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Osseointegration, the ability for an implant to be anchored in bone tissue with
direct bone-implant contact and allowing for continuous adaptive remodelling,
is clinically used in different reconstructive fields, such as dentistry, orthopedics
and otology. The latter uses a bone conducting sound processor connected to
a skin-penetrating abutment that is mounted on a titanium implant placed in
the temporal bone, thereby acting as a path for transmission of the
vibrations generated by the sound processor. The success of the treatment
relies on bone healing and osseointegration, which could be improved by
surface modifications. The aim of this study was to evaluate the long-term
osseointegration in a sheep skull model and compare a laser-ablated implant
surface with a machined implant. Commercially available 4 mm titanium
implants, either with a machined (Wide Ponto) or a laser-ablated surface
(Ponto BHX, Oticon Medical, Sweden), were used in the current study. The
surfaces were evaluated by scanning electron microscopy. The implantation
was performed with a full soft tissue flap and the osteotomy was prepared
using the MIPS drill kit (Oticon Medical, Sweden) prior to installation of the
implants in the frontal bone of eight female sheep. After five months,
biopsies including the implant and surrounding bone tissue obtained,
processed and analysed using histology, histomorphometry, scanning
electron microscopy and Raman spectroscopy. The animals healed well,
without signs of adverse events. Histomorphometry showed a large amount
of bone tissue around both implant types, with 75% of the threaded area
occupied by bone for both implant types. A large amount of bone-implant
contact was observed for both implant types, with 67%–71% of the surface
covered by bone. Both implant types were surrounded by mature
remodelled lamellar bone with high mineral content, corroborating the
histological observations. The current results show that the laser-ablated
surface induces healing similar to the well-known clinically used machined
surface in ovine cranial bone. In conclusion, the present long-term
experimental results indicate that a laser-ablated implant performs equally
well as a clinically used implant with a machined surface. This, together with
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previously reported, improved early biomechanical anchorage, suggests future, safe and
efficient clinical potential.
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hearing implant, BAHS
Introduction

Bone anchored hearing systems (BAHSs) are percutaneous

bone conduction devices that have been used since the late

1970s. The sound is propagated to the inner ear by vibrations

in the temporal bone and restores hearing over a wide

frequency band for patients with mixed and conductive

hearing loss and can also be important for improved speech

perception in single sided deafness (1, 2). The concept relies

on stable bone anchorage and osseointegration of the implant

enabling the induction of vibrations and should last over long

time periods, preferably surviving the life span of the patient.

It is well established that the surface morphology and

chemistry of a titanium implant play an important role in the

cellular response and osseointegration in bone. The first

generation of titanium implants were typically machined

(turned) with a relatively smooth, textured surface. Thereafter,

a second generation of implant modifications emerged, for

example, with blasted and acid-etched surfaces, in an attempt

to accelerate and improve implant osseointegration (3, 4).

Intentional surface modification of a biomedical implant

material is performed to promote biological reactions at the

interface. In bone, these surface modifications are designed to

influence the biological events that lead to bone formation,

the close adaptation of mineralized bone to the material

surface and an implant-bone shear strength that allows the

implant to be loaded. Important key features of implant

surface modifications are, first, that important bulk properties

are retained and, second, that the positive biological reactions

that are elicited persist, leading to maintained long-term

integration and function. Most surface modifications of

clinically available oral implants employ techniques that

increase the roughness of the surface compared with the

machined Ti surface, resulting in surface irregularities with

different forms, shapes and sizes (4). Most of these roughened

surfaces are produced either by blasting, abrading and coating

methods using different material particles and/or by chemical

methods. In a review of oral implants, moderately rough

implants were considered to have the potential benefit of a

“stronger bone response and tendency to better clinical results

than turned implants” (5).

A third generation of surface modifications is now being

introduced in clinical practice for various applications. One

such example is a laser-ablated surface modification. By using

laser technology, an oscillating laser beam locally creates a
02
distinct surface structure with a combined macro, micro, and

nanotopography (6). We have previously shown the improved

bone anchorage and healing kinetics of a laser-modified

implant surface in a rabbit model with 4 weeks of healing (7);

however, a different implant design was used compared to the

clinically used implant system.

The aim of the current study was to extend previous

preclinical knowledge to a more clinically relevant model

(sheep cranial bone) using a commercial implant design and

to compare the long-term sheep skull bone tissue response in

laser-ablated and machined titanium implants after 5 months

of healing using scanning electron microscopy and

histomorphometry.
Materials and methods

Implants

Commercially available implants from Oticon Medical

(Askim, Sweden), either Wide Ponto implants (machined,

control) (Figure 1A) with a machined surface or Ponto BHX

implants (laser, test) (Figure 1B) with a laser-ablated surface,

were used in the current study, both with a diameter of

4.5 mm, length 4 mm and manufactured from commercially

pure (c.p.) titanium grade 4.

