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Due to its obvious advantages in processing big data and image information,
the combination of artificial intelligence and medical care may profoundly
change medical practice and promote the gradual transition from traditional
clinical care to precision medicine mode. In this artical, we reviewed the
relevant literatures and found that artificial intelligence was widely used in
spine surgery. The application scenarios included etiology, diagnosis,
treatment, postoperative prognosis and decision support systems of spinal
diseases. The shift to artificial intelligence model in medicine constantly
improved the level of doctors’ diagnosis and treatment and the development
of orthopedics.
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Introduction

As a new subject, artificial intelligence (AI) mainly studies a new technology for

imitating and expanding human intelligence. In the past 10 years, AI has made

tremendous progress. Machine learning (ML) is a subset of AI that enables algorithms

or classifiers to learn large complex data sets and generate useful predictive outputs.

More specifically, common applications of ML include classification, regression and

clustering. Another way to describe the different forms of ML is based on the nature

of the tasks to be performed which include supervised learning, unsupervised learning

and reinforcement learning (1). And supervised learning is the most common type of

learning used in medical research. The methods used for supervised learning are

briefly described in Table 1.

This study reviewed the scientific literature from 2007 to 2022 with syntax specific

for machine learning and spine surgery applications. Articles not available in the full

text were excluded, as well as duplicate articles and those that did not utilize a form

of AI or ML pertaining to spine surgery. Specific data was extracted from the

available literature including algorithm application, algorithms tested, database type

and size, algorithm training method, and outcome of interest. A total of 49 studies

met inclusion criteria and our interest. Studies were grouped into five general types:

etiology, diagnosis, treatment, postoperative prognosis and decision support systems of

spinal diseases. Across studies, a wide swath of algorithms were used, which were

trained across multiple disparate databases.
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TABLE 1 The methods used for machine learning.

Description Feature

Linear regression Fitted by means of the least squares method Simplicity; Incapability of capturing a nonlinear behavior;
Underfitting

Logistic regression Seen as the equivalent of linear regression for classification problems Multiclass classification problems

Bayes classifier Based on Bayes’ theorem of conditional probability Simplicity

Support vector
machine

Build the hyperplane, or a number of them, which can divide the space so that
the points of the different classes are effectively and optimally partitioned

Multiclass linear classification tasks, including image
segmentation; Adapted to nonlinear classification and regression
problems

Decision trees Link the values of the features to the possible outputs, therefore implementing
a classification or a regression task, by means of a set of conditions

Easier to understand; Suitable for very large datasets

Artificial neural
networks

Resemble how the neurons are connected and interact in the brain Reduce the risk of overfitting; Achieve a faster and more robust
convergence

Convolutional neural
networks

Mimic the structure of the animal visual cortex Image processing; Reduce the risk of overfitting

Zhou et al. 10.3389/fsurg.2022.885599
As testified by the sharp increase in the number of published

papers in recent years, AI and ML are more and more being used

in the field of spine surgery (Figure 1). Starting from whether the

new technology of artificial intelligence can have an impact on the

whole process of traditional spinal disease diagnosis and

treatment, this paper intends to review the application of

artificial intelligence in spinal surgery from the whole process of

etiology, diagnosis, treatment, postoperative prognosis and

decision support systems of spinal diseases, make use of clinical

transformation platform to break through cutting-edge medical

technology, standardize the diagnosis and treatment plan of

spinal diseases, strive to obtain more original research results

with practical application value or theoretical significance, and

make contributions to the protection of people’s health and safety.
Etiology

With changes in social lifestyles, the incidence of spinal

diseases is increasing. Medical workers have been committed

to the etiology of spinal diseases for a long time, because only

when the etiology is determined, can we better prevent the

occurrence of diseases. In the field of spine surgery, the

etiology is often closely related to the patient’s personal,

environmental, social and other factors. Therefore, the

advantage of machine learning in processing large data can

better analyze the etiology. For example, as a prevalent

degenerative disease of the cervical spine, the trend of the loss

of the physiological cervical spine curve has not been fully

defined across gender and age groups. In 2020, Shin (2) used

an automated deep learning system (DLS) to conduct a

population-based large-scale epidemiological study of cervical

curvature. Lateral radiographs of 13,691 patients were

analyzed with automatic cervical spine segmentation, From

2006 to 2018, the decline in the lordosis curve was prominent

in both men and women under 70 years of age and in age

groups, and the decline was more remarkable in women and
Frontiers in Surgery 02
the younger. This rapid decline for women might be related

to the increase in mobile-centric environments over the past

decade and the increase in smartphone addiction (3). Further

studies are needed to assess the association between neck pain

and loss of cervical lordotic curve to meet the need for neck

postural correction.

