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Background: Spinal cord ischemia is largely caused by cervical spondylotic myelopathy

(CSM), which has a corresponding biomechanical basis. Finite element analysis of spinal

cord stress in diseased segments of CSM was performed to provide a biomechanical

basis for the pathogenesis of CSM.

Methods: A single segment (C4-5) in a patient with CSM was selected for mechanical

simulation of three-dimensional (3D) computed tomography scanning, and a 3D finite

element model of the cervical vertebra was constructed. Based on the patient’s age,

sex, height, weight, and other parameters, a finite element analysis model of an individual

with healthy cervical vertebrae in our hospital was selected as the control to compare

the stress changes between the patient and control groups in the analysis of the cervical

vertebrae under anterior flexion, posterior extension, lateral flexion, and rotating load in

the diseased spinal cord segment.

Results: In the CSM patient, the diseased segment was C4-5. Under loading conditions

of forward flexion, posterior extension, left flexion, right flexion, left rotation, and right

rotation, the maximum stress on the spinal cord in the control group was 0.0044,

0.0031, 0.00017, 0.00014, 0.0011, and 0.001 MPa, respectively, whereas those in

the spinal cord in the CSM group were 0.039, 0.024, 0.02, 0.02, 0.0194, and 0.0196

MPa, respectively.

Conclusion: The maximum stress on the diseased segments of the spinal cord in the

CSM group was higher than that in the control group, which contributed to verifying the

imaging parameters associated with spinal cord compression stress.

Keywords: cervical spondylotic myelopathy, finite element analysis, vertebral canal volume, maximum stress,

spinal cord compression stress

BACKGROUND

Cervical spondylotic myelopathy (CSM) is caused by spinal cord compression in the spinal
canal due to degeneration of the cervical vertebrae, intervertebral discs, and ligaments (1, 2). Its
incidence is high, and the early symptoms are often hidden. The symptoms appear when most
cases progress to the middle and late stages, and irreversible damage to the spinal cord occurs
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(3, 4). The pathophysiological mechanism of CSM mainly
includes the following three aspects: anatomic abnormalities,
kinetic factors, and spinal cord ischemia. Anatomical
abnormalities and kinetic factors are mutually causal, and
spinal cord ischemia is largely secondary to the above two
factors, indicating that spinal cord injury caused by CSM has a
corresponding biomechanical basis (5). In general, the methods
of spinal biomechanics research mainly include experimental
biomechanics and theoretical biomechanics. Experimental
biomechanics mainly refers to the use of various models
for biomechanical research, including experimental animals,
cadaver specimens, and physical materials, but these models
have certain limitations. Theoretical biomechanics refers to
the biomechanical research carried out through theoretical
calculations. With the development of computer science and
technology, finite element calculations have been gradually
applied widely in the biomechanical research of orthopedics.
Recent studies (6–8) suggest that the fusion of three-dimensional
(3D) finite element models and biomechanical models based on
images can simulate the stress state of joints more accurately.
Brekelmans et al. (9) used this method to preliminarily analyze
the influence of vertebral body material properties and geometry
on the stress distribution of intervertebral discs. In this study,
a 3D finite element model of a single-segment CSM was
constructed based on normal computed tomography (CT) scan
images, and the stress changes of the diseased segments (C4-5) of
the spinal cord under daily anterior flexion, posterior extension,
lateral flexion, and rotating load were investigated to explore the
pathogenesis of CSM.

METHODS

This study was approved by the Medical Ethics Committee of
the First Affiliated Hospital of Soochow University. Selection of
subjects: A female participant with typical symptoms of CSM
(Japanese Orthopedic Association score of 10) was randomly
selected from the clinically confirmed cases of CSM at the
First Affiliated Hospital of Soochow University. After participant
selection, the purpose of this study, implementation method,
risks, and benefits were explained, and informed consent was
obtained. Based on the age, sex, height, and weight of the patient,
an existing healthy cervical spine finite element analysis model of
our team was selected as the control.

