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Aim: Postoperative pulmonary complications (PPCs) can increase the risk of
postoperative mortality, and the geriatric population has high incidence of
PPCs. Early identification of high-risk geriatric patients is of great value for
clinical decision making and prognosis improvement. Existing prediction
models are based purely on structured data, and they lack predictive
accuracy in geriatric patients. We aimed to develop and validate a deep
neural network model based on combined natural language data and
structured data for improving the prediction of PPCs in geriatric patients.
Methods: We consecutively enrolled patients aged ≥65 years who underwent
surgery under general anesthesia at seven hospitals in China. Data from the
West China Hospital of Sichuan University were used as the derivation
dataset, and a deep neural network model was developed based on
combined natural language data and structured data. Data from the six other
hospitals were combined for external validation.
Results: The derivation dataset included 12,240 geriatric patients, and 1949
(15.9%) patients developed PPCs. Our deep neural network model
outperformed other machine learning models with an area under the
precision-recall curve (AUPRC) of 0.657(95% confidence interval [CI], 0.655–
0.658) and an area under the receiver operating characteristic curve
(AUROC) of 0.884(95% CI, 0.883–0.885). The external dataset included 7579
patients, and 776(10.2%) patients developed PPCs. In external validation, the
AUPRC was 0.632(95%CI, 0.632–0.633) and the AUROC was 0.889(95%CI,
0.888–0.889).
Conclusions: This study indicated that the deep neural network model based
on combined natural language data and structured data could improve the
prediction of PPCs in geriatric patients.
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PPCs, Postoperative pulmonary complications; AUPRC, area under the precision-recall curve; AUROC,
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Introduction

More than 300 million surgeries are performed worldwide

each year (1). Around one-third of elective surgeries are

performed on patients aged over 65 years (2). Compared with

younger adults, older individuals are more prone to

postoperative complications because of age-related

degenerative physiological characteristics (3).

Postoperative pulmonary complications (PPCs), including

respiratory infection, atelectasis, and respiratory failure, are

common, and even mild PPCs are associated with a

prolonged hospital stay and increased postoperative mortality

(4–6). The incidence of PPCs in major surgery ranges from

1% to 23% depending on different PPCs definitions and

surgical specialties (7), and the postoperative mortality rate of

patients with PPCs varies from 14% to 48% (8–10). Hospital

stay is prolonged by 13–17 days in patients with PPCs (7).

For the management of PPCs, preventive strategies may be

more effective than treating established PPCs (11).

Preoperatively identifying the risk of PPCs is critical for

guiding preventive interventions to reduce the risk and

incidence of PPCs (12).

Most risk assessment tools for PPCs were developed using

traditional logistic regression (13), such as the Assess

Respiratory Risk in Surgical Patients in Catalonia (ARISCAT)

risk score (14). Traditional logistic regression constrains the

number of input risk factors, which may omit potential

predictors and limit the predictive accuracy (15). Machine

learning algorithms are advantageous in that they can identify

hidden insights from large datasets (16), which can help to

build more accurate prediction models for PPCs (13).

Recent studies (17–19) have demonstrated the superiority of

machine learning algorithms in predicting PPCs. For example,

Xue et al. (19) used structured perioperative data to predict

five postoperative complications, including pneumonia. To

further improve predictive performance, overcoming several

methodological deficiencies may be effective. First, most

models are based purely on structured data, and natural

language data are not generally included. Underutilizing

natural language data in model development may cause loss of

clinical information and limit predictive accuracy (20). Second,

few predictive models have been developed specifically for

geriatric patients. Geriatric patients are at a high risk of

developing PPCs (9). Considering age-related physiological

characteristics, predictive models based on data from the

general patient population may be unsuitable for geriatric

patients (21). Third, most studies lack external validation; thus,

it is uncertain whether existing models could achieve

comparable predictive performance at other institutions (13).

