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Characterizing Risk of In-Hospital
Mortality Following Subarachnoid
Hemorrhage Using Machine Learning:
A Retrospective Study
Jiewen Deng and Zhaohui He*

Department of Neurosugery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China

Background: Subarachnoid hemorrhage has a high rate of disability and mortality, and
the ability to use existing disease severity scores to estimate the risk of adverse outcomes
is limited. Collect relevant information of patients during hospitalization to develop more
accurate risk prediction models, using logistic regression (LR) and machine learning
(ML) technologies, combined with biochemical information.
Methods: Patient-level data were extracted from MIMIC-IV data. The primary outcome
was in-hospital mortality. The models were trained and tested on a data set (ratio
70:30) including age and key past medical history. The recursive feature elimination
(RFE) algorithm was used to screen the characteristic variables; then, the ML algorithm
was used to analyze and establish the prediction model, and the validation set was
used to further verify the effectiveness of the model.
Result: Of the 1,787 patients included in the mimic database, a total of 379 died during
hospitalization. Recursive feature abstraction (RFE) selected 20 variables. After
simplification, we determined 10 features, including the Glasgow coma score (GCS),
glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC),
heparin use, and sepsis-related organ failure assessment (SOFA) score. The validation
set and Delong test showed that the simplified RF model has a high AUC of 0.949,
which is not significantly different from the best model. Furthermore, in the DCA curve,
the simplified GBM model has relatively higher net benefits. In the subgroup analysis of
non-traumatic subarachnoid hemorrhage, the simplified GBM model has a high AUC
of 0.955 and relatively higher net benefits.
Conclusions: ML approaches significantly enhance predictive discrimination for mortality
following subarachnoid hemorrhage compared to existing illness severity scores and LR.
The discriminative ability of these ML models requires validation in external cohorts to
establish generalizability.
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Deng and He Prediction Model of Subarachnoid Hemorrhage
TABLE 1 | Baseline characteristics of MIMIC-IV.

Survival
(n = 1,438)

Dead in
hospital (n = 349)

P-value

Baseline characteristics

Age (year) 63 (51, 76) 70 (59, 82) <0.001

Sex (female) 720 (50.07%) 169 (48.42%) 0.581

Race

Black 91 (6.33%) 17 (4.87%) <0.001

White 932 (64.81%) 163 (46.70%)

Hispanic 65 (4.52%) 10 (2.87%)

Asian 46 (3.20%) 13 (2.87%)

Others 304 (21.14%) 136 (38.97%)

Language

English 1,283 (89.22%) 155 (44.41%) 0.714

Unknow 309 (21.49%) 40 (11.46%)

Marital

Single 368 (25.59%) 48 (13.75%) <0.001

Married 629 (43.74%) 120 (34.38%)
INTRODUCTION

Subarachnoid hemorrhage (SAH) is a type of hemorrhagic
stroke that accounts for 3% of all stroke types. With the
development of medicine, the global case fatality rate has
decreased from 50% to 17%, but the mortality rate of
subarachnoid hemorrhage remains high (1–3). In addition,
survivors are often left with a permanent disability, cognitive
deficits (particularly in executive function and short-term
memory), and mental health symptoms (depression, anxiety),
leading to significant reductions in health-related quality of
life. In recent years, machine learning (ML), as an area of
artificial intelligence, has been able to learn from data based
on computational modeling. Similarly, ML can fit higher-
order relationships between covariates and outcomes in data-
rich environments (4–6).

The purpose of this study was to determine whether ML
algorithms using demographics, comorbidities, laboratory
tests, and other variables can predict the prognosis of SAH
fairly accurately and to identify factors that contribute to
predictive ability.
Divorced 98 (6.82%) 18 (5.16%)

Widowed 159 (11.06%) 43 (12.32%)

Unknow 184 (12.80%) 120 (34.38%)

Weight 75.50 (64.00, 88.00) 73.00 (61.70, 87.30) 0.033

Trauma 697 (48.47%) 109 (31.23%) <0.001

Coexisting disorders

Myocardial
infarction

109 (7.58%) 42 (12.03%) 0.007

Congestive heart
failure

148 (10.29%) 53 (15.19%) 0.009

Peripheral 87 (6.05%) 26 (7.45%) 0.335
PATIENT SELECTION AND METHODS

Data Source
This study was a retrospective study based on the Medical
Information Mart for Intensive Care IV (7) (MIMIC-IV
version 1.0) database. An individual who has finished the
Collaborative Institutional Training Initiative examination
(Certification number 43357625 for author Deng) can access
the database.
vascular disease