Electronic medical record systems are a key source of

medical data, generating large and expanding data sets. Rich

data stored in electronic medical record system and computer

processing power are in good agreement with the

development of artificial intelligent technology, in the future,

spine disease etiology analysis will more come from patients’

electronic health records database or national health insurance

database. Due to the processing ability of artificial intelligence

to huge data, the etiology can be better analyzed, so as to

achieve the early intervention of pathogenic factors and

provide help for follow-up treatment.
Diagnosis (based on imaging)

Medical imaging plays an important role in the diagnosis

and treatment of spinal diseases. Automatic detection,

classification and location of disease in medical images are

significant tasks to support clinical decision. The increasing

burden of spinal disease related to an aging population and

the increasing availability of magnetic resonance imaging

(MRI) and computed tomography (CT) scans have led to a

significant increase in radiological data related to the spine.

Artificial intelligence (AI) and machine learning (ML)

technologies have also made significant advances in recent

years, automated analysis capabilities of machine learning

models can quickly generate quantitative parameters from

image data, which will reduce radiologists’ workload. In fact,

for the analysis of spinal imaging data, locating anatomical

structures in the imaging data is usually the first step in the

progress of fully automated analytical methods for detecting,
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FIGURE 1

AI-related publications in the field of spine surgery 2012–2021.
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classifying, or predicting pathological features. For example,

Schmidt (4) uses the classification tree method to produce the

probability map of the centroid position of each intervertebral

disc in MRI images, and then uses the probability map model

to infer the most likely position of the intervertebral disc

centroid. Compared with manual measurement, the average

positioning error is 6.2 mm. Oktay and Akgul (5) trained the

model for disc localization using support vector machine

(SVM) and achieved an average positioning error of 2.6–

3.6 mm based on disc level. At the same time, the author also

improved the method to locate the vertebral body, and

achieved an average positioning error of less than 4 mm (6).

Glocker (7, 8) used the random forest method to establish a

model for locating the vertebral body in CT images with an

average positioning error of 6–8.5 mm, thus solving the

difficult problems of locating the vertebral body in CT images

of pathological spinal diseases, including serious scoliosis,

sagittal deformity and the presence of internal fixation.

Recently, artificial neural network and deep learning have also

been used to locate spinal structures. Chen (9) established an

artificial neural network model to predict the intervertebral

disc centroid, making the average positioning error reduce to

1.6–2 mm, which is a significant improvement over previous

models not based on deep learning. In 2021, Suri (10)

developed a deep learning system that can automatically and

fastly segment vertebral body and discs in MR, CT, and x-ray

imaging studies. The model was able to produce median Dice

scores >0.95 in all modalities for vertebral bodies and

intervertebral discs. Radiomic features calculated from
Frontiers in Surgery 03
predicted segmentation masks were highly accurate (r≥ 0.96

across all radiomic features when compared to ground truth).

Mean time to produce outputs was <1.7 s in all modalities.

The model can be immediately used in radiological and

clinical imaging studies to assess spinal disease, because it can

quickly produce the output of these commonly used

modalities. The most advanced technology for locating and

mapping spinal structures on imaging are now comparable to

those of human experts.

In the future, ML models may combine clinical information

with quantitative parameters from patient imaging information,

such as patient demographic information and neurological

examination. It can provide decision making to clinicians.

This decision tool uses machine learning technology to

determine which patients will benefit from surgery and help

with surgical planning. This has led to a quick increase in

research connected with computer-assisted spinal imaging

analysis (Table 2).
Proposing new classification

The level of heterogeneity of clinical feature and treatment

options for adult spinal deformity (ASD) is one of the most

important features of the condition. There is a lack of an

objective classification to guide which patients with ASD may

benefit most from surgical treatment and which surgical

treatment is likely to yield the best results. In 2019, Ames

(20) proposed artificial intelligence-based (AI) hierarchical
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TABLE 2 AI and ML in the diagnosis of spinal diseases.