In this study, we aimed to develop and validate a deep

neural network model to predict PPCs in geriatric patients

based on combined natural language data and structured data.
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We hypothesized that this model could accurately predict

patients who are at a high risk of developing PPCs.
Method

Data source

This study followed the Transparent Reporting of a

Multivariable Prediction Model for Individual Prognosis or

Diagnosis (TRIPOD) guidelines (22). The study protocol was

approved by the ethics committee of the West China Hospital

of Sichuan University (2019-473) with a waiver of informed

consent. The study is registered at www.chictr.org.cn

(ChiCTR1900025160). In this study, we prospectively collected

data from seven hospitals in China, including the West China

Hospital of Sichuan University, the Second Affiliated Hospital

of Chongqing Medical University, the Wuhan Union

Hospital, the Guangdong Provincial People’s Hospital, the

First Affiliated Hospital of Kunming Medical University, the

First People’s Hospital of Zhaoqing, and the Qingyuan

People’s Hospital. Patients aged ≥65 years who underwent

surgery under general anesthesia between 25th June 2019 and

31st December 2021 were enrolled. If patients underwent

multiple surgeries during the study period, only the first

surgery was included in the analysis. Related patient data were

collected by trained residents on the day before surgery. The

attending physician and the resident would re-check the

collected information before surgery. If any errors or

omissions existed, the clinician would make corrections or

supplement the information. Preoperative laboratory tests

were automatically retrieved from the laboratory information

system. All laboratory tests were performed within 7 days

before surgery. If a patient had more than one result for the

same test, the most recent preoperative result was used in the

analysis. Preoperative clinical data included demographic

characteristics, preoperative vital signs, laboratory tests and

comorbidities. Supplementary Table S1 shows the 127

variables included in our study.
Postoperative follow-up

To ascertain the presence of PPCs, we conducted

prospective patient follow-up. Research personnel performed

follow-up with patients at different time points, including

24 h after surgery, 48 h after surgery, before hospital

discharge, and on the 30th day after surgery. If a patient

developed PPCs, we stayed in contact with the patient until

recovery or death. Throughout each patient’s hospital stay, the

research personnel conducted bedside follow-up visits, and

after hospital discharge, patients were contacted via telephone.
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Outcome definition

The outcome was the incidence of any PPC within 30 days

after surgery. PPCs included unplanned mechanical ventilation,

atelectasis, pulmonary congestion, respiratory infection, pleural

effusion, pneumothorax, and respiratory failure.

Supplementary Table S2 shows the definition of each PPC.
Data preprocessing and model
development

Variables are presented as numerical, categorical, or free-

text variables. Free-text data contain the descriptions of

principal diagnoses and comorbidities. Missing values were

imputed by 0 s, with indicators representing missingness,

which regarded missing values as a separate group. Numerical

variables were transformed to categorical variables using 5-

bins equal-width scaling. Data from patients admitted to the

West China Hospital of Sichuan University were used as the

derivation dataset, and a deep neural network model was

trained. Five random shuffles of five-fold cross-validation were

performed to divide the training set and validation set. In

each iteration, a different stratified fold was used for model

evaluation, and model training was performed on the

remaining folds.

The number of patients without PPCs was much higher

than the number of patients with PPCs, which led to class

imbalance. Cross-entropy loss function was used to overcome

this issue by enhancing the accurate prediction of positive

examples. Early stopping and dropout were used to avoid

overfitting. Early stopping refers to ceasing model training

when the validation loss starts to increase. A patience of 40

epochs was set for early stopping. Dropout is a method to

prevent co-adapting by removing neurons from the network

(23). In our study, dropout with a probability of 0.1 was

applied to all layers.
Model comparison

Our deep neural network model was compared with several

extensively used classifiers, including Elastic Net logistic

regression, support vector machine, random forest, gradient

boosting machine, and extreme gradient boosting.

