

Comparison of Different Surgical Methods for Necrotizing Pancreatitis: A Meta-Analysis

Jianguo Xiao^{1,2†}, Xiaojiao Quan^{3†}, Fang Liu^{1,4} and Wen Li^{4*}

¹ Medicinal School of Chinese People's Liberation Army, Beijing, China, ² Department of Critical Care Medicine, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China, ³ Department of Critical Care Medicine, Hainan Hospital of Chinese People's Liberation Army General Hospital, Sanya, China, ⁴ Department of Gastroenterology and Hepatology, The First Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China

Purpose: To compare the effectiveness and safety of three methods of open necrosectomy, minimally invasive surgery and endoscopic step-up approach for necrotizing pancreatitis.

Methods: We searched Pubmed, Embase, ScienceDirect, and CNKI full text database (CNKI) (to December 25, 2019). RCT, prospective cohort study (PCS), and retrospective cohort study (RCS) comparing the effectiveness and safety of any two of above-mentioned three methods were included.

OPEN ACCESS

Edited by:

Ferdinand Köckerling, Vivantes Hospital, Germany

Reviewed by:

Joris Jaekers, University Hospitals Leuven, Belgium Piero Chirletti, Sapienza University of Rome, Italy

> ***Correspondence:** Wen Li liwen2000@yahoo.com

> > [†]Co-authors

Specialty section:

This article was submitted to Visceral Surgery, a section of the journal Frontiers in Surgery

Received: 11 June 2021 Accepted: 09 August 2021 Published: 22 September 2021

Citation:

Xiao J, Quan X, Liu F and Li W (2021) Comparison of Different Surgical Methods for Necrotizing Pancreatitis: A Meta-Analysis. Front. Surg. 8:723605. doi: 10.3389/fsurg.2021.723605 **Results:** There was no significant difference in major complications or death, and mortality between the minimally invasive surgery treatment group and the endoscopic step-up approach treatment group (RR = 1.66, 95%Cl: 0.83–3.33, P = 0.15; RR = 1.05, 95%Cl: 0.59–1.86, P = 0.87); the incidence rate of new-onset multiple organ failure, enterocutaneous fistula, pancreatic-cutaneous fistula, intra-abdominal bleeding, and endocrine pancreatic insufficiency in the endoscopic step-up approach treatment group was significantly lower than minimally invasive surgery group (RR = 2.65, 95%Cl: 1.10–6.36, P = 0.03; RR = 6.63, 95%Cl: 1.59–27.60, P = 0.009; RR = 7.73, 95%Cl: 3.00–19.89, P < 0.0001; RR = 1.91, 95%Cl: 1.13–3.24, P = 0.02; RR = 1.83, 95%Cl: 1.9–3.16, P = 0.02); hospital stay in the endoscopic step-up approach group was significantly shorter than minimally invasive surgical treatment group (MD = 11.26, 95%Cl: 5.46–17.05, P = 0.0001). The incidence of pancreatic-cutaneous fistula in the endoscopic escalation step therapy group was significantly lower than that in the open necrosectomy group (RR = 0.11, 95%Cl: 0.02–0.58, P = 0.009).

Conclusion: Compared with minimally invasive surgery and open necrosectomy, although endoscopic step-up approach cannot reduce the main complications or death and mortality of patients, it can significantly reduce the incidence of some serious complications, such as pancreatic-cutaneous fistula, enterocutaneous fistula, intraabdominal bleeding, endocrine pancreatic insufficiency, and can significantly shorten the patient's hospital stay.

Keywords: necrotizing pancreatitis, minimally invasive surgery, endoscopic step-up approach, meta-analysis, open necrosectomy

1

INTRODUCTION

Acute pancreatitis is a common gastrointestinal disease with a lethal risk. It is divided into edema pancreatitis and necrotic pancreatitis. Necrotic pancreatitis accounts for about 20% of acute pancreatitis (1). Most of the necrotic pancreas or tissues around the pancreas are still sterile, but 30% will continue infection (2, 3). Due to the higher morbidity and mortality (8-39%) of necrotizing pancreatitis (4), it is particularly important to take active and effective treatment measures. The treatment of necrotic pancreatitis includes basic treatment, conservative medical treatment and surgical treatment. The traditional surgical method is open necrosectomy, usually through a bilateral incision under the costal margin or a median incision to completely remove the necrotic tissue. With the continuous development of surgical operations, minimally invasive surgery and endoscopic step-up approach have gradually replaced open necrosectomy. Several studies have compared the effectiveness and safety of different surgical procedures. In view of the inconsistency of the conclusions of these studies, this article uses a systematic review and meta-analysis to compare open necrosectomy, minimally invasive surgery, and endoscopic stepup approach regarding the effectiveness and safety.

MATERIALS AND METHODS

Search Strategy

A search of Pubmed, Embase, ScienceDirect, and CNKI full text database (CNKI) was performed (form establishment of the database to December 25, 2019). Keywords are "necrotizing

pancreatitis," "acute pancreatitis," "infected necrotizing pancreatitis," "infected necrosis," "open necrosectomy," "endoscopic step-up approach," "minimally invasive surgery," "endoscopy," "endoscopic transgastric drainage," "endoscopic transgastric necrosectomy," "percutaneous catheter drainage," "video-assisted retroperitoneal debridement," "laparoscopic debridement," "PCD," and "ETD," "ETN," "VARD." In order to prevent omissions, references of included studies were also screened. Publication language is Chinese or English. All records were imported into endnote X9 (Thomson Reuters, New York, USA), duplicate documents were removed, and then the titles, abstracts and full texts were screened to obtain studies that meet the entry criteria.

Inclusion and Exclusion Criteria

Inclusion criteria: (1) randomized controlled trial (RCT), prospective cohort study (PCS) or retrospective cohort study (RCS); (2) Patients with acute necrotizing pancreatitis (whether or not infected); (3) Interventions: open necrosectomy, percutaneous catheter drainage (PCD), video-assisted retroperitoneal debridement (VARD), laparoscopic debridement, endoscopic transgastric drainage (ETD), endoscopic transgastric necrosectomy (ETN); (4) Endpoint outcomes: major complications or death, mortality, new-onset multiple organ failure, enterocutaneous fistula, pancreatic-cutaneous fistula, intra-abdominal bleeding, length of hospital stay, length of ICU stay, endocrine pancreatic insufficiency, and exocrine pancreatic insufficiency.

TABLE 1 Baseline characteristics of in	luded	studies.
--	-------	----------

References	Study period	Country	Study design	Center	Intervention	Number of patients	Age (years)	Male sex: n (%)	BMI	Follow (months)
Bang et al. (5)	2014.5–2017.3	USA	RCT	Single center	VARD or LD/ ETD+ETN	32/34	52.9 (14.2)/ 55.6 (14.2)	21 (65.6)/ 22 (64.7)		6
van Brunschot et al. (6)	2011.9–2015.1	Netherlands	RCT	multicenter	PCD+VARD/ ETD+ETN	47/51	60 (11)/ 63 (14)	29 (62)/ 34 (67)	28 (25–30)/ 29 (25–32)	6
Bakker et al. (7)	2008.8–2010.3	Netherlands	RCT	multicenter	VARD/ ETN	10/10	64 (46–72)/ 62 (58–70)	8 (80)/ 6 (60)	27 (23–37)/ 29 (26–35)	6
Litvin and Khokha (16)	2004.1-2008.12	Republic of Belarus	RCT	multicenter	PCD+VARD/ ON	37/35				
Van Santvoort et al. (8)	2005.10-2008.11	Netherlands	RCT	multicenter	PCD+VARD/ ON	43/45	57.6 (2.1)/ 57.4 (2.0)	31 (72)/ 33 (73)	28 (20–55)/ 27 (22–39)	3–6
He et al. (10)	2013.5-2014.12	China	PCS	Single center	PCD+VARD/ ETD+ETN	13/13	48 (43–59)/ 48 (27–55)	7 (53.8)/ 5 (45.5)	23 (22–24)/ 23 (22–24)	12
Kumar et al. (11)	2009.1-2010.12	USA	PCS	Single center	PCD+VARD/ ETN	12/12	53.3 (3.0)/ 58.9 (3.9)	9 (75)/ 8 (66.7)	29.5 (2.2)/ 27.0 (1.4)	30 (9.6)/ 22.8 (3.6)
Khreiss et al. (12)	2008–2013	USA	RCS	Single center	VARD or LD/ ETD+ETN	20/20	55 (37–60.5)/ 55 (42.5–66)	16 (80)/ 9 (45)	30.1 (7.4)/ 29.8 (7.3)	6 (3–10)/ 16 (7–24)
Woo et al. (13)	2011.1-2016.12	Australian	RCS	Single center	PCD+VARD/ ETN/ON	8/12/10	60 (32–72)/ 69 (31–81)/ 56 (37–77)	6 (75)/ 8 (67)/ 10 (100)		
Tan et al. (14)	2011.5-2011.9	France	RCS	multicenter	ETN/ ON	11/21	51 (42–57)/ 52 (47–60)	9 (82)/ 14 (67)		16 (median)
Bausch et al. (15)	2002–2010	Germany	RCS	Single center	PCD+VARD/ ETD+ETN/ ON	14/18/30	61 (20–5)/ 58 (15–84)/ 64 (25–88)	11 (79)/ 10 (56)/ 17 (57)		

RCT, randomized controlled trial; PCS, prospective cohort study; RCS, retrospective cohort study; VARD, video-assisted retroperitoneal debridement; PCD, percutaneous catheter drainage; LD, laparoscopic debridement; ETD, endoscopic transgastric drainage; ETN, endoscopic transgastric necrosectomy; ON, open necrosectomy.