Author Models Dataset Type of outcome Result

Schmidt et al. (4) Probability
map

16 images Intervertebral disc centroid Average positioning error 6.2 mm

Oktay et al. (5) SVM 40 subjects/240 discs Disc localization Average positioning error 2.6–3.6 mm

Oktay et al. (6) SVM 80 subjects/400 lumbar
vertebrae

Vertebral body Average positioning error less than 4 mm

Glocker et al. (7) Random
forest

200 CT scans Vertebral body Average positioning error 6–8.5 mm

Glocker et al. (8) Random
forest

424 CT scans Vertebrae localization Average positioning error 6–8.5 mm

Chen et al. (9) ANN 35 patients/245 discs Intervertebral disc centroid Average positioning error 1.6–2 mm

Suri et al. (10) ANN 1,123 MR, 137 CT, 484
x-ray

Vertebral bodies and intervertebral
discs

Median Dice scores >0.95

Carson et al. (11) CNN 50 subjects Detect anatomic structures Mean Dice coefficient score for each tissue type was >80%

Galbusera et al.
(12)

CNN 493 patients Predict spine shape 2.7°–11.5°

Korez et al. (13) CNN 55 subjects/97 images Parameters of the sagittal spinopelvic
balance

No statistically significant differences

Yeh et al. (14) CPN 2,210 images Anatomic landmarks Matches the reliability of doctors for 15/18

Wu et al. (15) MVC-Net 154 patients/526 images Adolescent Idiopathic Scoliosis (AIS) 4.04° CMAE in AP Cobb angle and 4.07° CMAE in LAT Cobb
angle

Tomita et al. (16) CNN 1,432 CT scans Extract radiological features Accuracy of 89.2% and an F1 score of 90.8%

Fang et al. (17) DCNN 1,449 patients Vertebral segmentation and bone
mineral density

The minimum average dice coefficients for three testing sets
were 0.823, 0.786, and 0.782

Jamaludin et al.
(18)

CNN 2,009 patients/12,018
discs

Lumbar MRI radiographic grading Close to human performance

Yabu et al. (19) CNN 814 patients/1,624 slices Osteoporotic Vertebral Fracture
(OVF)

AUC 0.949
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clustering as a step in a classification scheme to optimize the

overall quality, value, and safety of ASD surgery. The study

analyzed 570 patients, identified three optimal patient types

and four surgical clusters, and the clusters based on patient

characteristics and surgical clusters generated 12 subgroups,

SRS-22, ODI, SF-36 and the incidence of complications in

each subgroup were analyzed 2 years after surgery to enhance

preoperative decision-making. In addition, pattern recognition

can be treated by education surgeon which patterns can be

obtained under the condition of the lowest risk best improve,

thereby promoting treatment optimization. In 2021, Durand

et al. (21) used an unsupervised self-organizing neural

network to classify the overall sagittal spinal and pelvic

morphology of adult spinal malformations based solely on

sagittal spinal images and independent of pre-measured

angles. The study classified 915 adult patients who had

preoperative lateral radiographs. The mean spinal shape of six

clusters was plotted and found to be correlated with sagittal

plane parameters, baseline levels, and operation characteristics.

The relationship between sagittal vertical axis (SVA) and

proximal junctional kyphosis (PJK) varies with clusters. This

study illustrates the value of analyzing the overall spinal shape

of all spinal pelvic structures rather than isolated metrics
Frontiers in Surgery 04
between selected structures. This study represents a major

advance in integrating computer vision into a clinically

relevant classification system for adult spinal malformations.
Improving diagnosis rate

Based on the ultrasound imaging
Current methods for intraoperative localization and

visualization of nerve structures within the psoas muscle are

limited and may affect the safety of lateral lumbar interbody

fusion (LLIF). The ultrasonic technology enhanced by

neural detection algorithm based on artificial intelligence

can be used in this work. In 2021, Carson (11) developed

image processing and machine learning algorithms using an

in vivo pig model (50 subjects), and used an ultrasound

imaging system to detect the internal and adjacent nerves

and other anatomical structures of the lumbar muscle

during lateral lumbar surgery. The imaging system’s ability

to detect and classify anatomical structures was evaluated in

subsequent tissue dissection. The mean Dice coefficient

score for each tissue type was >80%, the mean specificity of

nerve detection was 92%; for bone and muscle, it was >95%.
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The accuracy of nerve detection was >95%. AI-enhanced

ultrasound imaging can provide the important anatomical

structures near the visual figure, so as to provide the

surgeon with aims to improve the security of key

information LLIF surgery.
Based on the x-ray
Manual measurement and calculation of a large number of

spinal and pelvic parameters on whole spine radiographs in a

clinical setting requires considerable time and effort.