Four implants of each type were chemically characterised

using Auger Electron Spectroscopy (AES) (PHI 700 Scanning

Auger Microprobe, Physical Electronics Inc., Chanhassen,

Minnesota) operating at 3 keV. For each of the machined

implants, measurements at four sites in two adjacent thread

roots were made. Each of the laser-modified implants was

analysed at two sites in a laser-treated area and two sites in a

nontreated area. The surface morphology was thereafter

characterised by scanning electron microscopy (Leo Ultra 55)

operating at 5 kV.
Animal surgery

This study was conducted in accordance with the OECD

Good Laboratory Practice regulations, ENV/MC/CHEM (98)

17, with the European Good Laboratory Practice regulations,

2004/10/EC Directive, and with the United States Food and

Drug Administration Good Laboratory Practice regulations, 21
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FIGURE 1

3d representation of the machined (A) and laser-modified (B) implants. Machined (C–F) and laser-modified implants (G–J) observed using secondary
electron scanning electron microscopy. The surface of the machined implants exhibits ridges and grooves resulting from the machining process
(C–F) whereas a distinct micro- and nanotexture is superimposed in the thread valleys of the laser-modified implant (G–J). Chemical
composition of the surfaces of the machined implant and the nontreated and treated areas of the laser-modified implant as determined by
Auger Electron Spectroscopy (AES) (K).
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CFR 58 with the exception of the housing during the follow-up

period that was conducted using a non-GLP but audited and

approved by Bergerie de la Combe aux Loups (ISO 9001

certified provider) and the bone-implant analyses that was

performed by the Department of Biomaterials, University of

Gothenburg, Sweden. The study protocol was reviewed and

approved by the NAMSA Ethical Committee on September

19, 2016 (Study No. 213096). The article was written in

accordance with the ARRIVE (Animal Research: Reporting In

Vivo Experiments) 2.0 guidelines (Supplementary Material 1) (8).

A total of eight female sheep [Ovis aries, Strain/breed:

Blanche du Massif Central (BMC)] each received one

machined implant and one laser-modified implant bilaterally

in the frontal cranial bone (n = 8). The animals were

acclimatised for at least five days prior implantation. At the

time of the implantation the sheep were 3.8 ± 0.1 years old

(mean ± SD) and had body weights of 71 ± 4 kg (mean ± SD).

Only healthy, previously unused animals weighing above

60 kg were allowed to be included in the study. The day

before implantation, the sheep were weighed and administered

antibiotics (amoxicillin (Duphamox LA®, Zoetis, intramuscular

(IM) and enroftoxacin, Baytril® 10%, Bayer Pharma, IM or
Frontiers in Surgery 03
subcutaneous (SC)). The sheep were fasted prior to surgery.

Premedication was performed by intravenous (IV) injection of

a mixture of diazepam (Valium®, Roche) and butorphanol

(Torphasol®, Axience). Anesthesia was induced by IV injection

of propofol (Propovet®, Axience) and maintained by

inhalation of an O2-isoflurane mixture (Isoflo®, Axience, 2 to

5% through a tracheal tube). Each sheep preoperatively

received a nonsteroidal anti-inflammatory drug (flunixine,

Meflosyl® Injectable, Zoetis, IM). As a prophylactic measure, a

perioperative antibiotic (enrofloxacin (Baytril® 10%, Bayer

Pharma), SC or IM) was given.

An incision was made down to the bone at the parietal

bone, and a flap was folded anteriorly using a self-retaining

retractor to expose the implantation site. The positions for the

test and control implants were marked with a sterile pen

approximately 1 cm lateral to the sagittal suture and 1 cm

anterior to the lambdoid suture (frontal-parietal suture). The

machined and laser implants were randomised to either side

of the sagittal suture. The osteotomies were prepared with

stepwise drilling using the MIPS technique according to the

manufacturer’s instructions (9). Proper seating was confirmed

visually, and insertion torque noted. Manual tightening was
frontiersin.org
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performed if needed. Cover screws were then attached to the

implants before closing the incision in layers using absorbable

sutures (Vicryl® 2.0 or 3.0, ETHICON) for the subcutaneous

and intradermic tissues and absorbable sutures (Vicryl® 3.0,

ETHICON for three sheep) or nonabsorbable sutures

(Prolene® 2.0, ETHICON for five sheep) for the cutaneous

tissue. The wounds were disinfected using oxytetracycline

(Oxytetrin® spray, MSD). The sheep were thereafter allowed to

recover from anesthesia in the operating room and returned

to their individual pens, the supply of food and water was

reinstated, and the sheep were kept under close observation.