Cerebrovascular
disease

815 (56.68%) 255 (73.07%) <0.001

Dementia 62 (4.31%) 13 (3.72%) 0.624

Chronic
pulmonary
disease

187 (13.00%) 55 (15.76%) 0.177

Rheumatic
disease

26 (1.81%) 6 (1.72%) 0.911

Peptic ulcer 8 (0.56%) 3 (0.86%) 0.516
Participant Selection
Inclusion criteria are as follows: (1) patients with subarachnoid
hemorrhage confirmed by ICD-9 or ICD-10; (2) people with an
age of more than 16 years old; and (3) admission to ICU with
the Glasgow coma score (GCS). Moreover, for patients with
ICU admissions more than once, only data of the first ICU
admission of the first hospitalization were included in the
analysis.
disease

Diabetes 250 (17.39%) 75 (21.49%) 0.075

Paraplegia 150 (10.43%) 49 (14.04%) 0.055

Renal disease 118 (8.21%) 51 (14.04%) <0.001

Malignant
cancer

51 (3.55%) 20 (5.73%) 0.061

Severe liver
disease

19 (1.32%) 12 (3.44%) 0.007

Metastatic solid
tumor

18 (1.25%) 9 (2.58%) 0.068

AIDS 3 (0.21%) 2 (0.57%) 0.248

Vital signs (1st 24 h)

Heart rate (min) 77.49 (69.64, 87.88) 80.89 (73.26, 93.58) <0.001

(continued)
Predictors
In this study, the data were extracted from MIMIC-IV, including
age, gender, race, language, GCS, sepsis-related organ failure
assessment (SOFA) score, and history of trauma. Then, we
extracted data containing vital signs, laboratory findings,
treatment history of heparin, and antibiotics during
hospitalization. Besides, we collected the Charlson comorbidity
index (CCI) composed of myocardial infarction, congestive
heart failure, peripheral vascular disease, cerebrovascular
disease, dementia, chronic pulmonary disease, rheumatic
disease, peptic ulcer disease, diabetes, paraplegia, renal disease,
malignant cancer, severe liver disease, metastatic solid tumor,
and acquired immunodeficiency syndrome (AIDS).
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TABLE 1 | Continued

Survival
(n = 1,438)

Dead in
hospital (n = 349)

P-value

Temperature (°C) 37.00 (36.78, 37.24) 37.00 (36.51, 37.45) 0.001

SBP (mmHg) 124 (115, 134) 123 (111, 134) <0.001

DBP (mmHg) 65 (58, 72) 62 (55, 70) <0.001

MBP (mmHg) 82 (75, 88) 80 (73, 88) <0.001

Respiratory rate
(min)