Therefore, semi-automatic or automatic locating of spinal

radiographic anatomical markers and vertebral segmentation

on radiographs have been explored for more than ten years.

Recently, deep learning has been applied to automatic sagittal

imaging parameters measurement, and has good correlation

with manual measurement (12, 13, 15, 22, 23). It is worth

mentioning that there are ways to better represent spinal

alignment because they can evaluate multiple spinal pelvic

parameters at once. For example, Galbusera et al. (12) trained

78 different deep learning models to derive 78 anatomical

coordinates and six pelvic parameters. Korez et al. (13) could

first detect four anatomical structures and then derive five

anatomical markers within the detected structures. However,

these models may not be able to recognize between similar

adjacent anatomical structures, the imaging parameters

predicted are not comprehensive enough to cover the entire

spinal and pelvic structures, or some of these studies (13,

24–26) often involve segmentation of the image into small

pieces and may lose the ability to utilize all relevant

anatomical structures of the entire image. For pathological

spine images, test data sets are often inadequate in number

and diversity, and they may not represent a true clinical

picture. Yeh et al. (14) created a dataset of 2,210 radiographs,

which is the biggest annotated dataset of all kinds of

pathological spine to date. The deep learning model

constructed uses the anatomical structure of the entire x-ray

film to predict anatomical coordinates and generates various

radiological parameters that are well correlated with manual

measurements.

In 2018, Wu et al. (15) put forward a new Multi-View

Correlation Network (MVC-NET) architecture which can

provide a fully automated end-to-end framework for

assessing Adolescent Idiopathic Scoliosis (AIS) in multi-view

(AP and LAT) x-rays. The results of the experiment on 526

x-ray images from 154 patients indicate an impressive 4.04°

Circular Mean Absolute Error (CMAE) in AP Cobb angle

and 4.07° CMAE in LAT Cobb angle estimation, which

shows the MVC-Net’s capability of robust and accurate

estimation of Cobb angles in multi-view x-rays. It provides

clinicians with an effective, accurate and reliable framework

for assessing spinal curvature for comprehensive AIS

assessment.
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Based on the CT
Osteoporosis is characterized by loss of bone mass and

damage to bone structure, leading to osteoporosis and deeply

increasing the risk of fractures. Fractures caused by

osteoporosis are emerging as a primary health issues for the

elderly (27) causing severe personal suffering and a social and

economic burden. The current clinical standard for assessing

fracture risk is Bone Mineral Density (BMD) by Dual x-ray

Absorbtiometry (DXA) combined with clinical risk factors.

However, less than half of fracture patients are clinically

diagnosed with osteoporosis by BMD test (28). In addition to

the DXA, other imaging methods have been used to identify

fractures in high-risk individuals, including CT-based

volumetric BMD and geometry (29, 30) and finite element

analysis of CT images (31–33). There are endless researches

on CT image analysis and modeling using machine learning

method to predict fracture caused by osteoporosis. In 2018,

Tomita et al. (16) used a deep convolutional neural network

(CNN) to extract radiological features from each slice of CT

scan. These extracted features are processed by feature

aggregation modules for final diagnosis on full CT scans and

detection of OVF at the licensed radiologist level for sporadic

CT examinations of the chest, abdomen, and pelvis. Based on

the test results of 129 CT scans, the accuracy of the system

was 89.2% and the F1 score was 90.8%. This automated

detecting system could potentially reduce the time and labor

load of radiologists screening for osteoporotic vertebral

fractures and reduce the potential for false negative results in

the early diagnosis of asymptomatic vertebral fractures. The

system can also help improve the diagnosis of osteoporotic

vertebral fractures in a clinical setting by pre-screening

routine CT examinations and flagging suspicious cases prior

to the radiologist’s examination. In 2021, Fang et al. (17)