To evaluate and compare the different models, we calculated

performance metrics using the validation fold in each iteration

and took the average over all repetitions. Performance metrics

included sensitivity (recall), precision, F1 score, specificity,

accuracy, area under the precision-recall curve (AUPRC), and

area under the receiver operating characteristic curve

(AUROC). Sensitivity reflects the ability to capture positive
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examples (24). In circumstances with an imbalanced class

distribution, the precision and sensitivity can provide more

direct insight into predictive performance (25). The F1 score

is the harmonic mean of the precision and sensitivity. The

AUROC is widely used to estimate the performance of binary

classifiers. However, the AUROC can generate misleading

conclusions about model performance for classifiers

established on imbalanced datasets (26). The AUPRC gives no

credit for predicting true negatives, and can provide a more

accurate interpretation of a model’s actual performance (25).

In this study, we chose the F1 score and the AUPRC as the

main evaluation metrics for model comparison. The

calibration ability was measured using the Hosmer–Lemeshow

calibration plot.

The overall architecture of our deep neural network model

is depicted in Supplementary Figure S1. To indicate the risk

level, we divided patients into three groups with a low,

intermediate, and high risk of PPCs based on the predicted

probability. The optimal cutoff values were confirmed using

the minimum description length principle (MDLP) (27). The

chi-square test was performed to compare the incidence of

PPCs between the three groups.

The deep neural network model was implemented using

PyTorch. Machine learning models were developed in Python

3.8.3 using the scikit-learn library. A P value of <0.05 was

considered statistically significant.
Feature importance

In our model, Multi-Head Attention (28) in the

Transformer layer could set the weight for each variable. The

magnitude of the weight indicates the degree to which the

input variable affects the prediction. To gain insight into the

workings of our model, we calculated the feature weights for

all patients in the derivation dataset using Multi-Head

Attention. To illustrate individual risk prediction, we

presented two examples and visualized the variable

importance in these individual predictions.
External validation

Data from the other six participating hospitals were

combined and used for external validation. These hospitals

adopted the same preoperative interview and postoperative

follow-up system as the West China Hospital of Sichuan

University. We extracted the same features as mentioned

above with the exception of some laboratory tests, because we

could not retrieve these results from their laboratory

information systems. Supplementary Table S1 shows the

variables included in the external dataset.
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Previous studies indicated the importance of local

calibration considering institution-specific differences in

patient populations and surgical practices (26, 29, 30).

Demonstrating a generalizable method may be more

reasonable than developing a globally used predictive model

(26). To validate our overall methodology, we applied the

same training method to recalibrate the deep neural network

model based on the combined external dataset.
Results

The derivation dataset included 12,240 geriatric patients at

the West China Hospital of Sichuan University between 25th

June 2019 and 30th April 2021, the majority of whom were

men (56.4%). Supplementary Table S3 shows summary

statistics for patients’ characteristics. Of these patients, 1949

(15.9%) patients developed PPCs, including 533(4.4%) with

unplanned mechanical ventilation, 526(4.3%) with atelectasis,

32(0.3%) with pulmonary congestion, 1009(8.2%) with

respiratory infection, 1267(10.4%) with pleural effusion, 217

(1.8%) with pneumothorax, and 163(1.3%) with respiratory

failure.
Comparison of the deep neural network
model with other models

Compared with other widely used classifiers, the deep

neural network model achieved the greatest sensitivity of

0.603(95% confidence interval [CI], 0.602–0.604), the highest

F1 score of 0.641(95%CI, 0.640–0.642), the greatest AUPRC
TABLE 1 Performance metrics of the deep neural network model and other

Model Precision
(95% CI)

Sensitivity
(95% CI)

F1 score
(95% CI)

Extreme gradient
boosting

0.675 (0.674–
0.676)

0.502 (0.501–0.502) 0.575 (0.575–
0.576)

Gradient boosting
machine

0.687 (0.686–
0.687)

0.519 (0.519–0.520) 0.591 (0.591–
0.592)

Random Forest 0.695 (0.687–
0.698)