TABLE 2 | Baseline characteristics of the pancreatitis and disease severity.

References	Cause of pancreatitis, n (%)	Intervention	Infected necrosis <i>n</i> (%)	Days of symptoms	ASA class III/IV: <i>n</i> (%)	APACHE II score		Disease se	everity: <i>n</i> (%)	
							SIRS	ICU admission	Single organ failure	Multiple organ failure
Bang et al. (5)	Biliary: 8 (25.0)/14 (41.2) Alcohol: 11 (34.4)/6 (17.6) Idiopathic: 11 (34.4)/14 (41.2) Hypertriglyceridemia: 1 (3.2)/0 (0) Medication: 1 (3.2)/0	VARD or LD/ ETD+ETN	30 (93.8)/31 (91.2)	<28 d: 7 (22)/9 (27) 28–42 d: 16 (50)/19 (56) >42 d: 9 (28)/6 (18)	31 (96.9)/ 32 (94.1)	27.1 (20.3)/ 33.7 (13.5)	16 (50.0)/ 16 (47.1)	4 (40)/ 5 (50)	3 (9.4)/ 2 (5.9)	7 (21.9)/ 7 (20.6)
van Brunschot et al. (6)	Biliary: 30 (64)/26 (51) Alcohol: 7 (15)/7 (14) Other: 10 (21)/18 (35)	PCD+VARD/ ETD+ETN	46 (98%)/ 46 (90%)	41 (28–52)/ 39 (28–54)	2 (4)/ 5 (10)	10 (6–13)/ 9 (5–13)	5 (10)/ 33 (65)	25 (53)/ 21 (41)	14 (30)/ 13 (25)	7 (15)/ 9 (18)
Bakker et al. (7)	Biliary: 7 (70)/6 (60) Alcohol: 2 (20)/2 (20) Other: 1 (10)/2 (20)	VARD/ ETN	9 (90)/ 10 (100)	59 (29–69)/ 48 (36–74)	1 (10)/ 0 (0)	11 (7–14)/ 10 (6–14)	7 (70)/ 9 (90)	3 (30)/ 2 (20)	3 (30)/ 2 (20)	1 (10)/ 2 (20)
Litvin and Khokha (16)		PCD+VARD/ ON								
Van Santvoort et al. (8)	Biliary: 26 (60)/29 (64) Alcohol: 3 (7)/5 (11) Other: 14 (33)/11 (24)	PCD+VARD/ ON	39 (91)/ 42 (93)	30 (11–71)/ 29 (12–155)	13 (30)/ 14 (31)	14.6 (6.1)/ 15.0 (5.3)	42 (98)/ 45 (100)	28 (65)/ 29 (64)	21 (49)/ 22 (49)	15 (35)/ 13 (29)
He et al. (10)	Biliary: 7 (53.8)/5 (45.5) Alcohol: 2 (15.4)/4 (36.4) Hypertriglyceridemia: 4 (30.8)/1 (9.1) Hypercalcemia: 0 (0)/1 (9.1)	PCD+VARD/ ETD+ETN		30 (25–36)/ 27 (22–41)		10 (8–14)/ 7 (6–10)		11 (84.6)/ 8 (72.7)	8 (61.5)/ 7 (63.6)	5 (38.5)/ 1 (9.1)
Kumar et al. (11)	Biliary: 5 (42)/7 (58) Alcohol: 3 (25)/3 (25) Hypertriglyceridemia:1 (8.3)/0 (0) Other:3 (25)/2 (16.7)	PCD+VARD/ ETN				9.4 (1.2)/ 10.1 (1.1)			1 (8.3)/ 0 (0)	0 (0)/ 0 (0)
Khreiss et al. (12)	Biliary: 13 (65)/9 (45) Alcohol: 3 (15)/3 (12) Idiopathic: 3 (15)/2 (10) Other: 1 (5)/6 (30)	VARD or LD/ ETD+ETN								
Woo et al. (13)	Biliary: 2 (25)/8 (67)/5 (50) Alcohol: 1 (12.5)/0 (0)/2 (20) Post-ERCP: 1 (12.5)/1 (8)/1 (10) Other: 4 (50)/3 (25)/2 (20)	PCD+VARD/ ETN/ON								
Tan et al. (14)	Biliary: 5 (45)/6 (29) Alcohol: 4 (36)/6 (29) Other: 2 (18)/9 (43)	ETN/ ON	10 (91)/ 19 (90)	22 (9–74)/ 21 (3–120)						
Bausch et al. (15)	Biliary: 4 (29)/5 (28)/4 (13) Alcohol: 3 (21)/4 (22)/5 (17) Post-ERCP:2 (14)/1 (6)/2 (7) Other:5 (36)/8 (44)/19 (63)	PCD+VARD/ ETD+ETN/ON	13 (93)/ 13 (72)/ 25 (83)	39 (15–184)/ 54 (8–194)/ 11 (0–77)						

Quality Assessment

Two researchers assessed the included literature according to the Cochrane Handbook 5.1.0 quality evaluation standard. The quality evaluation criteria include the following 7 aspects: (1) random sequence generation; (2) allocation concealment; (3) blinding of participants and personnel; (4) blinding of outcome assessment; (5) incomplete outcome data; (6) selective reporting; (7) other bias. Each item is divided into 3 levels: low bias risk, unclear, and high bias risk.

Data Extraction

Data extracted includes the time of publication, name of the first author, type of study, country, sample size, intervention and

control measures, follow-up time, patient characteristics (age, gender, body mass index, disease cause, duration of symptoms, disease severity, Surgery type, infection necrosis ratio, etc.), inclusion criteria, exclusion criteria, endpoint outcomes, etc.

The literature search, literature evaluation and data extraction were performed by two researchers independently. A third reviewer would be invited if there were any disagreements.

Statistical Analysis

Continuous variables are described as mean difference (MD) and 95% confidence intervals (95% confidence intervals, 95% CIs), and binary variables are described as relative risk (RR) and 95% Confidence interval (95% CIs). P < 0.05 indicates that the difference is statistically significant. For statistical analysis, Revman software (version 5.3; Cochrane Collaboration, Copenhagen, Denmark) was used. First, the Cochran's Q statistical test and I^2 -test were used to evaluate the heterogeneity between the studies. If $I^2 \ge 50\%$ or P < 0.05, then there was a large heterogeneity between the studies. A random effect model was used and a sensitivity analysis was conducted; If $I^2 < 50\%$ or P > 0.05, it is considered that there is no heterogeneity or the heterogeneity is small, and a fixed effect model is used.

RESULTS

Literature Screening and Characteristics of Included Studies

A total of 4,657 articles including 4,651 initially retrieved and 6 references found by searching the references of the included articles were identified. Two thousand twenty-two duplicate articles were eliminated by EndNote software. Two thousand six hundred one articles were excluded by reading the title and abstract. Twenty-three articles were removed by reading the full text, and finally 11 articles were identified as eligible. The literature selection process is shown in Figure 1. All 11 articles included 5 RCT (5-9), 2 PCS (10, 11), and 4 RCS (12-15). Eight articles compared the effectiveness and safety of minimally invasive surgery and endoscopic step-up approach, 4 articles compared the effectiveness and safety of minimally invasive surgery and open necrosectomy, and 3 articles compared the effectiveness and safety of endoscopic step-up approach and open necrosectomy (Table 1). The characteristics of baseline pancreatitis and the severity of the disease are shown in Table 2.

Study	Random sequence generation	Adequate allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Bang et al. (5)	Low	Low	High	Low	Low	Low	Low
van Brunschot et al. (6)	Low	Low	High	Low	Low	Low	Low
Bakker et al. (7)	Unclear	Unclear	High	Low	Low	Low	Low
Litvin and Khokha (16)	Unclear	Unclear	High	Unclear	Unclear	Low	Unclear
Van Santvoort et al. (8)	Unclear	Low	High	Low	Low	Low	Low

Risk of Bias and Methodological Quality

Figure 2 shows the risk of bias of included RCTs. The quality evaluation of RCTs is shown in **Table 3**, and the quality evaluation of cohort studies are shown in **Table 4**.