applied deep learning to patients with primary osteoporosis

and explored an automatic model based on deep

convolutional neural network (DCNN), which is used for

vertebral segmentation and bone mineral density calculation

in CT images. Deep learn-based methods can realize

automatic identification of osteoporosis, osteopenia and

normal bone mineral density in CT images, which is helpful

for clinicians to screen and diagnose opportunistic

osteoporosis in CT scans of spine or abdomen.
Based on the MRI
In 2017, Jamaludin et al. (18) analysed 12,018 discs in 2,009

patients using a convolutional neural network without a

separate segmentation step prior to classification, using disc

volume as input and training only on specific disc

classification labels to automatically generate lumbar MRI

radiographic grading. In this model, the classification of

lumbar disc degeneration, disc stenosis, upper/lower marrow

changes, spondylolisthesis, and central canal stenosis has
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achieved close to human performance. On the basis of the work,

DeepSPINE Framework took advantage of a great dataset of

22,796 lumbar disc herniated segments to train a

convolutional neural network and grade spinal and foraminal

stenosis in a multi-task mode in 2018. The studies were more

accurate in the classification of lumbar spinal stenosis (84.5%)

and lumbar foraminal stenosis (89.0%) than any other

published study. Furthermore, the DeepSPINE framework

performed equally to human evaluators in detecting and

grading lumbar spinal stenosis and foraminal stenosis. In 2021,

Yabu et al. (19) constructed nine neural network models to

detect fresh osteoporotic vertebral fractures and constructed an

optimal model using an integrated approach. Tools for

automated detection of osteoporotic cone fractures have

previously been reported (16). However, these tools only assess

the existence of osteoporotic vertebral fractures on CT images,

not the freshness of the fractures In this study, 1,624 T1-

weighted MRI images from 814 patients with fresh

osteoporotic vertebral fractures were used to train and verify

the model. Finally, the area under ROC curve (AUC) was

0.949. The diagnostic accuracy, specificity and sensitivity of the

model were comparable to those of two independent doctors.

In most instances artificial intelligence cannot directly apply

the text image generated by radiology department. Medical

reports are usually unstructured text in natural language, but

they are difficult to access and are not suitable for annotation

in artificial intelligence model training and testing. Most

studies using deep learning techniques to identify spinal

parameters have been recorded, but their accuracy and

consistency are limited compared with human behavior. At

the same time, the graphics technology related to spinal image

is mainly committed to developing segmentation methods,

and the results will be greatly affected by inevitable noise.

Automatic measurement of spinal parameters is the

application of artificial intelligence in medicine and

orthopedics, and is considered to be an significant tendency

in the next few years. Breakthroughs in machine vision will

contribute to the development of medical imaging. Improving

diagnostic criteria for spinal diseases through “human-

machine” integration will help improve medical standards and

reduce medical costs.
Surgical treatment

Artificial intelligence, especially deep learning, is promoting

the development of several fields. Virtual reality (VR) and

augmented reality (AR) are being expected to benefit more

from advances in AI. The advantages of deep learning in

object tracking and segmentation and video resolution

enhancement can reduce the computing power required by

AR and VR systems, reduce the cost of hardware and

software, improve equipment performance and enable new
Frontiers in Surgery 06
functions. These abilities have significantly increased the

extent of applications of AI and AR in spinal surgery, which

lead to the approval of the first AR assisted spinal surgery

systems by the US Food and Drug Administration in June 2020.

In spinal surgery, augmented reality AI systems have been

used in pedicle screw placement (34, 35). Proper placement of

pedicle screws is critical to the strength and durability of the

screws. In 2017, Ma et al. (36) from Tsinghua University

proposed a original AR based navigation system for pedicle

screw placement. They take advantage of ultrasound to

connect 3D anatomical markers to CT images, using

Kirschner wire (K-wire) instead of pedicle screws, and

compared their system with a skin marker tracer system.

Their ultrasound AR system showed an average positioning

error of 3.79 mm and an average Angle error of 4.51°, while

the skin marker tracer system showed an average positioning

error of 5.18 mm and an Angle error of 5.89°.

Although AR and VR still have some challenges. The bond

of robot-assisted navigation systems with AR and AI can

produce quick and accurate navigation systems. AI, wearable

devices and AR can be integrated to provide real-time

feedback to surgeons at the time of surgery. Combining AI,

AR, and VR can facilitate remote instruction and its

integration with wearables, while AI and surgical robots enable

remote and semi-automatic surgery. Through collaboration

between clinicians and engineers, we will have the ability to

bring all of these fields together over the next decade to

profoundly improve the way spine surgery is performed.
Predict the prognosis

Machine learning as an emerging technology, its advantage

in medical diagnosis and imaging has been well proven (37).