0.513 (0.512–0.515) 0.590 (0.589–
0.592)

Support vector
machine

0.704 (0.703–
0.705)

0.208 (0.207–0.208) 0.321 (0.320–
0.322)

Elastic Net logistic
regression

0.682 (0.681–
0.683)

0.318 (0.318–0.319) 0.434 (0.433–
0.434)

Deep neural
network

0.684 (0.682 –

0.686)
0.603 (0.602–0.604) 0.641 (0.640–

0.642)

In external validation

Deep neural
networka

0.610 (0.609–
0.610)

0.596 (0.595–0.596) 0.602 (0.602–
0.603)

Abbreviations: CI, confidence interval; AUPRC, area under the precision-recall curve;
aThe deep neural network model retrained on the external dataset.
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value of 0.657(95%CI, 0.655–0.658), and the greatest AUROC

value of 0.884(95%CI, 0.883–0.885) (Table 1). Hosmer-

Lemeshow calibration plot (P = 0.80) showed good agreement

between the deep neural network model-based prediction and

observed outcome (Figure 1).

To indicate the risk level, patients were stratified into three

groups with a low, intermediate, and high risk of PPCs based on

the risk predicted probability of the deep neural network model.

The optimal cutoff values of the risk predicted probability were

confirmed by MDLP (27) (low risk: ≤0.3; intermediate risk:

0.3 < risk predicted probability ≤0.7; high risk: >0.7).

The incidence of PPCs was significantly different between

the three groups (low-risk group: 5.5%; intermediate-risk

group: 42.4%; high-risk group: 76.6%; P < 0.001 for all,

Supplementary Table S4).
Feature importance

For patients in the derivation dataset, the top 10 most

important variables in the deep neural network model were

acidophil count, triglyceride, fibrinogen, functional capacity,

platelet count, acidophil percentage, neck movement test,

hydroxybutyrate dehydrogenase, mean corpuscular hemoglobin

concentration, and mean corpuscular hemoglobin (Table 2).

We present two examples to illustrate individual risk

prediction. These two patients were in the high-risk group

and actually developed PPCs. Table 2 shows the variables that

greatly contributed to individual prediction in these two

patients. For patient A, the acidophil count contributed the

most to risk prediction, with patient A having a high

acidophil count (2.10 × 109/L; normal range: 0.02–0.52 × 109/
machine learning models.

AUPRC
(95% CI)

Specificity
(95% CI)

Accuracy
(95% CI)

AUROC
(95% CI)

0.605 (0.604–
0.605)

0.954 (0.953–0.954) 0.882 (0.881–
0.882)

0.866 (0.866–
0.867)

0.620 (0.620–
0.621)

0.955 (0.954–0.955) 0.885 (0.885–
0.886)

0.878 (0.878–
0.879)

0.628 (0.621–
0.630)

0.955 (0.954–0.955) 0.886 (0.885–
0.886)

0.870 (0.868–
0.871)

0.559 (0.558–
0.559)

0.983 (0.983–0.984) 0.860 (0.859–
0.860)

0.839 (0.838–839)

0.571 (0.570–
0.571)

0.971 (0.971–0.972) 0.867 (0.867–
0.868)

0.841 (0.840–
0.841)

0.657 (0.655–
0.658)

0.943 (0.941–0.944) 0.885 (0.884–
0.887)

0.884 (0.883–
0.885)

0.632 (0.632–
0.633)

0.930 (0.929–0.930) 0.877 (0.877–
0.878)

0.889 (0.888–
0.889)

AUROC, area under the receiver operating characteristic curve.
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FIGURE 1

Hosmer-Lemeshow calibration plot of the deep neural network
model based on the derivation dataset. Values on the x-axis are
deciles of predicted risk of postoperative pulmonary complications
and values on the y-axis are rates of postoperative pulmonary
complications for each decile. The result of Hosmer–Lemeshow
test (P= 0.80) showed good agreement between the deep neural
network model-based prediction and observed outcome.