Buprenorphine (Buprecare®, AXIENCE) was given after the

surgery and then twice daily for 2 days post-surgery (IM). An

antiinflammatoryv drug (flunixine, Meflosyl® Injectable,

Zoetis, IM) was given daily for 7 days post-surgery and

antibiotics were given for 2 weeks post-surgery (amoxicillin,

Duphamox LA®, Zoetis, IM, every 2 days and enrofloxacin,

Baytril® 10%, BAYER PHARMA, SC or IM, daily). The

sutures were removed after complete healing. The wounds

were disinfected every 2 days with oxytetracycline (Oxytetrin®

spray, MSD) until suture removal or 48 h after suture

removal. During the study, the sheep were grouped and

housed in pens, identified by an individual tag in the ear and

a card indicating the study number, the sheep number, gender

and the surgery date (NAMSA, Chasse-sur-Rhône, France).

During the follow-up period, sheep were group housed in a

farm setting (Bergerie de la Combe aux Loups, France),

identified by an individual tag in the ear and a card indicating

the study number, sheep number, gender and the procedure

date. The animals were observed daily to detect mortality,

morbidity or any clinical abnormality.

Five months (21 weeks) after the surgery, the sheep were

euthanized by intravenous overdose of pentobarbital

(Dolethal®, Vetoquinol). After exposing the area via an

incision and removing the cover screws, the implants were

retrieved together with the surrounding bone tissue en bloc

using a 10 mm trephine drill and immersion fixed in 10%

neutral buffered formalin. Due to the difference in design of

the test and control implant the investigators performing the

surgeries and analysis could not be blinded to the implant type.
Sample preparation

Bone-implant samples were fixed in 10% neutral buffered

formalin at pH 7.0 ± 0.1 for 3 days, dehydrated in a graded

ethanol series, and resin embedded (LR White, London Resin

Co. Ltd, UK). Resin embedded bone-implant blocks were

bisected by sawing to prepare one central ground section

∼40 µm in thickness (Exakt Apparatebau GmbH & Co,

Norderstedt, Germany) and stained with toluidine blue. The

remaining half-blocks were wet polished using 400–4000 grit

SiC paper for subsequent analyses.
Frontiers in Surgery 04
Histology and histomorphometry

Light optical microscopy (Nikon Eclipse E600) was used to

assess the osseointegration and amount of the tissues

surrounding the implant. Quantitative histomorphometry

(Nikon NIS-Elements software) was performed to determine

the amount of BIC and BA within the implant threads.
Backscattered electron scanning electron
microscopy

Polished, resin embedded bone-implant blocks were air-dried

overnight prior to low-vacuum backscattered electron scanning

electron microscopy (BSE-SEM) imaging in a Quanta 200

environmental SEM (FEI Company, The Netherlands) operated

at 20 kV and 0.5 Torr water vapour pressure.
Raman spectroscopy

Micro-Raman spectroscopy was performed using a confocal

Raman microscope (Renishaw inVia™ Qontor®) equipped with

a 633 nm laser and LiveTrack™ focus-tracking technology. The

laser was focused down onto the sample surface using a × 100

(0.9 NA) objective. The Raman scattered light was collected

using a Peltier-cooled CCD deep depletion NIR enhanced

detector behind 1,800 g mm−1. Two regions of interest were

defined: (i) within thread (mineralized bone within the first

endosteal thread, i.e., below the level of the original cortical

bone, to ensure that only de novo-formed bone was analysed)

and (ii) native bone (original cortical bone ≥1 mm from the

implant surface). From each region of interest, 6 to 8 spectra

were collected (8 s integration time and 10 accumulations per

spectrum). Background subtraction and cosmic ray removal

were performed in Renishaw WiRE 5.2 software (10).
Statistical analysis

Data was analysed by using SPSS Statistics for Windows

(v27.0, IBM Corp) and Excel (v2021, Microsoft). Independent

samples t tests were used to determine significant differences

in surface purity and oxide thickness between the two implant

types. The nonparametric Wilcoxon signed rank test was used

for histomorphometric analysis and Raman spectroscopy, and

p values <0.05 were considered statistically significant. Mean

values ± standard deviations are presented.
Results

Scanning electron microscopy of the machined implant

revealed a relatively smooth surface with characteristic ridges
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and valleys created by the machining process (Figures 1C–F),

whereas a distinct micro- and nanotexture was superimposed

in the thread valleys of the laser-modified implant

(Figures 1G–J). The surface of both implant types consisted

predominantly of titanium, oxygen and carbon on both

implant surfaces with minor impurities of calcium,

phosphorous and sulfur, as revealed by the chemical analysis

(Figure 1K). For the laser-modified implant, there was a

significantly higher content of titanium and oxygen than on

the machined implant. Furthermore, the laser-treated implant

contained significantly less carbon than the machined

implant. Similarly, the laser-treated roots of the thread

contained significantly more titanium and oxygen and less

carbon than the nontreated area of the implant threads.