Establishment of Cervical (C4-5) Finite
Element Model
To materialize two-dimensional CT data, DICOM files need
to be converted and processed. At present, CT, magnetic
resonance imaging (MRI), and other medical image workstations
adopt volumetric 3D reconstruction, which cannot be directly
used in engineering processing. Mimics software, developed
by Materialize, Belgium, is a tool for the segmentation and
processing of CT and MRI images. DICOM data were imported
into Mimics software, and the view direction was set. The

Abbreviations: CSM, cervical spondylotic myelopathy; CT, computed

tomography; MRI, magnetic resonance imaging.

TABLE 1 | Material properties of finite element analysis models.

Component Young modulus (MPa) Poisson ratio

Cortical bone 12,000 0.3

Cancellous bone 100 0.2

Bony end-plate 24 0.25

Pedicle 3,500 0.25

Small joints 15 0.45

Gray matter of spinal cord 0.656 0.499

ALL 20 0.3

PLL 70 0.3

LF 50 0.3

Soft backbone 142 0.45

Nucleus pulposus 1 0.499

Fiber ring 4.2 0.45

White matter of spinal cord 0.277 0.499

ALL, anterior longitudinal ligament; PLL, posterior longitudinal ligament; LF,

ligamentum flavum.

sagittal plane, coronal plane, and cross section were defined,
and multiple DICOM data were sequentially discharged. At
the interface, grayscale images, including bone tissue and
background, were obtained. First, the image was preprocessed
to improve its resolution and smoothness. Mimics software
was used to perform regular treatment of the marrow cavity.
According to the grayscale values of tissues of different densities,
the corresponding thresholding interval was set by using the
“Thresholding” command to extract the image data of bone-
removing tissues. Using Boolean operation, models including the
peri-osseous facet joints and intervertebral discs were obtained.
At this point, there were many artifacts, holes, and noise in
the model. The self-extraction function and erasure and filling
function of the software were used to improve the quality of
the tissue images layer by layer. Rough models of bone and soft
tissue were obtained and saved in the STL file format. Geomagics
exported the 3D model data in the STP format and imported it
to PROE5.0 for model assembly and to manipulate the parts or
features that needed to be processed.

The material properties (10) used in recent studies on the
CSM are shown in Table 1. The ROM of the intact model at
C4/5 was 7.56◦ in flexion, 6.21◦ in extension, 5.81◦ in lateral
bending, and 4.51◦ in axial rotation (11). Based on the relaxed
and analytical model of the cervical spine, the stress distribution
diagrams of the patients with CSM and control were compared,
and the stress change and maximum stress difference of the
spinal cord at the C4-5 segments were compared between the
two cervical vertebrae under anterior flexion, posterior extension,
lateral flexion, and rotating load.

RESULTS

The C4-5 finite element models of the control and patients with
CSM are shown in Figures 1A,B, respectively. The von Mises
stress in the control and CSM patients was extracted from the
spinal cord at the corresponding position of the disc under the
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FIGURE 1 | Assembly of the spinal cord geometric model and cervical finite element model (C4-5), and the transection of the geometric model of the spinal cord. (A)

control subject; (B) CSM patient.

corresponding load, and the stress distribution nephograms are
shown in Figures 2, 3. Under the loading conditions of forward
flexion (Figure 2A), posterior extension (Figure 2B), left flexion
(Figure 2C), right flexion (Figure 2D), left rotation (Figure 2E),
and right rotation (Figure 2F), the maximum stress of the spinal
cord in the control group was 0.0044, 0.0031, 0.00017, 0.00014,
0.0011, and 0.001 MPa, respectively, while the maximum stress
of the spinal cord in the CSM group was 0.039 (Figure 3A),

0.024 (Figure 3B), 0.02 (Figure 3C), 0.02 (Figure 3D), 0.0194
(Figure 3E), and 0.0196 MPa (Figure 3F), respectively.