18 (16, 20) 19 (17, 22) <0.001

SPO2 97.28 (96.00, 98.72) 97.88 (95.55, 99.25) <0.001

Laboratory

WBC 9.78 (7.91, 11.78) 12.59 (10.27, 15.70) <0.001

Hematocrit 33.86 (29.80, 37.70) 32.93 (28.55, 36.90) 0.017

Hemoglobin 11.23 (9.86, 12.69) 10.85 (9.21, 12.33) 0.001

Mch 30.58 (29.40, 31.81) 30.55 (29.30, 31.86) 0.492

Mchc 33.31 (32.47, 34.15) 33.07 (32.05, 33.87) <0.001

Mcv 91.00 (88.00, 95.00) 92.00 (88.00, 96.00) 0.039

RBC 3.70 (3.25, 4.15) 3.52 (3.10, 4.10) 0.008

Rdw 13.72 (13.03, 14.79) 14.48 (13.50, 15.95) <0.001

Platelet 228.68 (183.00, 287.00) 194.86 (140.00, 249.33) <0.001

Neutrophils 77.67 (73.30, 83.95) 78.50 (77.58, 86.00) 0.008

Lymphocytes 13.94 (9.20, 16.80) 12.50 (6.70, 14.20) <0.001

Monocytes 5.87 (4.20, 7.00) 5.87 (4.33, 6.23) 0.482

Eosinophils 0.90 (0.30, 1.30) 0.75 (0.20, 1.13) 0.002

Basophils 0.35 (0.20, 0.45) 0.30 (0.20, 0.36) <0.001

Bicarbonate 24.48 (22.90, 26.00) 23.25 (20.00, 24.62) <0.001

Bun 14.50 (11.00, 19.50) 20.00 (14.67, 30.25) <0.001

Calcium 8.64 (8.35, 8.95) 8.45 (8.08, 8.66) <0.001

Chloride 103.90 (101.60, 106.00) 105.67 (103.00, 111.20) <0.001

Creatinine 0.75 (0.61, 0.93) 0.95 (0.70, 1.40) <0.001

Glucose 119.23 (107.00, 136.00) 150.65 (131.38, 178.10) <0.001

Sodium 139.35 (137.44, 141.50) 141.00 (139.00, 145.19) <0.001

Potassium 3.93 (3.75, 4.18) 4.00 (3.80, 4.32) <0.001

INR 1.12 (1.05, 1.22) 1.20 (1.10, 1.40) <0.001

PT 12.38 (11.57, 13.50) 13.34 (12.10, 15.10) <0.001

APTT 28.28 (25.95, 30.93) 29.00 (26.20, 34.31) <0.001

NLR 5.57 (4.42, 9.06) 6.40 (5.46, 12.60) <0.001

Therapy

Heparin 1,154 (80.25%) 157 (44.99%) <0.001

Antibiotic 823 (57.23%) 226 (64.76%) 0.010

Scoring system

SOFA 3 (2, 5) 6 (4, 8) <0.001

GCS 13 (10, 14) 9 (3, 15) <0.001

MIMIC-IV, Medical Information Mart for Intensive Care-IV; AIDS, acquired
immunodeficiency syndrome; SBP, systolic blood pressure; DBP, diastolic blood
pressure; MBP, mean blood pressure; Mch, mean corpuscular hemoglobin; Mchc,
mean corpuscular hemoglobin concentration; Mcv, mean corpuscular volume; RBC,
red blood cell; Rdw, red blood cell volume distribution width; SPO2, oxygen
saturation; GCS, Glasgow coma score; SOFA, sepsis-related organ failure
assessment; NLR, neutrophil-to-lymphocyte ratio.

FIGURE 1 | Overview of the methods used for data extraction, training, and
testing. MIMIC-IV, Medical Information Mart for Intensive Care-IV; SAH,
subarachnoid hemorrhage.
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Outcomes
Patients diagnosed with subarachnoid hemorrhage died during
hospitalization.
Statistical Analysis
Categorical variables were presented as numbers and
percentages that were analyzed using the χ2 test or the Fisher
exact test, while continuous variables were expressed as mean
± SD or median with interquartile range (IQR), which were
analyzed by an independent t-test or Mann–Whitney U test.
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Deng and He Prediction Model of Subarachnoid Hemorrhage
Each feature has different importance or coef attributes in the
model, and these data determine the importance of the feature
in the model. Recursive feature elimination (RFE) returns the
importance of each feature through the learner (8, 9). Then,
the least important feature is removed from the current
feature set. This step of recursion on the feature set is
repeated until the required number of features is finally
reached. Then, features are then considered in groups of 5–60;
they are organized according to the grade obtained by the
feature selection method. In order to find the best
FIGURE 2 | Correlation diagram between different feature numbers and accuracy

TABLE 2 | Prediction performance of Model1 in the testing set.

Model Accuracy Sensitivity Specificity

LR-Model1 0.902 0.904 0.889

RF-Nodel1 0.920 0.928 0.875

GBM-Model1 0.918 0.928 0.865

NNET-Model1 0.889 0.918 0.753

SVM-Model1 0.902 0.902 0.900

XGB-Model1 0.909 0.936 0.788

Ada-Model1 0.907 0.928 0.804

NB-Model1 0.895 0.926 0.755

PPV, positive predictive values; NPV, negative predictive values; AUC, area under the cur
boosting machine; NNET, artificial neural network; SVM, support vector machine; XGB,
adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white bloo
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hyperparameters, 10-fold cross-validation is used as a
resampling method. In each iteration, every nine folds are
used as a training subset, and the remaining one is processed
to adjust the hyperparameters. In this way, each sample will
participate in the training model and test the model, so that
all data can be used to the greatest extent.

In this study, we divided the data set (ratio 70:30), trained the
model, and verified it. We calculated the median and 95%
confidence interval of the area under the curve (AUC), where
the AUC value of 1.0 indicated complete discrimination and
in the RFE algorithm. RFE, recursive feature elimination.

PPV NPV AUC 95% CI

0.982 0.577 0.883 0.874–0.925

0.976 0.694 0.949 0.894–0.941

0.973 0.693 0.945 0.892–0.939

0.946 0.658 0.888 0.860–0.914

0.984 0.568 0.926 0.874–0.925

0.951 0.739 0.925 0.882–0.931

0.958 0.703 0.936 0.880–0.930

0.944 0.694 0.920 0.866–0.919

ve; CI, confidence interval; LR, logistic regression; RF, random forest; GBM, gradient
eXtreme gradient boosting; Ada, adapting boosting; NB, naïve Bayes; Model1 was
d cell (WBC), heparin use, and SOFA score.
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https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


Deng and He Prediction Model of Subarachnoid Hemorrhage
0.5 indicated no discrimination. Finally, the accuracy, sensitivity,
specificity, negative predictive value, and positive predictive value
of external data verification were calculated. Additionally, we
conducted the decision curve analysis (DCA) to determine the
FIGURE 3 | Area under receiver operating characteristic curve by different Model1
GBM, gradient boosting machine; NNET, artificial neural network; SVM, support ve
naïve Bayes; Model1 was adjusted for GCS, glucose, sodium, chloride, SPO2, bica

TABLE 3 | Prediction performance of Model2 in the testing set.