Outcomes

Major Complications or Death

Four studies (3 RCT and 1 CS) analyzed the major complications or death rates of minimally invasive surgery and endoscopic step-up approach. Results showed that there was no significant difference in major complications or death between the minimally invasive surgery group and the endoscopic step-up approach group (RR = 1.66, 95% CI: 0.83–3.33, P = 0.15; **Figure 3A**).

Two studies (1 RCT, 1 CS) analyzed the major complications or death of minimally invasive surgery and open necrosectomy. The results showed that the major complications or death rate in the minimally invasive surgery group was significantly lower than that in the open necrosectomy group (RR = 0.54, 95% CI: 0.38–0.76, P = 0.0005; Figure 3B).

Mortality

Eight studies (3 RCT, 5 CS) analyzed the mortality of minimally invasive surgery and endoscopic step-up approach. Results indicated that for mortality, there was no significant difference between the minimally invasive surgery group and endoscopic step-up approach group (RR = 1.05, 95% CI: 0.59–1.86, P = 0.87; **Figure 4A**).

Four studies (2 RCT, 2 CS) analyzed the mortality of minimally invasive surgery and open necrosectomy. The results showed that the mortality rate of the minimally invasive surgery group was significantly lower than that of the open necrosectomy group (RR = 0.60, 95% CI: 0.38–0.94, P = 0.03; **Figure 4B**).

Three cohort studies analyzed the mortality of endoscopic step-up approach and open necrosectomy. The results showed that there was no significant difference in post-operative mortality between the endoscopic step-up approach group and the open necrosectomy group (RR = 0.39, 95% CI: 0.04–3.51, P = 0.40; **Figure 4C**).

New-Onset Multiple Organ Failure

Five studies (3 RCT, 2 CS) analyzed the incidence of newonset multiple organ failure in patients with minimally invasive surgery and endoscopic step-up approach among the 5 studies. The results showed that the incidence of new-onset multiple organ failure in the endoscopic step-up approach group was significantly lower than that in the minimally invasive surgery group (RR = 2.65, 95% CI: 1.10–6.36, P = 0.03; **Figure 5**).

Enterocutaneous Fistula

Three studies (2 RCT, 1 CS) analyzed the incidence of intestinal fistula after minimally invasive surgery and endoscopic step-up approach. The results showed that the incidence of enterocutaneous fistula in the endoscopic step-up approach group was significantly lower than that in the minimally invasive

Study		sei	selection		Comparability	ability.		Outcome	
	Representativeness of treated arm	Selection of the comparative treatment arm(s)	Ascertainment of the treatment regimen	Representativeness Selection of the Ascertainment Demonstration that Comparability betwoef treated arm comparative of the treatment outcome of interest was patients in different treated arm comparative not present at start of treatment arms: main study factor	Comparability between Comparability patients in different between patier treatment arms: main different treatm factor factor	Comparability Assessment of Adequacy of between patients in outcome with follow-up length different treatment independency (to assess arms: secondary outcome) factor	Assessment of Adequacy of outcome with follow-up len independency (to assess outcome)	Adequacy of follow-up length (to assess outcome)	Lost to follow-up acceptable (<10% and reported)
He et al. (10) Yes) Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Kumar et al. Yes (11)	. Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Khreiss et al. Yes (12)	I. Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Woo et al. (13)	Yes	Yes	Yes	Yes	Yes	No	No	No	Yes
Tan et al. (14) Yes	4) Yes	Yes	Yes	Yes	Yes	No	No	No	Yes
Bausch et al. Yes (15)	ıl. Yes	Yes	Yes	Yes	Yes	No	No	Yes	Yes

	ninimally invasive s	urgery er	ndoscopic step-up	approach		Risk Ratio		Risk Ratio	
tudy or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI Y	ear	M-H, Random, 95% CI	
.1.1 RCT									
akker 2012	8	10	2	10	17.1%	4.00 [1.11, 14.35] 2			
an Brunschot S 2017	21 13	47	22 4	51 34	34.7%	1.04 [0.66, 1.62] 2			
ang JY 2019 ubtotal (95% CI)	13	32 89	4	34 95	21.8% 73.5%	3.45 [1.26, 9.49] 2 2.16 [0.78, 5.97]	019		
otal events	42	05	28	55	10.070	2.10 [0.10, 0.01]			
eterogeneity: Tau ² = 0.59 est for overall effect: Z = 1	; Chi² = 7.83, df = 2 (F	= 0.02); l ² =							
1.2 PCS or RCS									
ausch D 2012	6	14	8	18	26.5%	0.96 [0.44, 2.14] 2	012		
ubtotal (95% CI)		14		18	26.5%	0.96 [0.44, 2.14]			
otal events	6		8						
eterogeneity: Not applical est for overall effect: Z = 0									
otal (95% CI)		103		113	100.0%	1.66 [0.83, 3.33]			
otal events	48		36						
eterogeneity: Tau ² = 0.31	; Chi ² = 8.53, df = 3 (F	= 0.04); l ² =					t t	<u> </u>	0 10
	l.44 (P = 0.15) es: Chi² = 1.51, df = 1		l² = 33.8%	sectomy		Risk Ratio	0.01 0.1 Favours minimally invasi	ve surgery Favours endoscop	
est for subgroup differenc	.44 (P = 0.15)	sive surge	l² = 33.8%		Weight	Risk Ratio M-H, Fixed, 95% Cl ∶	Favours minimally invasi		
est for overall effect: Z = 1 est for subgroup differenc tudy or Subgroup .1.1 RCT	I.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva	sive surge	¹² = 33.8% ery open necro		Weight		Favours minimally invasi	ive surgery Favours endoscop	
est for subgroup differenc tudy or Subgroup .1.1 RCT	I.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva	sive surge	¹² = 33.8% ery open necro		Weight 63.8%	M-H, Fixed, 95% CI	Favours minimally invasi	ive surgery Favours endoscop	
est for subgroup differenc tudy or Subgroup 1.1 RCT an Santvoort HC 2010	1.44 (P = 0.15) es: Chi² = 1.51, df = 1 minimally inva Events	sive surge	l² = 33.8% ery open necro otal Events	Total	•	M-H, Fixed, 95% Cl	Favours minimally invasi	ive surgery Favours endoscop	
sst for subgroup differenc tudy or Subgroup .1.1 RCT an Santvoort HC 2010 ubtotal (95% CI)	1.44 (P = 0.15) es: Chi² = 1.51, df = 1 minimally inva Events	sive surge	¹² = 33.8% ery open necro otal Events 43 31	Total 45	63.8%	M-H, Fixed, 95% Cl	Favours minimally invasi	ive surgery Favours endoscop	
est for subgroup differenc tudy or Subgroup .1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva Events 17	sive surge	¹² = 33.8% Pry open necro otal Events 43 31 43	Total 45	63.8%	M-H, Fixed, 95% Cl	Favours minimally invasi	ive surgery Favours endoscop	
tudy or Subgroup differenc tudy or Subgroup 1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events eterogeneity: Not appl	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva <u>Events</u> 17 icable	sive surge	¹² = 33.8% Pry open necro otal Events 43 31 43	Total 45	63.8%	M-H, Fixed, 95% Cl	Favours minimally invasi	ive surgery Favours endoscop	
tudy or Subgroup differenc tudy or Subgroup .1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events leterogeneity: Not appl est for overall effect: Z	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva <u>Events</u> 17 icable	sive surge	¹² = 33.8% Pry open necro otal Events 43 31 43	Total 45	63.8%	M-H, Fixed, 95% Cl	Favours minimally invasi	ive surgery Favours endoscop	
tudy or Subgroup differenc 1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events eterogeneity: Not appl est for overall effect: Z 1.2 PCS or RCS	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva <u>Events</u> 17 icable	sive surge	¹² = 33.8% Pry open necro otal Events 43 31 43	Total 45	63.8%	M-H, Fixed, 95% Cl	Favours minimally invasi Year 2010	ive surgery Favours endoscop	
tudy or Subgroup differenc 1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events teterogeneity: Not appl est for overall effect: Z .1.2 PCS or RCS ausch D 2012	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 icable = 2.60 (P = 0.009)	sive surge	P = 33.8% Pry open necro otal Events 43 31 43 31	Total 45 45	63.8% 63.8%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87]	Favours minimally invasi Year 2010	ive surgery Favours endoscop	
tudy or Subgroup differenc tudy or Subgroup 1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events leterogeneity: Not appl est for overall effect: Z 1.2 PCS or RCS ausch D 2012 ubtotal (95% CI)	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 icable = 2.60 (P = 0.009)	sive surge	P = 33.8% Pry open necro otal Events 43 31 43 31 14 27	Total 45 45 30	63.8% 63.8% 36.2%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87]	Favours minimally invasi Year 2010	ive surgery Favours endoscop	
tudy or Subgroup 1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events eterogeneity: Not appl est for overall effect: Z 1.2 PCS or RCS ausch D 2012 ubtotal (95% CI) otal events	1.44 (P = 0,15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 17 17 17 17 17 17 17 16 2.60 (P = 0.009) 6 6	sive surge	P = 33.8% Pry open necro otal Events 43 31 43 31 14 27 14	Total 45 45 30	63.8% 63.8% 36.2%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87]	Favours minimally invasi Year 2010	ive surgery Favours endoscop	
tudy or Subgroup differenc tudy or Subgroup .1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events leterogeneity: Not appl est for overall effect: Z .1.2 PCS or RCS ausch D 2012 ubtotal (95% CI) otal events leterogeneity: Not appl	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 icable = 2.60 (P = 0.009) 6 icable	sive surge	P = 33.8% Pry open necro otal Events 43 31 43 31 14 27 14	Total 45 45 30	63.8% 63.8% 36.2%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87]	Favours minimally invasi Year 2010	ive surgery Favours endoscop	
tudy or Subgroup differenc tudy or Subgroup .1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events leterogeneity: Not appl est for overall effect: Z ubtotal (95% CI) otal events eterogeneity: Not appl est for overall effect: Z	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 icable = 2.60 (P = 0.009) 6 icable	sive surge	P = 33.8% Pry open necro otal Events 43 31 43 31 14 27 14		63.8% 63.8% 36.2%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87] 0.57 [0.38, 0.87]	Favours minimally invasi Year 2010	ive surgery Favours endoscop	
est for subgroup differenc tudy or Subgroup	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 icable = 2.60 (P = 0.009) 6 icable	sive surge	Pry open necro otal Events 43 31 43 31 14 27 14 27 14 27		63.8% 63.8% 36.2% 36.2%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87] 0.57 [0.38, 0.87] 0.48 [0.26, 0.88]	Favours minimally invasi Year 2010	ive surgery Favours endoscop	
tudy or Subgroup differenc 1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events eterogeneity: Not appl est for overall effect: Z 1.2 PCS or RCS ausch D 2012 ubtotal (95% CI) otal events eterogeneity: Not appl est for overall effect: Z otal (95% CI)	1.44 (P = 0,15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 icable = 2.60 (P = 0.009) 6 icable = 2.36 (P = 0.02) 23	sive surge	¹² = 33.8% ery open necro otal Events 43 31 43 31 14 27 14 27 14 27 14 27 57		63.8% 63.8% 36.2% 36.2%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87] 0.57 [0.38, 0.87] 0.48 [0.26, 0.88]	Favours minimally invasi Year 2010 2012	Risk Ratio M-H. Fixed, 95% CI	ic step-up approa
tudy or Subgroup differenc 1.1 RCT an Santvoort HC 2010 ubtotal (95% CI) otal events eterogeneity: Not appl est for overall effect: Z 1.2 PCS or RCS ausch D 2012 ubtotal (95% CI) otal events eterogeneity: Not appl est for overall effect: Z otal (95% CI) otal events	1.44 (P = 0.15) es: Chi ² = 1.51, df = 1 minimally inva Events 17 17 icable = 2.60 (P = 0.009) 6 icable = 2.36 (P = 0.02) 24, df = 1 (P = 0.62	sive surge T	¹² = 33.8% ery open necro otal Events 43 31 43 31 14 27 14 27 14 27 14 27 57		63.8% 63.8% 36.2% 36.2%	M-H, Fixed, 95% Cl 0.57 [0.38, 0.87] 0.57 [0.38, 0.87] 0.57 [0.38, 0.87] 0.48 [0.26, 0.88]	Favours minimally invasi Year 2010 2012	Risk Ratio M-H. Fixed, 95% CI	ic step-up approa

