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Background: The aim of this study was to develop natural language
processing (NLP) algorithms to conduct automated identification of
incidental durotomy, wound drains, and the use of sutures or skin clips
for wound closure, in free text operative notes of patients following
lumbar surgery.
Methods: A single-centre retrospective case series analysis was conducted
between January 2015 and June 2022, analysing operative notes of
patients aged >18 years who underwent a primary lumbar discectomy
and/or decompression at any lumbar level. Extreme gradient-boosting NLP
algorithms were developed and assessed on five performance metrics:
accuracy, area under receiver-operating curve (AUC), positive predictive
value (PPV), specificity, and Brier score.
Results: A total of 942 patients were used in the training set and 235
patients, in the testing set. The average age of the cohort was 53.900 ±
16.153 years, with a female predominance of 616 patients (52.3%). The
models achieved an aggregate accuracy of >91%, a specificity of >91%, a
PPV of >84%, an AUC of >0.933, and a Brier score loss of ≤0.082. The
decision curve analysis also revealed that these NLP algorithms possessed
great clinical net benefit at all possible threshold probabilities. Global and
local model interpretation analyses further highlighted relevant clinically
useful features (words) important in classifying the presence of each entity
appropriately.
Conclusions: These NLP algorithms can help monitor surgical performance
and complications in an automated fashion by identifying and classifying the
presence of various intra-operative elements in lumbar spine surgery.
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AUC, area under the receiver-operating curve; CI, confidence intervals; CPT, current procedural
terminology; DCA, decision curve analysis; ICD, international statistical classification of diseases; NLP,
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multivariable prediction models for individual prognosis or diagnosis; XGBoost, extreme gradient
boosting.
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1. Introduction

Administrative, billing, and coding tasks are a major source of

financial and economic burden on healthcare systems worldwide

(1). With the increase in healthcare and labour costs in recent

years, major health systems are shifting towards minimising

financial expenditure while maximising patient care. A key

component in this process is optimising the clinical coding

pipeline by reducing the burden on labour with limited manual

review and intervention. The clinical coding process involves

transforming medical records, usually presented as free text

written by clinicians, into structured codes using the standardised

Current Procedural Terminology (CPT) and the International

Statistical Classification of Diseases (ICD) codes. The purpose of

such clinical coding is to characterise the use of hospital services,

document patient outcomes, and quantify clinical and surgical

practices to allow for optimal financial reimbursement and to

inform healthcare service planning and policy (2, 3).

Natural language processing (NLP) is a domain of machine

learning that focuses on the analysis of structured and

unstructured free text. NLP techniques are well suited for clinical

coding due to their ability to analyse free text in real time with

great precision. In the United Kingdom, the General Medical

Council states that maintaining accurate and detailed clinical

documentation is essential across all specialties for good medical

practice (4), in addition to providing information for research,

audits, and medicolegal records (5, 6). The current epidemic of

defensive practice due to fear of medicolegal repercussions has

had an extensive impact on neurosurgical documentation

practices, resulting in more detailed documentation of procedures

(7). Despite guidelines being available for the documentation of

operative notes (8), many studies have demonstrated the

inadequate quality of operative notes with much salient

information missing, including the nature of the surgery,

indication of surgery, estimated blood loss, incidence of

complications, and postoperative instructions (6, 9–11). Such

non-standardised documentation can lead to greater manual

review times, making the extraction of relevant information more

labour-intensive. The creation of accurate NLP algorithms

trained on a large number of heterogeneous documents can be

used to supplement the current clinical coding process, reducing

the need for extensive and tedious manual reviews.

Spine surgery comprises the majority of operative cases in

neurological surgery. Incidental durotomy, lumbar drains, and

type of skin closure (sutures or clips) are important elements

included in operative notes and are associated with patient

outcomes, and therefore accurate documentation is vital to

inform best clinical practice (12–16). At present, CPT and ICD-

10 codes are used to identify incidental durotomies and “dural

tears” within operative notes. However, these modalities have

been shown to lack sensitivity, resulting in the underreporting of

these complications (17–19). To the best of our knowledge, no

such codes exist for the identification of the use of drains or

wound closure technique used. Hence, the aim of this study is to

develop NLP algorithms to conduct automated surveillance for
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identification of incidental durotomy, wound drains, and the

use of sutures or skin clips for wound closure, in free text

operative notes of patients following lumbar surgery.