Model Accuracy Sensitivity Specificity

LR-Model2 0.893 0.910 0.800

RF-Model2 0.930 0.938 0.891

GBM-Model2 0.916 0.935 0.826

NNET-Model2 0.850 0.906 0.622

SVM-Model2 0.891 0.896 0.857

XGB-Model2 0.920 0.941 0.823

Ada-Model2 0.923 0.941 0.840

NB-Model2 0.891 0.924 0.745

PPV, positive predictive values; NPV, negative predictive values; AUC, area under the cur
boosting machine; NNET, artificial neural network; SVM, support vector machine; XGB,
adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white
trauma, lymphocytes, calcium, race, and cerebrovascular disease.

Frontiers in Surgery | www.frontiersin.org 5
clinical usefulness of the included variables by quantifying the
net benefit at different threshold probabilities.

All analyses were performed by the statistical software package
R version 4.1.3 (http://www.R-project.org, The R Foundation).
algorithms in the validation cohort. LR, logistic regression; RF, random forest;
ctor machine; XGB, eXtreme gradient boosting; Ada, adapting boosting; NB,
rbonate, temperature, white blood cell (WBC), heparin use, and SOFA score.

PPV NPV AUC 95% CI

0.962 0.613 0.921 0.864–0.917

0.978 0.739 0.958 0.906–0.950

0.962 0.730 0.959 0.904–0.948

0.906 0.622 0.801 0.818–0.879

0.978 0.540 0.942 0.862–0.916

0.960 0.757 0.950 0.894–0.941

0.964 0.759 0.951 0.898–0.944

0.942 0.685 0.927 0.862–0.916

ve; CI, confidence interval; LR, logistic regression; RF, random forest; GBM, gradient
eXtreme gradient boosting; Ada, adapting boosting; NB, naïve Bayes; Model2 was

blood cell (WBC), heparin use, SOFA score, creatinine, bun, platelet, age, marital,
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FIGURE 4 | Area under the receiver operating characteristic curve by different Model2 algorithms in the validation cohort. LR, logistic regression; RF, random forest;
GBM, gradient boosting machine; NNET, artificial neural network; SVM, support vector machines; XGB, eXtreme gradient boosting; Ada, adapting boosting; NB,
naïve Bayes; Model2 was adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC), heparin use, SOFA score,
creatinine, bun, platelet, age, marital, trauma, lymphocytes, calcium, race, and cerebrovascular disease.

TABLE 4 | Delong test of models.

Model Model P Model Model P

LR-Model1 LR-Model2 0.002 SVM-
Model1

SVM-
Model2

0.222

RF-Model1 RF-Model2 0.124 XGB-
Model1

XGB-
Model2

0.013

GBM-
Model1

GBM-
Model2

0.076 Ada-Model1 Ada-Model2 0.130

NNET-
Model1

NNET-
Model2

<0.001 NB-Model1 NB-Model2 0.377

LR, logistic regression; RF, random forest; GBM, gradient boosting machine; NNET,
artificial neural network; SVM, support vector machine; XGB, eXtreme gradient
boosting; Ada, adapting boosting; NB, naïve Bayes; Model1 was adjusted for GCS,
glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC),
heparin use, and SOFA score. Model2 was adjusted for GCS, glucose, sodium,
chloride, SPO2, bicarbonate, temperature, white blood cell (WBC), heparin use,
SOFA score, creatinine, bun, platelet, age, marital, trauma, lymphocytes, calcium,
race, and cerebrovascular disease.

Deng and He Prediction Model of Subarachnoid Hemorrhage
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In our study, we used the “Caret” R packages to achieve the
process. P values less than 0.05 (two-sided test) were
considered statistically significant.
RESULTS

Baseline Characteristics
Variable values of the SAH patients in MIMIC-IV were
analyzed. A total of 1,787 cases were included in the study, of
which 349 died during hospitalization. It is found from the
data in the table that the infection indexes of the dead
patients are significantly increased, and the coagulation system
has an abnormal function, thrombocytopenia, electrolyte
disorder, and so on. At the same time, the temperature and
oxygen saturation of these patients fluctuate more widely and
are more likely to be accompanied by other diseases (Table 1
and Figure 1).
2022 | Volume 9 | Article 891984
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Deng and He Prediction Model of Subarachnoid Hemorrhage
Variable Importance
Through feature screening by the RFE algorithm, we find that it
has the highest accuracy when 20 features are included
(Figure 2). In order to further simplify the model, we choose
the models with an accuracy similar to the best feature number
to verify the analysis. Therefore, we establish the prediction
model with the characteristic numbers of 10 and 20. Model1
includes GCS, glucose, sodium, chloride, SPO2, bicarbonate,
temperature, white blood cell (WBC), heparin use, and SOFA
score, while Model2 include GCS, glucose, sodium, chloride,
SPO2, bicarbonate, temperature, white blood cell (WBC),
heparin use, SOFA score, creatinine, bun, platelet, age, marital,
trauma, lymphocytes, calcium, race, and cerebrovascular
disease. Then, these variables were used in all the subsequent
analyses for all models in both training and testing sets.