FIGURE 3 | Forest plots for the major complications or death rates. (A) Between minimally invasive surgery and endoscopic step-up approach. (B) Between minimally invasive surgery and open necrosectomy. M-H, Mantel–Haenszel test; Random, a random effects model; CI, confidence intervals.

surgery group (RR = 6.63, 95% CI: 1.59–27.60, P = 0.009; Figure 6).

Pancreatic-Cutaneous Fistula

Six studies (3 RCT, 3 CS) analyzed the incidence of pancreatic fistulas after minimally invasive surgery and endoscopic stepup approach. The results showed that the incidence of pancreatic-cutaneous fistula in the endoscopic step-up approach group was significantly lower than that in the minimally invasive surgery group (RR = 7.73, 95% CI: 3.00–19.89, P < 0.0001; Figure 7A).

Three studies (1 RCT, 2 CS) analyzed the incidence of pancreatic fistula after minimally invasive surgery and open necrosectomy. The results showed that there was no significant difference in the incidence of pancreatic-cutaneous fistula between the minimally invasive surgery group and the open necrosectomy group (RR = 0.65, 95% CI: 0.38–1.13, P = 0.13; **Figure 7B**).

Three cohort studies analyzed the incidence of pancreatic fistula after endoscopic step-up approach and open

necrosectomy. The results showed that the incidence of pancreatic-cutaneous fistula in the endoscopic step-up approach group was significantly lower than that in the open necrosectomy group (RR = 0.11, 95% CI: 0.02–0.58, P = 0.009; Figure 7C).

Intra-Abdominal Bleeding

Six studies (3RCT, 3 CS) analyzed the incidence of intraabdominal bleeding after minimally invasive surgery and endoscopic step-up approach. The results showed that the incidence of intra-abdominal bleeding in the endoscopic stepup approach group was significantly lower than that in the minimally invasive surgery group (RR = 1.91, 95% CI: 1.13–3.24, P = 0.02; Figure 8A).

Four studies (2 RCT, 2 CS) analyzed the incidence of intraabdominal bleeding after minimally invasive surgery and open necrosectomy. The results showed that there was no significant difference in the incidence of post-operative intra-abdominal bleeding between the minimally invasive surgery group and