However, it has recently been applied to epidemiological data

sets to predict a variety of health-related outcome (Table 3).

Just like simple regression models, machine learning

algorithms can predict outputs given some inputs (43).

However, statistical knowledge used in machine learning are

more complex in generating predictions from input data.

Machine learning has a lot of advantages including the

capacity to process big data sets and capture nonlinear

relationships compared with traditional statistical models (43).

And its superiority over the traditional model has been

proved in the literature (44).

In 2021, Khan et al. (38) developed a machine learning

model to predict the deterioration of functional status of

patients with cervical spondylotic myelopathy after surgical

intervention, and identified important predictors of imaging

prognosis as a potential tool for guiding surgical decision

making. 757 patients were enrolled in the study. After using

8:2 train-test segmentation to the data set, they trained,

optimized and tested many ML algorithms to assess algorithm
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TABLE 3 AI and ML in the task of predicting the prognosis.

Author Models Dataset Type of outcome Result

Khan et al. (38) SVM 757 patients Change in mJOA at 1 year AUC 0.834

Karhade et al. (39) Bayes 1,790 patients 30-day mortality AUC 0.782

Kuris et al. (40) NN 63,533 patients 30-day readmission AUC 0.64–0.65

Karhade et al. (41) Stochastic Gradient 2,737 patients Sustained postoperative opioid prescription AUC 0.81

Wang et al. (42) ANN 12,492 patients Complications AUC 0.748

Zhou et al. 10.3389/fsurg.2022.885599
performance and identify predictors of worse mJOA after 1

year. The highest-performing ML algorithm was a polynomial

support vector machine which showed good calibration and

discrimination on the testing data, with an area under the

receiver operating characteristic curve of 0.834 (accuracy:

74.3%, sensitivity: 88.2%, specificity: 72.4%). Vital predictors

of functional decline at 1 year included initial mJOA, male

sex, duration of myelopathy, and the presence of

comorbidities. The development of these algorithms provides

a reference for clinicians to identify and timely manage

patients at risk for further neurological deterioration after

surgery. In 2018, Karhade et al. (39) assessed the efficacy of

several machine learning models in predicting 30-day

mortality after spinal metastasis surgery. The algorithm has

the best performance in recognition, calibration and overall

performance, and is integrated into an open access web

application. As the volume of oncology data continues to

grow, establishing learning systems and deploying them as

accessible tools may greatly strengthen prediction and

management. Kevin et al. (45) used a Bayesian classification

algorithm to predict 30-day mortality after spinal tumor

resection from the National Surgical Quality Initiative

Program. The algorithm exceeds the predictive power of the

National Surgical Quality Initiative mortality probability

Calculator. Multivariate regression analysis showed that

smoking history, chronic obstructive pulmonary disease,

cancer cell spread, history of hemorrhagic disease, dyspnea,

and low albumin levels were strongly associated with 30-day

mortality. As the model continues to learn from input patient

data, its accuracy increases. Patient outcomes can be improved

by using the algorithm to identify high-risk individuals early

and applying this data to preoperative decision-making as well

as patient selection and education. In 2020, Nida et al. (46)

from Harvard Medical School, used the American College of

Surgeons National Surgical Quality Improvement Program

database to develop and validate preoperative predictive

variables for patients with adverse events occurring within 30

days after degenerative lumbar spondylolisthesis surgery. The

predictive probabilities obtained from the best predictive

models were uploaded to a publicly accessible website. It is

proved that it is feasible to develop machine learning

algorithms from large data sets for patient consultation and

surgical risk assessment.
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Readmission within 30 days of surgery can impose a heavy

financial burden on clinicians and hospitals, and sometimes

lead to negative outcomes for patients. Previous studies have

identified risk factors for readmission, but conclusions about

specific patients remain vague. Kuris et al. (40) used the

American College of Surgeons National Surgical Quality

Improvement Program database to developed a neural

network model to predict 30-day readmission for 63,533

patients who underwent anterior, lateral, or posterior lumbar

fusion surgery with area under the curve values of 0.64–0.65.