Prediction performance of different models
We use 10 features and 20 features to establish the traditional
regression and ML models, respectively. In simplified Model 1,
the logistic regression (LR), random forest (RF), gradient
boosting machine (GBM), artificial neural network (NNET),
FIGURE 5 | Decision curve analysis of Model1. LR, logistic regression; RF, random
support vector machine; XGB, eXtreme gradient boosting; Ada, adapting boosting
SPO2, bicarbonate, temperature, white blood cell (WBC), heparin use, and SOFA s

Frontiers in Surgery | www.frontiersin.org 7
support vector machine (SVM), eXtreme gradient boosting
(XGB), adapting boosting (ADA), and naïve Bayes (NB)
models obtained AUCs of 0.883, 0.949, 0.945, 0.888, 0.926,
0.925, 0.936, and 0.920, respectively (Table 2 and Figure 3).
In Model 2, the LR, RF, GBM, NNET, SVM, XGB, ADA, and
NB models obtained AUCs of 0.921, 0.958, 0.959, 0.801,
0.942, 0.950, 0.951, and 0.927, respectively (Table 3 and
Figure 4). Through the Delong test, different models
constructed by LR, NNET, and XGB algorithms are different
(Table 4). Comparatively, RF-Model 1 had the highest
predictive performance among these models. The decision
curve is suitable for comparing the net benefits of the best
model and alternative methods of clinical decision-making.
Among the two different models, the net benefit of the model
composed of the GBM algorithm is higher than that of other
models, indicating that the model has a better effect in
predicting the in-hospital mortality of SAH (Figures 5, 6).

Through the importance ranking of the ML algorithm, the
first 10 important characteristics of two different models of RF
are consistent (Figure 7). Moreover, the importance of the
GCS accounted for the highest proportion.
forest; GBM, gradient boosting machine; NNET, artificial neural network; SVM,
; NB, naïve Bayes; Model1 was adjusted for GCS, glucose, sodium, chloride,
core.

2022 | Volume 9 | Article 891984

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


FIGURE 6 | Decision curve analysis of Model2. LR, logistic regression; RF, random forest; GBM, gradient boosting machine; NNET, artificial neural network; SVM,
support vector machine; XGB, eXtreme gradient boosting; Ada, adapting boosting; NB, naïve Bayes; Model2 was adjusted for GCS, glucose, sodium, chloride,
SPO2, bicarbonate, temperature, white blood cell (WBC), heparin use, SOFA score, creatinine, bun, platelet, age, marital, trauma, lymphocytes, calcium, race,
and cerebrovascular disease.

Deng and He Prediction Model of Subarachnoid Hemorrhage
Performance of Models in Subgroup
(Non-Traumatic Subarachnoid
Hemorrhage) Analysis
In order to verify the prediction ability of the model in non-
traumatic subarachnoid hemorrhage, we took the cases
without definite trauma as a new research subgroup (Table 5)
and divided them into a training set and a test set (ratio
70:30). After establishing the model with the simplified
characteristic variables in the training set, the prediction
ability was verified with the test set. Within the training set,
the LR, RF, GBM, NNET, SVM, XGB, Ada, and NB models
were established, and the testing set obtained AUCs of 0.909,
0.951, 0.955, 0.891, 0.929, 0.956, 0.947, and 0.921 (Table 6
and Figure 8). Among the eight models, GBM has the highest
prediction performance and NNET has the worst
generalization ability. As shown in Figure 9, the net benefit of
the GBM model exceeded that of other ML models and LR
regression models, indicating that the model has better
performance in predicting the queue.
Frontiers in Surgery | www.frontiersin.org 8
DISCUSSION

Subarachnoid hemorrhage (SAH) has a high mortality and
disability rate, and many complications may occur after the
onset, while most of the current studies have used a single
feature for prognosis research, ignoring the adverse outcomes
caused by other factors. Recently, a large number of studies
have reported that peripheral blood, biochemical, and other
conventional indicators are associated with the prognosis of
subarachnoid hemorrhage, so we used the indicators
commonly found in the mimic database for model building.