m	inimally invasive surg	erv endos	copic step-up	approach		Risk Ratio	Risk Ratio
tudy or Subgroup		Total	Events		Weight	M-H, Fixed, 95% CI Year	
.2.1 RCT							
akker 2012	4	10	1	10	5.1%	4.00 [0.54, 29.80] 2012	
an Brunschot S 2017	6	47	9				
				51		0.72 [0.28, 1.88] 2017	
ang JY 2019	2	32	3	34		0.71 [0.13, 3.97] 2019	
ubtotal (95% CI)		89		95	63.4%	0.98 [0.47, 2.04]	
otal events	12		13				
leterogeneity: Chi ² = 2.41, d est for overall effect: Z = 0.0		%					
.2.2 PCS or RCS							
ausch D 2012	3	14	1	18	4.4%	3.86 [0.45, 33.20] 2012	
umar N 2014	1	12	0	12		3.00 [0.13, 67.06] 2014	
hreiss M 2015	0 0	20	õ	20		Not estimable 2015	
Voo S 2015	ő	8	3	12		0.21 [0.01, 3.53] 2015	
le W 2017	3	13	3	13		1.00 [0.25, 4.07] 2017	
ubtotal (95% CI)	3	67	3	75		1.17 [0.46, 2.95]	
	7	07	-	75	30.078	1.17 [0.40, 2.35]	
otal events leterogeneity: Chi ² = 3.02, d est for overall effect: Z = 0.3	df = 3 (P = 0.39); I² = 1%	6	7				
	00 (1 = 0.14)						
otal (95% CI)		156		170	100.0%	1.05 [0.59, 1.86]	•
otal events	19		20				
leterogeneity: Chi ² = 5.60, d		6					
est for overall effect: Z = 0.1							0.01 0.1 1 10 100
est for subgroup differences		= 0.77) l ² = 0	%				Favours minimally invasive surgery Favours endoscopic step-up approach
		,					
Mudu or Subaroup	minimally invasiv		open necros		Weight	Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	weight	M-H, Fixed, 95% CI Ye	ear M-H, Fixed, 95% Cl
			_				
/an Santvoort HC 2010	8	43	7	45	18.1%	1.20 [0.47, 3.01] 20	_
itvin A 2010	10	37	17	35	46.3%	0.56 [0.30, 1.04] 20	010
Subtotal (95% CI)		80		80	64.4%	0.74 [0.44, 1.23]	\bullet
otal events	18		24				
eterogeneity: Chi ² = 1.82	$2 df = 1 (P = 0.18) \cdot l^2$	= 45%					
est for overall effect: Z =							
2.2.2 PCS or RCS							
	3	14	19	30	32.0%	0 34 [0 12 0 96] 20	
Bausch D 2012	3	14	19	30	32.0%	0.34 [0.12, 0.96] 20	
Bausch D 2012 Voo S 2015	3 0	8	19 1	10	3.6%	0.41 [0.02, 8.84] 20	
Bausch D 2012 Voo S 2015			1				
ausch D 2012 Voo S 2015 Subtotal (95% CI)		8		10	3.6%	0.41 [0.02, 8.84] 20	
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.07	0 3 1, df = 1 (P = 0.91); l ²	8 22	1	10	3.6%	0.41 [0.02, 8.84] 20	
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events leterogeneity: Chi ² = 0.0 ⁻ rest for overall effect: Z =	0 3 1, df = 1 (P = 0.91); l ²	8 22 = 0%	1	10 40	3.6% 35.6%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92]	
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 ⁷ Test for overall effect: Z = Total (95% CI)	0 3 1, df = 1 (P = 0.91); l ² : 2.12 (P = 0.03)	8 22	1 20	10 40	3.6%	0.41 [0.02, 8.84] 20	
2.2.2 PCS or RCS 3ausch D 2012 Noo S 2015 Subtotal (95% CI) Fotal events deterogeneity: Chi ² = 0.0° Fest for overall effect: Z = Fotal (95% CI) Fotal events	0 1, df = 1 (P = 0.91); l ² : 2.12 (P = 0.03) 21	8 22 = 0% 102	1	10 40	3.6% 35.6%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92]	
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0° Test for overall effect: Z = Total (95% CI) Total events	0 1, df = 1 (P = 0.91); l ² : 2.12 (P = 0.03) 21	8 22 = 0% 102	1 20	10 40	3.6% 35.6%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92]	
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events deterogeneity: Chi ² = 0.0' Test for overall effect: Z = Total (95% CI) Total events deterogeneity: Chi ² = 3.42 Test for overall effect: Z =	0 3 1, df = 1 (P = 0.91); P 2.12 (P = 0.03) 2 2, df = 3 (P = 0.33); P 2.22 (P = 0.03)	8 22 = 0% 102 = 12%	1 20 44	10 40	3.6% 35.6%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92]	
Bausch D 2012 Woo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0° Test for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.42 Test for overall effect: Z = Test for subgroup differen	0 3 1, df = 1 (P = 0.91); I ² 2.12 (P = 0.03) 2, df = 3 (P = 0.33); I ² 2.22 (P = 0.03) icces: Chi ² = 1.79, df =	8 22 = 0% 102 = 12% 1 (P = 0.18)	1 20 44 , I ² = 44.0%	10 40 120	3.6% 35.6%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94]	015 0.01 0.1 1 10 100 Favours minimally invasive surgery Favours open necrosectomy
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events leterogeneity: Chi ² = 0.0° est for overall effect: Z = Total (95% CI) Total events leterogeneity: Chi ² = 3.42° est for overall effect: Z = rest for subgroup differen er	0 3 1, df = 1 (P = 0.91); I ² 2.12 (P = 0.03) 2, df = 3 (P = 0.33); I ² 2.22 (P = 0.03) ces: Chi ² = 1.79, df = ndoscopic step-up a	8 22 = 0% 102 = 12% 1 (P = 0.18) pproach	1 20 44 , I² = 44.0%	10 40 120 ctomy	3.6% 35.6%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio	015 0.01 0.1 1 10 100 Favours minimally invasive surgery Favours open necrosectomy Risk Ratio
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0 ⁻ rest for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.4 ² rest for soverall effect: Z = rest for subgroup differen er Study or Subgroup	0 3 1, df = 1 (P = 0.91); l ² : 2.12 (P = 0.03) 2, df = 3 (P = 0.33); l ² : 2.22 (P = 0.03) cces: Chi ² = 1.79, df = ndoscopic step-up a Events	8 22 = 0% 102 = 12% : 1 (P = 0.18) pproach of Total	1 20 44 , ² = 44.0% <u>Depen necroses</u> <u>Events</u>	10 40 120 ctomy <u>Total</u>	3.6% 35.6% 100.0% <u>Weight</u>	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio M-H. Fixed, 95% CI Yes	015 0.01 0.1 1 10 100 Favours minimally invasive surgery Favours open necrosectomy Risk Ratio ar M-H. Fixed, 95% Cl
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0' Test for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.42 Test for overall effect: Z = Test for overall effect: Z = Test for subgroup differen Bausch D 2012	0 3 1, df = 1 (P = 0.91); l ² : 2.12 (P = 0.03) 2 2, df = 3 (P = 0.33); l ² : 2.22 (P = 0.03) cces: Chi ² = 1.79, df = ndoscopic step-up a <u>Events</u> 3	8 22 = 0% 102 = 12% 1 (P = 0.18) pproach of Total 18	1 20 44 , l ² = 44.0% <u>Events</u> 8	10 40 120 <u>Total 1</u> 30	3.6% 35.6% 100.0% <u>Weight</u> 62.8%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio <u>M-H. Fixed, 95% CI Yea</u> 0.63 [0.19, 2.06] 201	ar M-H. Fixed. 95% CI
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0' Test for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.42 Test for overall effect: Z = Test for overall effect: Z = Test for subgroup differen Construction Test for Subgroup Study or Subgroup Stausch D 2012 Tan V 2014	0 3 1, df = 1 (P = 0.91); I ² 2.12 (P = 0.03) 2, df = 3 (P = 0.33); I ² 2.22 (P = 0.03) icces: Chi ² = 1.79, df = ndoscopic step-up a <u>Events</u> 3 0	8 22 = 0% 102 = 12% 1 (P = 0.18) pproach o <u>Total</u> 18 11	1 20 44 , I ² = 44.0% <u>Events</u> 8 3	10 40 120 <u>Total V</u> 30 21	3.6% 35.6% 100.0% <u>Weight</u> 62.8% 25.8%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio <u>M-H. Fixed, 95% CI Yea</u> 0.63 [0.19, 2.06] 201 0.26 [0.01, 4.66] 201	ar M-H. Fixed, 95% Cl
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0' Test for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.42 Test for overall effect: Z = Test for overall effect: Z = Test for subgroup differen Construction Test for Subgroup Study or Subgroup Stausch D 2012 Tan V 2014	0 3 1, df = 1 (P = 0.91); l ² : 2.12 (P = 0.03) 2 2, df = 3 (P = 0.33); l ² : 2.22 (P = 0.03) cces: Chi ² = 1.79, df = ndoscopic step-up a <u>Events</u> 3	8 22 = 0% 102 = 12% 1 (P = 0.18) pproach of Total 18	1 20 44 , l ² = 44.0% <u>Events</u> 8	10 40 120 <u>Total V</u> 30 21	3.6% 35.6% 100.0% <u>Weight</u> 62.8%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio <u>M-H. Fixed, 95% CI Yea</u> 0.63 [0.19, 2.06] 201	ar M-H. Fixed, 95% Cl
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0' rest for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.42' rest for overall effect: Z = rest for overall effect: Z = rest for subgroup differen Bausch D 2012 Tan V 2014 Voo S 2015	0 3 1, df = 1 (P = 0.91); I ² 2.12 (P = 0.03) 2, df = 3 (P = 0.33); I ² 2.22 (P = 0.03) icces: Chi ² = 1.79, df = ndoscopic step-up a <u>Events</u> 3 0	8 22 = 0% 102 = 12% 1 (P = 0.18) pproach of Total 18 11 12	1 20 44 , I ² = 44.0% <u>Events</u> 8 3	10 40 120 <u>Total 1</u> 30 21 10	3.6% 35.6% 100.0% <u>Weight</u> 62.8% 25.8% 11.4%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio <u>M-H. Fixed, 95% CI Yea</u> 0.63 [0.19, 2.06] 201 0.26 [0.01, 4.66] 201 0.83 [0.06, 11.70] 201	ar M-H. Fixed, 95% Cl
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0° Test for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.42 Test for overall effect: Z = Test for overall effect: Z = Test for subgroup differen Suddy or Subgroup Sausch D 2012 Tean V 2014 Voo S 2015 Total (95% CI)	0 3 1, df = 1 (P = 0.91); l ² : 2.12 (P = 0.03) 2, df = 3 (P = 0.33); l ² : 2.22 (P = 0.03) cces: Chi ² = 1.79, df = ndoscopic step-up a <u>Events</u> 3 0 1	8 22 = 0% 102 = 12% 1 (P = 0.18) pproach o <u>Total</u> 18 11	1 20 44 , I ² = 44.0% <u>Events</u> 8 3 1	10 40 120 <u>Total 1</u> 30 21 10	3.6% 35.6% 100.0% <u>Weight</u> 62.8% 25.8%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio <u>M-H. Fixed, 95% CI Yea</u> 0.63 [0.19, 2.06] 201 0.26 [0.01, 4.66] 201	ar M-H. Fixed, 95% Cl
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0° rest for overall effect: Z = rotal (95% CI) Total events Heterogeneity: Chi ² = 3.42° rest for overall effect: Z = rest for subgroup differen er Study or Subgroup Bausch D 2012 ran V 2014 Voo S 2015 Total (95% CI) Total events	0 3 1, df = 1 (P = 0.91); I ² 2.12 (P = 0.03) 2, df = 3 (P = 0.33); I ² 2.22 (P = 0.03) icces: Chi ² = 1.79, df = ndoscopic step-up a Events 3 0 1 4	8 22 = 0% 102 = 12% • 1 (P = 0.18) pproach 6 11 18 11 12 41	1 20 44 , I ² = 44.0% <u>Events</u> 8 3	10 40 120 <u>Total 1</u> 30 21 10	3.6% 35.6% 100.0% <u>Weight</u> 62.8% 25.8% 11.4%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio <u>M-H. Fixed, 95% CI Yea</u> 0.63 [0.19, 2.06] 201 0.26 [0.01, 4.66] 201 0.83 [0.06, 11.70] 201	ar M-H. Fixed, 95% Cl
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0° rest for overall effect: Z = rotal (95% CI) Total events Heterogeneity: Chi ² = 3.42° rest for overall effect: Z = rest for subgroup differen er Study or Subgroup Bausch D 2012 ran V 2014 Voo S 2015 Total (95% CI) Total events	0 3 1, df = 1 (P = 0.91); I ² 2.12 (P = 0.03) 2, df = 3 (P = 0.33); I ² 2.22 (P = 0.03) icces: Chi ² = 1.79, df = ndoscopic step-up a Events 3 0 1 4	8 22 = 0% 102 = 12% • 1 (P = 0.18) pproach 6 11 18 11 12 41	1 20 44 , I ² = 44.0% <u>Events</u> 8 3 1	10 40 120 <u>Total 1</u> 30 21 10	3.6% 35.6% 100.0% <u>Weight</u> 62.8% 25.8% 11.4%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio <u>M-H. Fixed, 95% CI Yea</u> 0.63 [0.19, 2.06] 201 0.26 [0.01, 4.66] 201 0.83 [0.06, 11.70] 201	ar M-H. Fixed. 95% Cl
Bausch D 2012 Voo S 2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.0' rest for overall effect: Z = Total (95% CI) Total events Heterogeneity: Chi ² = 3.42' rest for overall effect: Z = rest for overall effect: Z = rest for subgroup differen Bausch D 2012 Tan V 2014 Voo S 2015	0 3 1, df = 1 (P = 0.91); P : 2.12 (P = 0.03) 2, df = 3 (P = 0.33); P : 2.22 (P = 0.03) cces: Chi ² = 1.79, df = ndoscopic step-up a <u>Events</u> 3 0 1 2, df = 2 (P = 0.82); P ²	8 22 = 0% 102 = 12% • 1 (P = 0.18) pproach 6 11 18 11 12 41	1 20 44 , I ² = 44.0% <u>Events</u> 8 3 1	10 40 120 <u>Total 1</u> 30 21 10	3.6% 35.6% 100.0% <u>Weight</u> 62.8% 25.8% 11.4%	0.41 [0.02, 8.84] 20 0.35 [0.13, 0.92] 0.60 [0.38, 0.94] Risk Ratio M-H. Fixed, 95% CI Yea 0.63 [0.19, 2.06] 201 0.26 [0.01, 4.66] 201 0.83 [0.06, 11.70] 201 0.55 [0.20, 1.53]	ar M-H. Fixed, 95% Cl