Towards this, in this study we attempted to evaluate if NLP

techniques could be harnessed to analyse operative notes to

detect the three important elements of spine surgery: incidental

durotomy, the use of wound drains, and type of skin closure

(suture or clips).
2. Materials and methods

2.1. Guidelines

The following guidelines were followed in this study: the

Journal of Medical Internet Research (JMIR) Guidelines for

Developing and Reporting Machine Learning Predictive Models

in Biomedical Research, and the Transparent Reporting of

Multivariable Prediction Models for Individual Prognosis or

Diagnosis (TRIPOD) checklist (20, 21).
2.2. Data source and outcome measure

A single tertiary neurosurgical centre retrospective case series

analysis was conducted for all patients who underwent lumbar

spine surgery between January 2015 and June 2022. The

inclusion criteria for this study were as follows: (1) patient age

more than or equal to 18 years, (2) patient underwent a primary

lumbar discectomy and/or decompression at any lumbar level,

and (3) availability of index surgery operation notes in our

electronic health records. The exclusion criteria included any

patients with incomplete data and patients who underwent

primary lumbar discectomy and/or fusion. The hospital’s

electronic patient records were examined and a total of 1,177

patients were identified. Each patient’s operation note was then

blinded and extracted in an anonymised manner. Our study was

approved by the local hospital’s institutional review board

because of the retrospective and anonymised operative note data

collection method. The study was registered as a health

improvement project with the requirement for patient consent

being waived. All methods were conducted in accordance with

local and national guidelines and regulations.

Along with the operation notes, the age (continuous) and

gender of the patient (male or female) were also collected as

independent variables. There were three primary outcomes for

each operation note: (1) the presence of intra-operative

durotomies (binary outcome), (2) the placement of wound drains

(binary outcome), and (3) the use of clips or sutures for skin

closure (binary outcome). The terms durotomies and dural tears

are used interchangeably in this paper. Each patient’s operation

note was reviewed and annotated by blinded researchers (LM

and SB) who were not involved in the care of these patients. The

results of each outcome category were then verified by the senior

author.
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2.3. Data pre-processing

The data acquisition, pre-processing, model development, and

evaluation pipeline have been highlighted in Figure 1. The dataset

was initially cleaned with a custom data-cleaning function that

consisted of the removal of special characters retrieved from the

Natural Language Toolkit (NLTK) such as “@/{$#%&” and

stopwords including “and”, “or”, and “the”. These words do not

carry significant meaning or information in text analysis tasks,

hence their removal helps to de-noise the text data resulting in

the better efficiency and performance of NLP models. Stemming

and lemmatisation are two common techniques used in the data-

cleaning function, both of which aim to normalise words by

reducing them to their base or root forms. Stemming achieves

this by removing any suffixes at the end of a word, while

lemmatisation is the process of reducing a word to its base or

dictionary form (known as the lemma) while taking into account

the context and part of speech of the word.

Lastly, the CountVectorizer library function was used to pre-

process the cleaned data. By default, CountVectorizer uses the

“term frequency” weighting for single tokenisation, which means

it represents each word by the number of times it appears in a

document. This results in a document-term matrix where each

element represents the frequency of a particular word in a

specific document. The resulting matrix is then used as the input

to various machine learning algorithms such as clustering,

classification, and topic modelling. By representing text data in a

numerical format, the CountVectorizer enables machine learning

(ML) algorithms to process and analyse textual data, which
FIGURE 1

Data acquisition, processing, analysis, and visualisation pipeline. DB, databas
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would otherwise be difficult due to the unstructured nature of

natural language.
2.4. Model development

An 80:20 training–testing split was carried out on the total

cohort of 1,177 patients, with 942 patients in the training set and

235 patients in the testing set. The datasets were stratified for the

outcome variables to account for class imbalances. An extreme

gradient-boosting (XGBoost) NLP classifier was developed to

predict each outcome category. XGBoost was selected as the

classifier of choice owing to a number of factors: (1) its ability to

handle high-dimensional feature spaces such as word to vector

embeddings used in NLP, (2) the ability to handle and adjust for

sparse and imbalanced datasets using weighted loss functions

and subsampling, (3) its faster computational run time and

scalability, and (4) explicit feature importance calculation for

each input attribute (11, 22). Three individual models were

created for identifying each outcome category, and the outputs

from the models were concatenated to produce a multilabel

ensemble output with the predicted probabilities for each

outcome. The three ML models will be referred to as the dural

tear, drains, and clips vs. sutures models in this paper. An

iterative process termed Grid Search was used to optimise the

model hyperparameters. In grid search, a predefined set of

hyperparameter values is defined, and the model is trained and

evaluated on all possible combinations of these values to achieve

the highest level of accuracy.
e.
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TABLE 1 Cohort demographics of the total patient cohort.