No animals were excluded from the analysis. The animals

healed uneventfully, and there were no adverse reactions

either during the initial healing or at termination. The weight

of the animals at explantation was 69 ± 7 (mean ± SD). In

total n = 8 control implants (machined) and n = 8 test

implants (laser) were retrieved and analysed. The general

histological observation of the ground sections was that a

large amount of bone had grown around and into the threads,

with a mature, lamellar appearance (Figures 2A–F).

Histomorphometry demonstrated substantial amounts of bone

occupying the threads of the machined (75.1 ± 9.0%) and

laser-modified (75.6 ± 9.5%) implants (Figure 2G). Direct

bone-implant contact was also similar between the machined

(67.7 ± 9.4%) and laser-modified (71.5 ± 8.2%) implants. There

was no statistically significant difference between the two

implant types in either bone area within the threads (p =

0.724) or bone-implant contact (p = 1.00).

BSE-SEM revealed high mineral content, and therefore

maturation, of the peri-implant bone. The typical

morphological features of remodelled lamellar bone, such as

the presence of osteons and osteocyte lacunae aligned parallel

to the implant surface, corroborated the histological

observations.

Raman spectroscopy revealed that the peri-implant bone

adjacent to the laser-modified surface was identical in

composition and quality to that opposing the machined

surface (Figures 3A,B). At 5 months postinsertion, the peri-

implant bone interfacing both implant types was

compositionally similar to the native bone. The lower

carbonate content and higher phenylalanine (Phe) indicated a

relatively younger bone at the interface compared to the

native bone (Figure 3B) (11).
Discussion

Previous preclinical evaluations of implants with site

specific, laser-ablated implant surfaces have shown good

ability to osseointegrate in the long bones of rabbits in both
Frontiers in Surgery 05
the short- and long-term in the tibia and femur (12, 13). A

lighter version of the same implant surface modification

showed good osseointegration in short-term healing in the

long bone (7); however, knowledge of the harder, denser bone

of the skull is lacking. Furthermore, the use of commercially

available implants has not been previously evaluated in vivo.

The aim of the current study was therefore to extend previous

preclinical knowledge using a more clinically relevant model

(sheep cranial bone) using a commercial implant design with

a long-term follow-up of 5 months of healing.

The sheep skull is described as a relevant site to perform

functional evaluation of materials (14). The sheep skull

presents similarities with the human skull regarding bone

thickness and anatomy, has historically been used to evaluate

the implant/tissue interface and bone healing performance,

and offers enough space to allow the use of implants having a

clinically relevant size and design (15).

Modification of implant surfaces aims to alter the

physicochemical properties to improve bone healing and load

transfer (5). This can be achieved by changing the surface

topography on either the micro- or nanoscale or by

modifying the surface chemistry through biomimetic coatings

or functionalization. Surface modification by laser processing

generally does not introduce contaminants onto the surface

(16). The localised elevation of temperature and reaction with

ambient oxygen, however, results in a thicker oxide layer (7),

which influences the osteoconductive behaviour and facilitates

tissue bonding (17). Even though the surface oxide thickness

was not determined for the implants used in this study, the

laser machining processing parameters used were the same as

those in the study by Shah et al. (7). Interestingly, the surface

chemistry of the laser-modified implant was altered by laser

processing in the non-modified areas, likely due to the

increased bulk temperature of the implant during laser

processing of the thread valleys.

Enhanced bone formation (18) and biomechanical fixation

(19) of bone anchored implants has been made possible

by the intentional roughening of surfaces resulting in

microtopography modification. A rougher surface, on the

microscale, is currently available with minor differences on all

implant systems in the dental field and for bone-anchored

hearing aid implants (20). Here, qualitative histological analysis

demonstrated that both machined (Wide Ponto) and laser-

modified (Ponto BHX) implants become osseointegrated in the

sheep skull after five months. BSE-SEM corroborated these

histological findings. The histological and histomorphometric

evaluations of selective, laser-modified implants in animal

models have all demonstrated superior or similar outcomes

compared to machined implants (6, 12, 13). The results from

this study are in agreement with a previous long-term rabbit

study in which a large amount of bone growth was observed

for both implant types. No difference in the amount of bone

was observed at an early time point using this type of surface,
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FIGURE 2