In this study, we use RFE to screen important features. After
simplifying the model, we use the traditional logistic regression
and ML algorithm for modeling. There is basically no significant
difference in the prediction ability between these simplified
models and the best models. At the same time, the simplified
models can reduce the phenomenon of overfitting and are
more suitable for clinical use to reduce unnecessary
workloads. In subgroup analysis, the model established with
the same characteristics has higher AUCs, which also proves
2022 | Volume 9 | Article 891984
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FIGURE 7 | Variable importance in RF models. RF, random forest; Model1 was adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white
blood cell (WBC), heparin use, and SOFA score. Model2 was adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC),
heparin use, SOFA score, creatinine, bun, platelet, age, marital, trauma, lymphocytes, calcium, race, and cerebrovascular disease.

Deng and He Prediction Model of Subarachnoid Hemorrhage
that the model has a better ability to predict the prognosis of
patients with non-traumatic subarachnoid hemorrhage.

From the study, we found a larger association of mortality
with patients’ electrolyte levels, glucose levels, and whether
they used heparin in addition to the traditional GCS. In
addition, the SOFA score also history a significant mortality
factor, and this score mainly describes indicators of
impairment in multiple organ functions (10) (respiratory,
neurological, cardiovascular, hepatic, coagulation, and renal).
The underlying mechanism may be caused by the patient’s
past medical history leading to organ failure or by
coagulopathy due to bleeding.

Impaired consciousness occurs in some patients after SAH. GCS
is assessed by the ability to eye opening, best verbal response, and
best motor response, can easily and rapidly assess the state of
consciousness of a patient, and to identify development of
complications and the potential degree of ultimate recovery (11).
Meanwhile, in our study, glucose level served as an important
factor in the prediction of death. Pppacena et al. found that
higher blood glucose was associated with higher mortality after
SAH (12). Meanwhile, a higher rate of glycemic variability was
also associated with prognosis after SAH (13).

Recently, the neutrophil to lymphocyte ratio (NLR) was
reported by most literature studies to have a correlation with
Frontiers in Surgery | www.frontiersin.org 9
the prognosis of SAH (14), so we also calculated NLR as a
feature. In univariate analysis, there was a clear difference
between the two groups, and after filtering by ML algorithms,
NLR failed to be included in the model as a better feature,
perhaps because of inconsistent outcomes across studies. The
higher importance of leukocytes at the same time is consistent
with the finding by Srinivasan et al. and Chamling et al. that
early elevation of peripheral leukocytes is associated with the
occurrence of DCI and poor functional outcomes (15).

Sodium and chloride are important components of
electrolytes in humans, and 36% of SAH patients present with
hyponatremia after the onset, mainly as a result of cerebral
salt-wasting syndrome (CSWS) and syndrome of inappropriate
antidiuretic hormone secretion (SIADH). Vrsajkov et al. and
Saramma et al. found better outcomes in patients who did not
develop hyponatremia during ICU treatment (16, 17).
Hyponatremia has also been reported to be associated with an
increased risk of vasospasm. This may be the main reason for
the poor prognosis of patients (18).

Low bicarbonate concentrations occur in patients with severe
acute illness. Although the current mechanism is unknown,
increased systemic vascular resistance can occur after SAH,
leading to transient lactic acidosis with the formation of
neurogenic pulmonary edema, resulting in poor patient
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TABLE 5 | Baseline characteristics of patients without traumatic subarachnoid
hemorrhage.

Survival
(n = 741)

Dead in
hospital (n = 240)

P-
value

Baseline characteristics

Age (year) 59 (50, 70) 69 (58, 80) <0.001

Sex (female) 421 (57%) 131 (55%) 0.595

Race

Black 1 (0%) 0 (0%) <0.001

White 22 (3%) 12 (5%)

Hispanic 63 (9%) 13 (5%)

Asian 42 (6%) 8 (3%)

Others 482 (65%) 106 (44%)

Language

English 662 (89%) 205 (85%) 0.126

Unknow 79 (11%) 35 (15%)

Marital

Single 193 (26%) 33 (14%) <0.001

Married 365 (49%) 87 (36%)

Divorced 66 (9%) 13 (5%)

Widowed 49 (7%) 22 (9%)

Unknow 68 (9%) 85 (35%)