Peng et al. 10.3389/fsurg.2022.976536
L). For patient B, triglyceride was the most important variable in

risk prediction, with patient B having a high triglyceride

concentration of 7.35 mmol/L (normal range: 0.29–

1.83 mmol/L). Patient B’s acidophil count was within the

normal range (0.02 × 109/L) and was not important in this

prediction, ranking 105th, while patient A’s triglyceride

concentration was normal (0.94 mmol/L) and was not

important in this prediction, ranking 123rd.
External validation

The combined external dataset included 7579 geriatric

patients from 23rd April 2021 to 31st December 2021. A total

of 776 patients (10.2%) developed PPCs, including 302 (4.0%)

with unplanned mechanical ventilation, 240 (3.2%) with

atelectasis, 2 (0.03%) with pulmonary congestion, 513 (6.8%)

with respiratory infection, 506 (6.7%) with pleural effusion, 4

(0.05%) with pneumothorax, and 112 (1.5%) with respiratory

failure. Supplementary Table S5 shows the summary statistics

for patients’ characteristics in the combined dataset. We

applied the same methodology to retrain the deep neural

network model based on the external dataset. Although some

laboratory tests were not included in the external dataset, the

deep neural network model maintained good predictive

performance, with an F1 score of 0.602(95% CI, 0.602–0.603),

an AUPRC of 0.632(95% CI, 0.632–0.633), and an AUROC of

0.889(95% CI, 0.888–0.889) (Table 1). Hosmer-Lemeshow

calibration plot (P = 0.78) showed good agreement between

the deep neural network model-based prediction and observed

outcome (Figure 2).
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Discussion

PPCs are associated with a prolonged hospital stay and

increased postoperative mortality (31). Early identification of

high-risk patients could help to guide preventive interventions

to improve prognosis. This study showed that the deep neural

network model based on combined natural language data and

structured data could improve the prediction of PPCs in

geriatric patients. Patients were stratified into three risk

groups to indicate the risk level, and the incidence of PPCs

was significantly different among the three groups.

Geriatric patients are at a high risk of developing PPCs (9).

In other studies (17–19), the data of older and younger patients

have often been pooled together. Considering age-related

physiological characteristics, ignoring age categories can cause

inaccurate parameter estimation (21) and may decrease the

discrimination ability in geriatric patients. Current assessment

tools that are based on pooled data often underestimate risk

in geriatric patients (21). In this study, we specifically focused

on the geriatric population to improve the predictive accuracy

in this population specifically.

Deep learning has the advantage of learning directly from

natural language data without the need for manual processing

(32, 33). In our study, natural language data contained

descriptions about principal diagnoses and comorbidities.

Considering that International Classification of Diseases codes

can only be acquired at discharge, they are not available for

preoperative prediction (24), and natural language data could

supply this clinical information. In a clinical setting, correctly

identifying patients who are at risk of PPCs is critical, so a

model with high sensitivity is appropriate (34). Previous studies

on predicting PPCs have achieved sensitivities in the range of

0.321–0.526 (4, 18, 19). Compared with previous studies and

other models in our study, the deep neural network model

achieved the highest sensitivity of 0.603, which indicated that

the deep neural network model based on combined natural

language data and structured data could more accurately

identify patients with PPCs. To process natural language data,

we performed embedding using MedBERT and mean-pooling,

instead of traditional one-hot encoding. With one-hot

encoding, natural language data are actually transformed into

binary variables according to the presence or absence of

particular words (26), which may hinder the learning of

potential relationships between descriptions (32). Embedding

does not regard two principal diagnoses as completely different

categories. Instead, embedding enable all variables to be present

in a multi-dimensional space, and similar features could be

mapped next to each other. For example, a cholecystolithiasis is

closer to a cholecystolithiasis with chronic cholecystitis than an

acute cholecystitis in the embedding space.