necrosectomy. (C) Between endoscopic step-up approach and open necrosectomy. M-H, Mantel-Haenszel test; Fixed, a fixed effects model; CI, confidence intervals.

the open necrosectomy group (RR = 0.67, 95% CI: 0.37–1.20, P = 0.18; Figure 8B).

Three cohort studies analyzed the incidence of intraabdominal bleeding after endoscopic step-up approach and open necrosectomy. The results showed that there was no significant difference in the incidence of intra-abdominal bleeding between the endoscopic step-up approach group and the open necrosectomy group (RR = 0.55, 95% CI: 0.20–1.53, *P* = 0.25; **Figure 8C**).

Length of Hospital Stay

Four studies (2 RCT, 2 CS) analyzed the length of hospital for minimally invasive surgery and endoscopic step-up approach. The results showed that the hospital stay of endoscopic stepup approach group was significantly shorter than that of the

	minimally invasive	surgery e	ndoscopic step-up a	approach		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI Yea	r M-H. Fixed, 95% Cl
1.3.1 RCT							
Bakker 2012	5	10	0	10	7.9%	11.00 [0.69, 175.86] 2012	2
/an Brunschot S 2017	6	47	2	51	30.2%	3.26 [0.69, 15.34] 201	7
Bang JY 2019	3	32	2	34	30.5%	1.59 [0.28, 8.93] 201	9
Subtotal (95% CI)		89		95	68.5%	3.40 [1.22, 9.47]	
Total events	14		4				
Heterogeneity: Chi ² = 1.4	4, df = 2 (P = 0.49); l ²	! = 0%					
Test for overall effect: Z =	= 2.35 (P = 0.02)						
1.3.2 PCS or RCS							
Kumar N 2014	1	12	0	12	7.9%	3.00 [0.13, 67.06] 2014	4
He W 2017	0	13	1	13	23.6%	0.33 [0.01, 7.50] 201	7
Subtotal (95% CI)		25		25	31.5%	1.00 [0.15, 6.72]	
Fotal events	1		1				
Heterogeneity: Chi ² = 0.9	6, df = 1 (P = 0.33); l ²	^e = 0%					
Test for overall effect: Z =	= 0.00 (P = 1.00)						
Fotal (95% CI)		114		120	100.0%	2.65 [1.10, 6.36]	
Total events	15		5				
	2 df = 4 (D = 0.54) df	= 0%					
Heterogeneity: Chi ² = 3.1	2, ui – 4 (F – 0.54), i	- 0 /8					0.01 0.1 1 10 10

FIGURE 5 | Forest plots for the incidence of new-onset multiple organ failure in patients with minimally invasive surgery and endoscopic step-up approach. M-H, Mantel–Haenszel test; Fixed, a fixed effects model; CI, confidence intervals.

FIGURE 6 | Forest plots for the incidence of intestinal fistula after minimally invasive surgery and endoscopic step-up approach. M-H, Mantel-Haenszel test; Fixed, a fixed effects model; CI, confidence intervals.

minimally invasive surgery group (MD = 11.26, 95% CI: 5.46–17.05, P = 0.0001; Figure 9).

Length of ICU Stay

Three studies (2 RCT and 1 CS) analyzed the ICU duration of minimally invasive surgery and endoscopic step-up approach. The results showed that there was no significant difference in length of ICU stay between the minimally invasive surgery treatment group and the endoscopic step-up approach treatment group (MD = 3.99, 95% CI: -0.13 to 8.0, P = 0.06; Figure 10).

Endocrine Pancreatic Insufficiency

Six studies (3 RCT, 3 CS) analyzed the incidence of endocrine pancreatic insufficiency after minimally invasive surgery and endoscopic step-up approach. The results showed that the incidence of endocrine pancreatic insufficiency in the endoscopic step-up approach group was significantly lower than that in the

minimally invasive surgery group (RR = 1.83, 95% CI: 1.9–3.16, P = 0.02; Figure 11A).

Two studies (1 RCT and 1 CS) analyzed the incidence of endocrine pancreatic insufficiency after minimally invasive surgery and open necrosectomy. The results showed that the incidence of endocrine pancreatic insufficiency in the minimally invasive surgery group was significantly lower than that in the open necrosectomy group (RR = 0.39, 95% CI: 0.18–0.82, P = 0.01; Figure 11B).

Two cohort studies analyzed the incidence of endocrine pancreatic insufficiency after endoscopic step-up approach and open necrosectomy. The results showed that there was no significant difference in post-operative endocrine pancreatic insufficiency rate between the endoscopic step-up approach treatment group and the open necrosectomy treatment group (RR = 0.27, 95% CI: 0.05–1.34, P = 0.11; Figure 11C).

Exocrine Pancreatic Insufficiency

Four studies (3 RCT, 1 CS) analyzed the incidence of exocrine pancreatic insufficiency after minimally invasive surgery and

invasive surgery and endoscopic step-up approach. (**C**) Between endoscopic step-up approach and open necrosectomy M-H, Mantel-Haenszel test; Fixed, a fixed effects model; Cl, confidence intervals.

endoscopic step-up approach. The results showed that there was no significant difference in the incidence of post-operative exocrine pancreatic insufficiency between the minimally invasive surgery treatment group and the endoscopic step-up approach treatment group (RR = 1.08, 95% CI: 0.85–1.38, P = 0.52; Figure 12).

Publication Bias

The funnel plot results showed no publication bias (additional file).