Multivariate regression showed that age >65 years and

American Society of Anesthesiologists(ASA) class > II were

associated with increased risk for readmission for all three

procedures. A study that also used the database identified that

advanced age (50 years), anterior and posterior spinal fusion

surgery, elevated American Society of Anesthesiologists grade,

and isolated tumor diagnosis are risk factors for readmission

(47). A separate analysis from national and single-institution

registries showed that higher-than-average and upper quartile

surgery duration and Medicare/Medicaid insurance were also

related to an increased risk of readmission.

In addition to predicting functional improvements and

complications after surgery, the new AI technology can also

make recommendations for the medications after surgery. In

2019, Karhade et al. (41) proposed solutions for opioid abuse,

particularly the continued use of opioids after spinal surgery.

Although many demographic and clinical features have

previously been identified as prognostic factors for continued

opioid use after spinal surgery, there is currently no predictive

algorithm for preoperative risk stratification of patients. The

model can stratify the risk of these patients before surgery,

making it possible to intervene early to reduce the likelihood

of long-term opioid use.

In recent years, ACDF has become popular in ambulatory

surgical Settings. There is currently no agreed risk

stratification tool to identify patients who might be safe

candidates for ambulatory ACDF. In 2021, Wang et al. (42)

used an artificial neural network model to stratify the risk of

ACDF in 12,492 patients from the National Surgical Quality

Improvement Program database. Patients would be regarded

as “unsafe” for outpatient surgery if they suffered any

complication within a week of the index operation. The ANN

showed an AUC of 0.740, which was significantly higher than
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the AUCs of ASA (P < 0.05). Advanced age, low hemoglobin,

high international normalized ratio, low albumin, and poor

functional status were considered to be significant in the

multivariable predictive model.

Clinicians can provide personalized treatment and counseling

methods for patients by accurately predicting outcomes based on

a patient’s phenotype and clinical presentation. The integrated

prediction in the field of degenerative disease of the spine will

improve the decision of prognosis and the subsequent delivery

of personalized medicine based on those prognosis.

Considering the potential consequences of overestimating or

underestimating the results of such studies for clinical decision

making, the improper application of machine learning is a

major bioethical challenge. Solutions to this problem include

receiving the machine learning black box and testing. In short,

we need a healthy skepticism of machine learning and a

willingness to appreciate its methodology.
Decision support systems

Decision support systems, a widely used predictive analytics

application in clinical practice, utilize the predictive power of

models to support clinical decision making by providing

personalized predictions. In 2018, Varghese et al. (48) aimed

to build a learning-based predictive model to understand the

sensitivity of pedicle-screw holding power to various factors.

Of the various machine-learning techniques, the random

forest regression model performed well in predicting the

pullout strength with a correlation coefficient of 0.99 between

the observed and predicted values. The model was able to

predict the holding power of a pedicle screw for any

combination of density, insertion depth, and insertion angle

for the chosen range. Similarly, in 2019, Khatri et al. (49)

used an experimental dataset of 48 data points as training

data to construct a model based on different machine learning

algorithms. They also used the L9 orthogonal array of

Taguchi Design of Experiments to obtain the best

combination of parameters for predicting the pullout strength.

Finally, random forest performed the best with a correlation

coefficient of 0.96. The model developed in this study can

help surgeons be better prepared for surgery and the decision

would be based on objective, rather than subjective parameters.
Future prospectives

The applications of AI technologies in healthcare, especially

regarding tools with a direct clinical impact such as those aimed

at clinical decisions support systems, should be in a better

monitoring environment for ethical reasons. The use of AI in

healthcare also raises serious concerns about data privacy and

security due to the massive amount of clinical and imaging
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data required for training and validation of the tools. In the

future, we should pay more attention to data security to ease

people’s concerns about privacy disclosure.
Summary

At present, the application of artificial intelligence in spine

surgery is still in its infancy stage, facing many challenges, such

as scattered data, integration degree is not enough, and clinical

conversion efficiency is low. Better integration, mining and

management of unstructured data will contribute to the

further development of artificial intelligence in spine surgery.

In the future, the application of artificial intelligence and

machine learning technology in spinal surgery will be

conducive to improving the level of medical diagnosis and

treatment, optimizing the medical process, developing the

clinically assisted decision-making system, and alleviating the

pain of patients and reducing the social and economic burden.
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