In terms of individual predictions, Multi-Head Attention

(28) in the deep neural network model was used to set the
frontiersin.org
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FIGURE 2

Hosmer-Lemeshow calibration plot of the deep neural network
model based on the external dataset. Values on the x-axis are
deciles of predicted risk of postoperative pulmonary complications
and values on the y-axis are rates of postoperative pulmonary
complications for each decile. The result of Hosmer–Lemeshow
test (P= 0.78) showed good agreement between the deep neural
network model-based prediction and observed outcome.

TABLE 2 Top ten most important variables in the deep neural network model for patients in the derivation dataset and the two case examples.

Patients in the derivation dataset Patient A Patient B

Variable Importance Variable Importance Variable Importance

Acidophil count 65.23 Acidophil count 50.89 Triglyceride 50.99

Triglyceride 61.93 Difficult ventilation history 50.02 COPD 50.19

Fibrinogen 60.73 COPD 50.01 Difficult ventilation history 49.98

Functional capacity 59.93 Airway obstruction 49.96 Airway obstruction 49.79

Platelet count 58.78 Respiratory infection within last 1
month

49.70 Free text record 49.48

Acidophil percentage 57.76 Low activity 49.63 Difficult intubation history 49.45

Neck movement test 57.68 Systolic blood pressure 49.45 MCH 49.30

Hydroxybutyrate
dehydrogenase

57.52 Free text record 49.23 Upper digestive tract hemorrhage within
last 1 week

49.28

MCHC 57.44 Total bilirubin 49.02 NYHA classification 49.27

MCH 57.25 Monocyte percentage 48.94 Decreased endurance 49.09

Abbreviations: COPD, chronic obstructive pulmonary disease; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; NYHA,

New York Heart Association.

Peng et al. 10.3389/fsurg.2022.976536
corresponding weight for each variable according to the patient-

specific input value, instead of setting a fixed weight for each

variable, as is the case with logistic regression. In the case

example, patient A had a high acidophil count, and acidophil

count contributed the most to the high risk of PPCs in

patient A; thus, it was set the heaviest weight in this

prediction. Patient B had a normal acidophil count, but the

patient’s triglyceride concentration was high and contributed

the most to the high risk of PPCs; thus, triglyceride was set

the heaviest weight in this individual prediction. Patient-

specific characteristics may lead to more accurate individual
Frontiers in Surgery 06
predictions. After calculating the predictive probability and

corresponding risk level, the model could output the variables

that contributed to individual prediction. Recognizing these

important variables may assist clinicians in early identification

of potential factors, which could help to decide the treatment

protocol to prevent PPCs and mitigate risk (35).

With ordinary external validation, the model is directly

applied to a different dataset. In fact, local-specific parameters

in certain models may not be generalizable to other

populations considering hospital-specific patient populations

and surgical practices (29, 30). Previous studies have

emphasized the importance of recalibration to overcome this

limitation (26, 29, 30). In our study, we validated the overall

modeling methodology by retraining the deep neural network

model based on the external dataset. Although some

laboratory tests were not included in the external dataset, the

recalibrated deep neural network model maintained good

predictive performance, which indicated that our methodology

was generalizable to other institutions, even if they could not

collect complete features.

Our study has several limitations that should be noted.

First, although the model could output variables that

contributed greatly to individual predictions, the association

between important features and outcome was not necessarily

causation. We cannot conclude whether guiding the treatment

protocol according to these variables could improve

prognosis. Further research is necessary to quantify the

benefit of this model in guiding interventions and improving

patients’ outcomes. Second, limited by the small number of

patients in each group (divided by surgery type), a subgroup

analysis based on the specific surgery type was not

conducted. Thus, the model’s predictive ability may be

limited in some subspecialties.
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In conclusion, this study indicated that the prediction of

PPCs in geriatric patients could be improved by deep neural

network model based on combined natural language data and

structured data. The overall modeling methodology was

generalizable to other institutions; thus, it could be used to

construct their own predictive models.
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