Weight 76.87 (65.5, 90.9) 73.2 (61, 90) 0.034

Coexisting disorders

Myocardial infarction 52 (7%) 26 (11%) 0.066

Congestive heart failure 56 (8%) 31 (13%) 0.014

Peripheral vascular
disease

54 (7%) 18 (8%) 0.913

Cerebrovascular disease 741 (100%) 240 (100%) 1.000

Dementia 14 (2%) 3 (1%) 0.494

Chronic pulmonary
disease

102 (14%) 41 (17%) 0.212

Rheumatic disease 13 (2%) 4 (2%) 0.928

Peptic ulcer disease 4 (15) 3 (1%) 0.285

Diabetes 98 (13%) 44 (18%) 0.060

Paraplegia 110 (15%) 40 (17%) 0.499

Renal disease 40 (5%) 34 (14%) <0.001

Malignant cancer 26 (4%) 14 (6%) 0.128

Severe liver disease 7 (1%) 9 (4%) 0.006

Metastatic solid tumor 10 (1%) 8 (3%) 0.062

AIDS 2 (0%) 2 (1%) 0.270

Vital signs (1st 24 h)

Heart rate (min) 75.64 (69.04, 85.4) 80.3 (72.98, 92.05) <0.001

Temperature (°C) 36.96 (36.77, 37.23) 36.95 (36.51, 37.44) 0.265

SBP (mmHg) 124(115, 134) 123(111, 134) <0.001

DBP (mmHg) 65(58, 72) 62(55, 70) <0.001

MBP (mmHg) 82(75, 88) 80(73, 88) <0.001

Respiratory rate (min) 17 (16, 18) 19 (17, 21) <0.001

SPO2 97.31 (96.03, 98.77) 97.92 (95.59, 99.29) 0.104

(continued)

TABLE 5 | Continued

Survival
(n = 741)

Dead in
hospital (n = 240)

P-
value

Laboratory

WBC 10.1 (8.37, 12.03) 13.05 (10.35, 16.2) <0.001

Hematocrit 34.43 (30.83, 38.3) 33.55 (29.34, 37.53) 0.062

Hemoglobin 11.53 (10.2, 12.9) 11.1 (9.41, 12.7) 0.007

Mch 30.47 (29.43, 31.66) 30.5 (29.1, 31.72) 0.775

Mchc 33.4 (32.58, 34.28) 33.1 (32.06, 33.91) <0.001

Mcv 91 (87, 94) 92 (88, 95) 0.018

RBC 3.81 ± 0.61 3.72 ± 0.75 0.088

Rdw 13.57 (12.99, 14.54) 14.35 (13.47, 16.08) <0.001

Platelet 243.09 (199.5, 306.2) 205.56 (147.31,
261.82)

<0.001

Neutrophils 78.2 (73.2, 84.6) 79.88 (77.59, 86.4) 0.003

Lymphocytes 13.93 (9.4, 17.3) 12.45 (6.53, 14.2) <0.001

Monocytes 5.4 (3.6, 6.3) 5.86 (4, 6) 0.169

Eosinophils 0.8 (0.3, 1.3) 0.7 (0.2, 1.1) <0.001

Basophils 0.35 (0.2, 0.48) 0.33 (0.2, 0.36) <0.001

Bicarbonate 24.15 (22.76, 25.86) 22.64 (19.8, 24.63) <0.001

Bun 13.33 (10.5, 18) 19.86 (14.63, 30.21) <0.001

Calcium 8.67 (8.42, 8.96) 8.45 (8.09, 8.67) <0.001

Chloride 104 (102, 106.32) 106 (103.27, 111.58) <0.001

Creatinine 0.71 (0.58, 0.87) 0.95 (0.69, 1.42) <0.001

Glucose 119.21 (108.71,
134.28)

153.32 (131.89,
181.5)

<0.001

Sodium 139.3 (137.44,
141.33)

141.17 (139.08,
145.62)

<0.001

Potassium 3.89 (3.74, 4.1) 3.99 (3.76, 4.28) 0.003

INR 1.1 (1.04, 1.19) 1.17 (1.1, 1.35) <0.001

PT 12.28 (11.5, 13.2) 13.04 (11.9, 14.74) <0.001

APTT 28.48 (26.29, 31.48) 29.04 (26.29, 35.11) 0.033

NLR 7.39(4.28, 9.05) 10.29(5.46, 13.21) <0.001

Therapy

Heparin 639 (86) 104 (43) <0.001

Antibiotic 435 (59) 156 (65) 0.098

Scoring system

SOFA 3 (2, 5) 6 (4, 8.25) <0.001

GCS 13 (9, 14) 8 (3, 15) 0.002

AIDS, acquired immunodeficiency syndrome; SBP, systolic blood pressure; DBP,
diastolic blood pressure; MBP, mean blood pressure; Mch, mean corpuscular
hemoglobin; Mchc, mean corpuscular hemoglobin concentration; Mcv, mean
corpuscular volume; RBC, red blood cell; Rdw, red blood cell volume distribution
width; SPO2, oxygen saturation; GCS, Glasgow coma score; SOFA, sepsis-related
organ failure assessment; and NLR, neutrophil-to-lymphocyte ratio.
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Frontiers in Surgery | www.frontiersin.org 10
outcomes reported in a case study (19), Satoh et al. found that
patients presenting with neurogenic pulmonary edema had
lower bicarbonate concentrations (20). In addition, Stephan
et al. found that one in five patients had abnormally low
bicarbonate levels on admission and a poor prognosis (21).
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TABLE 6 | The prediction performance of the non-traumatic subarachnoid hemorrhage prediction model in the test set.

