tissue interfaces are seen in the HH and BB groups. [Modified from and used with permission from Di Bella et al. (81), under CC BL].

produce the development of voids (Figure 8) between the edges
of the implanted tissue and health native tissue (61).

A possible solution to overcome this would be to apply an
initial coat of biocompatible adhesive (87) into the defect prior to
implantation allowing better proximation of tissue. Subsequently
it will be pivotal to investigate if such a method then allows
interaction of the implanted tissue with the healthy tissue, this
could be investigated adding tracking materials/dyes to the
constructed tissue, and then assessing movement/integration at
different time points (88, 89).

CONCLUSION–HUMAN CLINICAL
TRANSLATION

Cartilage repair techniques using stem cells and 3D bioprinting
technology still remains elusive with respect to human clinical
translation. Many challenges remain to be addressed and
overcome as described in this review. More focus on in-vivo
animal studies will be essential to investigate many of these

barriers. Whilst continued progress is made on such issues it is
important to begin setting up larger scale in-vivo animal trials
which will be the next step toward human clinical translation.
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