DISCUSSION

CSM is a complex disease caused by a combination of factors,
including congenital spinal stenosis, static compression of
the spinal cord due to degenerative changes, and dynamic
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FIGURE 2 | The Mises stress in the control patient under loading conditions in the C4-5 segment of forward flexion (A), posterior extension (B), left flexion (C), right

flexion (D), left rotation (E), and right rotation (F).
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FIGURE 3 | The Mises stress in the CSM patient under loading conditions in the C4-5 segment of forward flexion (A), posterior extension (B), left flexion (C), right

flexion (D), left rotation (E), and right rotation (F).
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impingement secondary to micromotion of the spinal column.
It represents the most common cause of dysfunction in people
over the age of 55 (12) and is found in 10–15% of all
patients with cervical spondylosis. It can present in many
ways and is typically characterized by neurological dysfunction,
matching the pattern of spinal cord compression seen on
radiography. Modern imaging modalities, especially MRI, with
excellent soft tissue contrast, greatly facilitate the diagnosis and
surgical planning of CSM (13). However, it generally provides
a neutral supine evaluation and does not account for dynamic
pathophysiological factors that may be present only during
postural extension (14, 15).

In general, the methods of spinal biomechanics research
mainly include experimental biomechanics and theoretical
biomechanics. Experimental biomechanics mainly refers
to the use of various models for biomechanical research,
including experimental animals, cadaver specimens, and physical
materials, but these models have certain limitations. Theoretical
biomechanics refers to the biomechanical research carried
out through theoretical calculations. With the development of
computer science and technology, finite element calculations
represented by it have been gradually applied widely in
biomechanical research of orthopedics, especially the spine,
as a supplement to clinical research and cadaver experimental
models in vitro (16). In biomechanical evaluation, the load
modes most commonly used and closest to physiological motion
are generally applied in flexion, extension, lateral flexion, and
rotation. Therefore, the experimental results of the model are
often compared with those of previous 3D finite element models.
After modeling, a certain amount of torque value is usually
applied to the model for pre-loading, and the stress of the model
under loading conditions such as forward bending, backward
extension, lateral bending, and rotation is observed.

The cervical biomechanical behavior follows the non-linear
distribution of each component; hence, previous studies (17, 18)
focused on computer modeling and analysis of discs. This study
focused on the vertebral body, intervertebral discs, ligaments,
and spinal cord during cervical spine non-linear stress conditions
and the overall analysis of the cervical spine and changes in
soft tissue morphology of the neck in patients with CSM and
control. The stress condition after the retroflexionmovement was
stereologically reproduced. In this study, the control and CSM
patients were subjected to the same external force. Due to the
normal structure and function of the healthy cervical vertebra,
the curvature of the cervical vertebra increases when an external
force is applied, that is, the cervical vertebra is displaced. At this
point, the cervical vertebrae of the control subjects in our study
could withstand greater stress without injury. However, due to

changes in the physiological curvature of the cervical vertebra in
patients with CSM, the mechanics of the main components of the
cervical vertebrae were unbalanced, the stress that the neck could
bear was reduced, and the range ofmotion of the cervical vertebra
was reduced.

This study had some limitations. Although special attention
and analysis are given during model development, finite element
analysis has limitations, similar to cadaver studies and other
published finite element studies. Simple elastic model for analysis
in this study. Other hyperelastic or hyperporoelastic models
can be considered in future studies. Caution should be used
in interpreting the results of this study, as the complete finite
element analysis was based on a single scan of a normal male. The
purpose of computational simulations is to provide trends rather
than actual data. Comparisons in the finite element analysis
were not statistically significant. It is just a biomechanical trend
analysis and comparison, similar to many finite element analysis
studies. In our finite element study, the neck muscles were
missing. Muscles mainly control the range of motion of the
cervical spine. The loss of neck muscles may have an impact
on the biomechanical values of the limited units. In addition,
the von Mises stress is a simple stress parameter, which has
some limitations.

CONCLUSION

The maximum stress on the diseased segments of the spinal cord
in the CSM group was higher than that in the control group,
which verified the above imaging parameters associated with
spinal cord compression stress.
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