DISCUSSION

Outcomes of this meta-analysis showed that the major complications or death and mortality of minimally invasive surgery and endoscopic step-up approach are similar, and there is no significant statistical difference. However, endoscopic step-up approach can significantly reduce the incidence of new-onset multiple organ failure, enterocutaneous fistula, pancreatic-cutaneous fistula, intra-abdominal bleeding, endocrine pancreatic insufficiency, and can shorten the patient's

minimally invasive surgery and pen necrosectomy. (C) Between endoscopic step-up approach and open necrosectomy. M-H, Mantel–Haenszel test; Fixed, a fixed effects model; Cl, confidence intervals.

hospital stay. Compared with open necrosectomy, minimally invasive surgery can significantly reduce major complications or death, mortality, and incidence of endocrine pancreatic insufficiency. The incidence of intra-abdominal bleeding and pancreatic-cutaneous fistula was similar. Compared with open necrosectomy surgery, endoscopic step-up approach could reduce the incidence of pancreatic-cutaneous fistula, but there is no significant difference regarding mortality, post-operative intra-abdominal bleeding, and endocrine pancreatic insufficiency.

Endoscopic step-up approach included endoscopic transgastric drainage (ETD) first, with the guide of ultrasound and through posterior wall of the stomach or the duodenum, followed by endoscopic transgastric necrosectomy (ETN). The advantage of endoscopic step-up approach is that it does not require general anesthesia and can be performed

	minimally i	nvasive su	rgery	endoscopic	step-up app	roach		Mean Difference	Mean Difference
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI Y	ear IV. Fixed, 95% Cl
1.8.1 RCT									
Van Brunschot S 2017	69	38	47	53	47	51	11.8%	16.00 [-0.86, 32.86] 20	017
Bang JY 2019	23.3	17.5	32	16.5	12.2	34	62.7%	6.80 [-0.52, 14.12] 20	019
Subtotal (95% CI)			79			85	74.5%	8.26 [1.54, 14.97]	\bullet
Heterogeneity: Chi ² = 0.9	6, df = 1 (P =	0.33); l ² = 0	%						
Test for overall effect: Z =	= 2.41 (P = 0.0	2)							
1.8.2 PCS or RCS									
Kumar N 2014	23.6	22.5	12	5.3	4.8	12	19.8%	18.30 [5.28, 31.32] 20	014
He W 2017	66	37	13	40	25	13	5.7%	26.00 [1.73, 50.27] 20	017
Subtotal (95% CI)			25			25	25.5%	20.02 [8.55, 31.49]	
Heterogeneity: Chi ² = 0.3	0, df = 1 (P =	0.58); l ² = 0	%						
Test for overall effect: Z =	= 3.42 (P = 0.0	006)							
Fotal (95% CI)			104			110	100.0%	11.26 [5.46, 17.05]	◆
Heterogeneity: Chi ² = 4.2	7, df = 3 (P =	0.23); l ² = 3	0%						
Test for overall effect: Z =	= 3.81 (P = 0.0	001)							-100 -50 0 50 1
Test for subgroup differen			P = 0.08	l ² = 66.8%					Favours minimally invasive surgery Favours endoscopic step-up approact

FIGURE 9 | Forest plots for the length of hospital for minimally invasive surgery and endoscopic step-up approach. IV, inverse variance; Fixed, a fixed effects model; CI, confidence intervals.

while the patient is sedated, and it could be repeated if necessary (17), However, the disadvantage is the limited scope of application and the abscess must be close to stomach. Otherwise, most patients may need repeated ETN to remove all necrotic tissue.

Minimally invasive surgery usually involves percutaneous catheter drainage (PCD) followed by video-assisted retroperitoneal debridement (VARD). PCD should be guided by CT or color ultrasound, and the puncture site is usually the abdominal cavity or the retroperitoneum. Compared with endoscopic step-up approach, the advantage of minimally invasive surgery is that most patients do not require VARD repeatedly, but the disadvantage is that the scope of application is relatively limited, and cavity of necrotic tissue should be close to the body surface (18).

Pancreatic fistula and organ failure were common complications of acute necrotizing pancreatitis. This study found that compared with minimally invasive surgery, endoscopic step-up approach has a lower incidence of pancreatic fistula and new-onset multiple organ failure. The low incidence of pancreatic fistula under endoscopic step-up approach may be related to repeated ENT under ETD. Although the patient has experienced multiple ENTs, it helps the removal of necrotic tissue. Minimally invasive surgery could obtain complete removal when the location of the necrotic tissue is closer to the body surface. The low incidence of new-onset multiple organ failure under endoscopic step-up approach may also be related to the complete removal of necrotic tissue after multiple drainages. Both above methods are superior to open necrosectomy, which was the reason of that it was a gradually replaced therapy in recent years (19).

Death is the most serious complication of acute necrotizing pancreatitis, although evidence showed that the major complication or death in the minimally invasive surgery group is significantly lower than that in the open necrosectomy group, and the difference is statistically significant. However, this result come from a combination of major complications and mortality, and only two articles were included. Therefore, the current evidence indicated that there was no significant difference in post-operative mortality between minimally invasive surgery, endoscopic step-up approach, and open necrosectomy. This means that the above three treatment methods cannot significantly reduce the mortality of acute necrotizing pancreatitis. This

	minimally invasive sur	gery endos	copic step-up a	approach		Risk Ratio	Risk Ratio
tudy or Subgroup	Events	Total	Events		Weight	M-H, Fixed, 95% CI Year	M-H, Fixed, 95% Cl
.10.1 RCT					-		
akker 2012	3	10	2	10	10.9%	1.50 [0.32, 7.14] 2012	
an Brunschot S 2017	9	47	10	51		0.98 [0.44, 2.19] 2017	_
ang JY 2019	9	32	6	34	31.6%	1.59 [0.64, 3.97] 2019	
ubtotal (95% CI)	5	89	0	95	94.6%	1.24 [0.71, 2.18]	
	21	03	10	35	34.078	1.24 [0.71, 2.10]	
otal events leterogeneity: Chi² = 0.68 est for overall effect: Z =	3, df = 2 (P = 0.71); l ² = 0	%	18				
.10.2 PCS or RCS							
umar N 2014	7	12	0	12	0.70/	15.00 [0.95, 236.42] 2014	
			0				
Voo S 2015	0	8	•	12		Not estimable 2015	
e W 2017	4	13	0	13	2.7%	[,	
ubtotal (95% CI)		33		37	5.4%	12.00 [1.68, 85.90]	
otal events	11		0				
eterogeneity: Chi ² = 0.06 est for overall effect: Z =	6, df = 1 (P = 0.80); l ² = 0 2.47 (P = 0.01)	%					
otal (95% CI)		122		132	100.0%	1.83 [1.09, 3.06]	◆
otal events	32		18				
	, df = 4 (P = 0.21); l ² = 3	2%					I I I I I I I I I I I I I I I I I I I
est for overall effect: Z =		_ / 0					0.01 0.1 1 10 100
	ces: Chi ² = 4.72, df = 1 (F	P = 0.03), I ² = 7	8.8%				Favours minimally invasive surgery Favours endoscopic step-up approach
6							
	minimally invasiv	ve surgerv	open necros	ectomy		Risk Ratio	Risk Ratio
tudy or Subaro	Events	Ve surgery Total	Events		Woight		
tudy or Subgroup .5.1 RCT	Events	Iotai	Events	Total	weight	M-H, Fixed, 95% CI Ye	ear M-H, Fixed, 95% Cl
an Santvoort HC 2010) 7	43	17		84.1%	0.43 [0.20, 0.93] 20	10
ubtotal (95% CI)		43		45	84.1%	0.43 [0.20, 0.93]	
otal events	7		17				
leterogeneity: Not app est for overall effect: Z							
.5.2 PCS or RCS							
Voo S 2015	0	8	3	10	15.9%	0.17 [0.01, 2.96] 20	15
	0		3				15
Subtotal (95% CI)		8		10	15.9%	0.17 [0.01, 2.96]	
otal events	0		3				
leterogeneity: Not app est for overall effect: Z							
otal (95% CI)		51		55	100.0%	0.39 [0.18, 0.82]	
	-	51		55	100.0%	0.33 [0.10, 0.02]	-
otal events	7		20				
	.37, df = 1 (P = 0.54);	l² = 0%					0.01 0.1 1 10 100
est for overall effect: Z	2 = 2.47 (P = 0.01)						
	rences: Chi ² = 0.36, df	= 1 (P = 0.55), I² = 0%				Favours minimally invasive surgery Favours open necrosectomy
	endoscopic step-up	approach	open necrose	ctomy		Risk Ratio	Risk Ratio
tudy or Subgroup	Events	Total	Events		Weight	M-H, Fixed, 95% CI Year	r M-H. Fixed, 95% Cl
ausch D 2012	0	18	5	30	27.8%	0.15 [0.01, 2.53] 2012	
an V 2014	0	11	8	21	39.9%	0.11 [0.01, 1.71] 2014	
Voo S 2015	õ	12	4	10	32.4%	0.09 [0.01, 1.56] 2015	
00 0 2010	U	12	4	10	52.470	0.08 [0.01, 1.30] 2015	,
otal (95% CI)		41		61	100.0%	0.11 [0.02, 0.58]	
		-+1		01	100.070	0.11[0.02, 0.00]	
otal events	0		17				
lotorogonoity: Chi2 - 0	.05, df = 2 (P = 0.97); I^{2}	² = 0%				-	
	- 2.02 (P - 0.009)						
est for overall effect: Z	– 2.02 (F – 0.009)					Fa	vours endoscopic step-up approach Favours open necrosectomy

a fixed effects model; CI, confidence intervals.

may also be caused by insufficient data currently available. Larger samples and multi-center trials are needed for further analysis.