Model Accuracy Sensitivity Specificity PPV NPV AUC 95%CI

LR-model 0.905 0.926 0.817 0.956 0.720 0.909 0.867–0.935

RF-model 0.902 0.943 0.760 0.931 0.794 0.951 0.864–0.932

GBM-model 0.908 0.933 0.809 0.952 0.750 0.955 0.871–0.938

NNET-model 0.873 0.930 0.689 0.907 0.750 0.891 0.832–0.910

SVM-model 0.892 0.921 0.774 0.943 0.706 0.929 0.853–0.924

XGB-model 0.899 0.943 0.750 0.927 0.794 0.956 0.860–0.930

Ada-model 0.892 0.938 0.736 0.923 0.779 0.947 0.853–0.924

NB-model 0.877 0.934 0.693 0.907 0.764 0.921 0.835–0.911

PPV, positive predictive values; NPV, negative predictive values; AUC, area under the curve; CI, confidence interval; LR, logistic regression; RF, random forest; GBM, gradient
boosting machine; NNET, artificial neural network; SVM, support vector machine; XGB, eXtreme gradient boosting; Ada, adapting boosting; NB, naïve Bayes; Model1 was
adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC), heparin use, and SOFA score.

FIGURE 8 | Area under the receiver operating characteristic curve of different models of non-traumatic subarachnoid hemorrhage in the validation cohort. LR, logistic
regression; RF, random forest; GBM, gradient boosting machine; NNET, artificial neural network; SVM, support vector machine; XGB, eXtreme gradient boosting;
Ada, adapting boosting; NB, naïve Bayes; the model was adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC),
heparin use, and SOFA score.

Deng and He Prediction Model of Subarachnoid Hemorrhage
Our study found that the use of heparin in SAH patients was
able to improve outcomes, which was consistent with the
findings of Post et al. (22) that the use of heparin was able to
Frontiers in Surgery | www.frontiersin.org 11
reduce mortality after SAH. The concomitant use of low-dose
heparin may reduce the risk of thrombosis and reduce the
poor prognosis resulting from thrombus shedding (23, 24).
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FIGURE 9 | DCA curves of different models of non-traumatic subarachnoid hemorrhage. LR, logistic regression; RF, random forest; GBM, gradient boosting
machine; NNET, artificial neural network; SVM, support vector machine; XGB, eXtreme gradient boosting; Ada, adapting boosting; NB, naïve Bayes; the model
was adjusted for GCS, glucose, sodium, chloride, SPO2, bicarbonate, temperature, white blood cell (WBC), heparin use, and SOFA score.

Deng and He Prediction Model of Subarachnoid Hemorrhage
In summary, the characteristic factors screened by RFE in
our study were all investigated in SAH; meanwhile, they were
all correlated with prognosis. The strength of this study is that
the method of ML was used to combine the relevant factors to
predict the mortality of SAH, while feature acquisition was
simple and able to be acquired within a smaller hospital.
Patients with SAH are sicker, and early and accurate
prediction of mortality is able to provide clinicians with more
time to adjust the corresponding treatment options, while, at
the same time, in clinical work, further treatment should be
given to the related diseases. In addition, the validation set
was adopted in this study to verify the reliability of the model
so that it had better reliability. Finally, most of the data in this
study come from publicly available databases, and their data
have good reliability.

Our study has limitations, which are similar to most studies
related to public databases. First, the MIMIC database cannot
provide the relevant imaging examination of cases. Therefore,
we cannot perform an M-Fisher score on patients to
establish a model nor can we evaluate whether patients have
obvious trauma information and the nature of aneurysms.
Frontiers in Surgery | www.frontiersin.org 12
Second, as a public database, the MIMIC database may cause
data errors due to the errors of researchers or the database
itself when extracting data. In addition, there is the
possibility of SAH error classification. In order to reduce the
deviation caused by inaccurate code, we adopt the extensively
used ICD-9 and -10 codes. Third, as with all potential
retrospective studies, there are unmeasured confounding
factors that lead to selection bias. Finally, although our study
explored the mortality of SAH in the intensive care unit,
other results, such as long-term prognosis and complications,
also need further study.
CONCLUSION

This study suggests that some important features may be related
to the prognosis after SAH. The ML model deals with a large
number of variables and then distinguishes patients who die
in hospitals to promote the implementation of timely and
effective treatment. In the future, further verification of its
clinical application value will be necessary.
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