Integration between the bone and machined (A–C) and laser-modified (D–F) implants. Optical microscopy. Histological evaluation shows that both
the machined (A) and laser-modified (D) implants are positioned vertically in the skull and surrounded by a considerable amount of bone tissue. No
signs of inflammation were observed. Mature bone is detected close to the implant surface. Osteons with central blood vessels (red asterisk) and
concentric lamellae with coaligned osteocytes (red arrow) are indicated (C,F). Separation of the bone tissue from the titanium surface (white
arrow in C) is observed more frequently for the machined implants than for the laser-modified implants. (G) Bone area and bone–implant
contact measured using histomorphometry.

Johansson et al. 10.3389/fsurg.2022.885964
while the biomechanics were largely improved (7). Moreover,

earlier studies have shown that the improved biomechanical

properties withstand time (6).

The overall geometrical design and intended use of the

Ponto BHX implants are identical to those of the Wide Ponto

implants already successfully used clinically. In contrast to the

current, clinically used wide diameter implants (4.5 mm),

previous generations were machined with a diameter of
Frontiers in Surgery 06
3.75 mm. A recent review of the Ponto implant system

(Oticon Medical AB) demonstrated an overall implant

survival rate of 97.7% (21). This review did, however, include

various implant types (narrow diameter, wide machined and

wide with laser modification) in the evaluation. In adult

patients, the three-year implant survival was 95.0% for the

narrow 3.75 mm implant and 97.4% for the wider machined

version (Wide Ponto) (22). In comparison, the survival rate of
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FIGURE 3

(A) Raman spectroscopy. Left: Before (black) and after (grey) background subtraction. Integral areas of ν2 PO4
3−, Pro + Hyp, and Amide III are indicated.

Right: Two Gaussian curves are fitted to the 940–980 cm−1 region (ν1 PO4
3−). The full-width at half-maximum (FWHM) of the Gaussian curve centred

at ∼960 cm−1 is taken as mineral crystallinity. A single Gaussian curve is fitted to the 1056–1086 cm−1 region (ν1 CO3
2−). A single Lorentzian curve is

fitted to the 998–1008 cm−1 region (Phe). (B) Bone extracellular matrix composition (mineral crystallinity, carbonate-to-phosphate ratios, and
mineral-to-matrix ratios) assessed using Raman spectroscopy. (C–D) backscattered electron scanning electron microscopy (BSE-SEM) of the
machined (C) and laser-modified (D) implants. * indicates within thread region of interest + indicates the native bone region of interest.

Johansson et al. 10.3389/fsurg.2022.885964
the Ponto BHX implant was reported to be 97% during a

follow-up period of 15 months, which was also observed in

an adult population (23). In comparison, the results from a

retrospective clinical study on dental implants with a similar

laser-ablated surface modification applied to the valleys of the

threaded implant revealed a cumulative survival rate of 99.3%

for 310 implants placed in 83 patients after a five-year period

(24). Compared to the published literature (dental implants

with moderately rough surfaces), this is a high survival rate,

which indicates a successful implant in adults.

Although the survival rate of adult patients with wide-

diameter BAHS implants is high, in specific patient groups,

i.e., children or patients with compromised bone quality, the

incidence of implant loss is much higher. In these demanding

cohorts, the implant loss rate was a significant issue when
Frontiers in Surgery 07
using older generation 3.75 mm implants with a survival rate

of only 86% (25) but was subsequently improved using wider

diameter, more stable implants (26, 27). Recently, a study

evaluating the outcome using the laser-modified Ponto BHX

implant in a paediatric cohort demonstrated a further increase

in the survival rate after 1 year to 96.6% (28). The laser-ablated

titanium implant for bone-anchored hearing implantation has

an enlarged contact area for osseointegration compared to the

standard machined implant. The results of animal studies

measuring the removal torque of implants treated with laser

ablation after different time points all demonstrated a

significant increase of more than 150% compared to machined-

only implants (6, 7, 12, 13). This clearly demonstrates that a

site-specific laser-treated implant has a higher biomechanical

capacity in torsion than a machined smooth textured implant,
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which could be one of the main reasons for the improved survival

rate, particularly in demanding cases.
Conclusion

At long-term healing, implant surfaces modified by selective

laser ablation show osseointegration and tissue response (in terms

of amount of bone-implant contact, bone area, and bone quality)

that is comparable to machined surface implants in a sheep

calvarial model. This indicates safe and efficient clinical potential.
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