In summary, compared with minimally invasive surgery and open necrosectomy, endoscopic step-up approach could reduce the incidence of some serious complications, such as new-onset multiple organ failure, pancreatic-cutaneous fistula, enterocutaneous fistula, pancreatic-cutaneous fistula, intraabdominal bleeding, endocrine pancreatic insufficiency, and could significantly shorten the patient's hospital stay, although it cannot reduce the major complications or death and mortality of patients. However, due to the small sample size of the studies included, large sample size and high-quality RCT are needed to verify the efficacy and safety of endoscopic step-up approach.

Study or Subgroup 1.11.1 RCT	Events	Total	Events	lotal	weight	M-H, Fixed, 95% CI Year	M-H. Fixed, 95% CI
1.11.1 RCT						m-n, nacu, 55% of real	Mill, Hixed, 35% Of
Bakker 2012	3	10	0	10	1.1%	7.00 [0.41, 120.16] 2012	
Van Brunschot S 2017	13	47	16	51	32.7%	0.88 [0.48, 1.63] 2017	
Bang JY 2019	28	32	29	34	59.9%	1.03 [0.85, 1.24] 2019	• • • • • • • • • • • • • • • • • • • •
Subtotal (95% CI)		89		95	93.6%	1.04 [0.82, 1.34]	•
Total events	44		45				
Heterogeneity: Chi ² = 2.04, o	if = 2 (P = 0.36); l ²	= 2%					
Test for overall effect: Z = 0.	34 (P = 0.74)						
1.11.2 PCS or RCS							
Kumar N 2014	5	12	3	12	6.4%	1.67 [0.51, 5.46] 2014	
Subtotal (95% CI)	-	12	-	12	6.4%	1.67 [0.51, 5.46]	
Total events	5		3				
Heterogeneity: Not applicabl	e						
Test for overall effect: Z = 0.							
Total (95% CI)		101		107	100.0%	1.08 [0.85, 1.38]	•
Total events	49		48				
Heterogeneity: Chi ² = 2.90, o	$f = 3 (P = 0.41); ^2$	= 0%					
Test for overall effect: Z = 0.							0.01 0.1 1 10 10
Test for subgroup difference		1 (P = 0.45) P	² = 0%				Favours minimally invasive surgery Favours endoscopic step-up approac
	0101, ui	. (

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article/**Supplementary Material**, further inquiries can be directed to the corresponding author/s.

AUTHOR CONTRIBUTIONS

WL had primary responsibility for the final content, and designed the research. JX and XQ conducted the

REFERENCES

- Peery AF, Dellon ES, Lund J, Crockett SD, McGowan CE, Bulsiewicz WJ, et al. Burden of gastrointestinal disease in the United States: 2012 update. *Gastroenterology*. (2012) 143:1179–87.e3. doi: 10.1053/j.gastro.2012.08.002
- van Santvoort HC, Bakker OJ, Bollen TL, Besselink MG, Ahmed Ali U, Schrijver AM, et al. A conservative and minimally invasive approach to necrotizing pancreatitis improves outcome. *Gastroenterology*. (2011) 141:1254–63. doi: 10.1053/j.gastro.2011.06.073
- van Grinsven J, van Santvoort HC, Boermeester MA, Dejong CH, van Eijck CH, Fockens P, et al. Timing of catheter drainage in infected necrotizing pancreatitis. *Nat Rev Gastroenterol Hepatol.* (2016) 13:306– 12. doi: 10.1038/nrgastro.2016.23
- Tenner S, Baillie J, DeWitt J, Vege SS, American College of G. American College of Gastroenterology guideline: management of acute pancreatitis. *Am J Gastroenterol.* (2013) 108:1400–15; 1416. doi: 10.1038/ajg.2013.218
- Bang JY, Arnoletti JP, Holt BA, Sutton B, Hasan MK, Navaneethan U, et al. An endoscopic transluminal approach, compared with minimally invasive surgery, reduces complications and costs for patients with necrotizing pancreatitis. *Gastroenterology.* (2019) 156:1027–40.e3. doi: 10.1053/j.gastro.2018.11.031
- van Brunschot S, van Grinsven J, van Santvoort HC, Bakker OJ, Besselink MG, Boermeester MA, et al. Endoscopic or surgical step-up approach for infected necrotising pancreatitis: a multicentre randomised trial. *Lancet*. (2018) 391:51–8. doi: 10.1016/S0140-6736(17)32404-2
- Bakker OJ, van Santvoort HC, van Brunschot S, Geskus RB, Besselink MG, Bollen TL, et al. Endoscopic transgastric vs. surgical necrosectomy for infected necrotizing pancreatitis: a randomized trial. *JAMA*. (2012) 307:1053– 61. doi: 10.1001/jama.2012.276

research. XQ and FL analyzed the data. JX and FL wrote the manuscript. All authors read and approved the final manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fsurg. 2021.723605/full#supplementary-material

- van Santvoort HC, Besselink MG, Bakker OJ, Hofker HS, Boermeester MA, Dejong CH, et al. A step-up approach or open necrosectomy for necrotizing pancreatitis. N Engl J Med. (2010) 362:1491–502. doi: 10.1056/NEJMoa0908821
- Wani SV, Patankar RV, Mathur SK. Minimally invasive approach to pancreatic necrosectomy. J Laparoendosc Adv Surg Tech A. (2011) 21:131– 6. doi: 10.1089/lap.2010.0401
- He WH, Zhu Y, Zhu Y, Liu P, Zeng H, Xia L, et al. The outcomes of initial endoscopic transluminal drainage are superior to percutaneous drainage for patients with infected pancreatic necrosis: a prospective cohort study. *Surg Endosc.* (2017) 31:3004–13. doi: 10.1007/s00464-016-5324-9
- Kumar N, Conwell DL, Thompson CC. Direct endoscopic necrosectomy versus step-up approach for walled-off pancreatic necrosis: comparison of clinical outcome and health care utilization. *Pancreas*. (2014) 43:1334– 9. doi: 10.1097/mpa.00000000000213
- Khreiss M, Zenati M, Clifford A, Lee KK, Hogg ME, Slivka A, et al. Cyst gastrostomy and necrosectomy for the management of sterile walledoff pancreatic necrosis: a comparison of minimally invasive surgical and endoscopic outcomes at a high-volume pancreatic center. *J Gastrointest Surg.* (2015) 19:1441–8. doi: 10.1007/s11605-015-2864-6
- Woo S, Walklin R, Wewelwala C, Berry R, Devonshire D, Croagh D. Interventional management of necrotizing pancreatitis: an Australian experience. ANZ J Surg. (2017) 87:E85–e9. doi: 10.1111/ans.13381
- Tan V, Charachon A, Lescot T, Chafai N, Le Baleur Y, Delchier JC, et al. Endoscopic transgastric versus surgical necrosectomy in infected pancreatic necrosis. *Clin Res Hepatol Gastroenterol.* (2014) 38:770–6. doi: 10.1016/j.clinre.2014.06.016
- Bausch D, Wellner U, Kahl S, Kuesters S, Richter-Schrag HJ, Utzolino S, et al. Minimally invasive operations for acute necrotizing

pancreatitis: comparison of minimally invasive retroperitoneal necrosectomy with endoscopic transgastric necrosectomy. *Surgery.* (2012) 152:S128–34. doi: 10.1016/j.surg.2012.05.021

- Litvin A, Khokha V. Stepped approach in the treatment of severe acute pancreatitis. *Pancreatology*. (2010) 10:352. doi: 10.1159/000314328
- 17. van Brunschot S, van Grinsven J, Voermans RP, Bakker OJ, Besselink MG, Boermeester MA, et al. Transluminal endoscopic step-up approach versus minimally invasive surgical step-up approach in patients with infected necrotising pancreatitis (TENSION trial): design and rationale of a randomised controlled multicenter trial [ISRCTN09186711]. BMC Gastroenterol. (2013) 13:161. doi: 10.1186/1471-230X-13-161
- Gomatos IP, Halloran CM, Ghaneh P, Raraty MG, Polydoros F, Evans JC, et al. Outcomes from minimal access retroperitoneal and open pancreatic necrosectomy in 394 patients with necrotizing pancreatitis. *Ann Surg.* (2016) 263:992–1001. doi: 10.1097/sla.000000000001407
- Gurusamy KS, Belgaumkar AP, Haswell A, Pereira SP, Davidson BR. Interventions for necrotising pancreatitis. *Cochrane Database Syst Rev.* (2016) 4:CD011383. doi: 10.1002/14651858.CD011383.pub2

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Xiao, Quan, Liu and Li. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.