Total cohort (n = 1,177)
Age 53.900 ± 16.153

Sex

Female 616 (52.3%)

Male 561 (47.7%)

Drain(s)

Yes 373 (31.6%)

No 801 (67.8%)

Closure

Clips 458 (38.9%)

Sutures 710 (60.3%)

Dural tear(s)

Yes 117 (9.9%)

No 1,060 (90.1%)

TABLE 2 Inter-variable statistical correlation analysis using t-tests for

Biswas et al. 10.3389/fsurg.2023.1271775
The models were trained on fivefold stratified K-fold cross-

validation with five repeats on the training dataset. The training

and testing datasets were stratified by each of the outcome

categories to standardise the class imbalances within our

outcome variables and provide us with the best overall

performance results for the models. The performance of the

models were evaluated via five performance metrics on the

training and testing sets: accuracy, precision/positive predictive

value (PPV), specificity, area under the receiver-operating

curve (AUC)/discrimination, and the Brier score loss. All

metrics were bootstrapped with 1,000 resamples to derive the

associated 95% confidence intervals (CIs). Each model was then

calibrated on the testing set. Calibration refers to how well a

model’s predicted probabilities align with the true observed

probabilities in the study population. This is evaluated using a

calibration curve, which is ideally a 45° straight line starting

from the origin, with a slope of 1 (indicating the spread of the

model’s estimated probabilities over the observed probabilities),

and an intercept of 0 (indicating how much the model tends

to over- or underestimate the true probability). In this study,

the preferred method of calibration was Platt scaling or

sigmoid binned calibration, which involved dividing the

probability range into 10 bins and evaluating the shape of the

calibration curve, as well as its slope, intercept, and the Brier

score loss metric. In addition, the decision curve analysis

(DCA) was used to evaluate and plot the clinical benefit of

using the NLP algorithms to predict the presence of each

outcome variable over a wide range of predicted threshold

probabilities. The DCA illustrates the net benefit defined as

the number of true positives detected for each outcome class

when using the NLP algorithms on individual patient operation

notes.

A model-specific global feature importance analysis was

conducted on the trained models via retrieval of each

model’s relative feature weights that were averaged across all

training folds. Furthermore, the Local Interpretable Model-

agnostic Explanation analysis was performed to predict and

highlight the important features on an individual patient

operation note level.

continuous variables and Chi-square tests for categorical variables.

p-value

Age Sex Drains Closure Dural tear
(s)

Year of
surgery

Age 0.137 0.283 0.001a 0.501 0.013a

Sex

Female 0.137 0.278 0.294 0.217 0.322

Male

Drain(s)

Yes 0.283 0.278 <0.001a 0.554 0.906

No

Closure

Clips 0.001a 0.294 <0.001a <0.001a 0.017a

Sutures

Dural tear(s)

Yes 0.501 0.217 0.554 <0.001a 0.853

No

aStatistically significant p-value.
2.5. Statistical analysis

All statistical analyses were conducted using IBM SPSS

software (Statistical Package for the Social Science; SPSS Inc.,

Chicago, IL, USA) Version 25 for Mac, Microsoft Excel (Office

365, Microsoft, Seattle, WA, USA), and the R coding language (R

Foundation for Statistical Computing, Vienna, Austria).

Histogram plots and the Kolmogorov–Smirnov test were utilised

for tests of normality for the continuous variables. The chi-

squared tests were used to compare all categorical variables, and

the independent samples t-test was used to compare the means

of the continuous variables. Temporal trend analysis with a

linear line of best fit was conducted for all variables, within our

retrospective observation time period. A p-value <0.05 was

considered statistically significant.
Frontiers in Surgery 04
3. Results

3.1. Cohort demographics

A total of 1,177 patients were included in the study, with 942

patients in the training set and 235 patients in the testing set.

Table 1 demonstrates the total cohort demographics. The average

age of the cohort was 53.900 ± 16.153 years, with a female

predominance of 616 patients (52.3%). The rates of intra-

operative durotomy and the use of wounds drains were 9.9%

(117/1,177) and 31.6% (373/1,177), respectively. Overall, the use

of sutures [710 (60.3%)] was more common for skin closure

compared with the use of metal surgical clips [458 (38.9%)]. The

inter-variable comparative analysis (Table 2) demonstrated a

significant relationship between increasing patient age and the

use of sutures (p-value = 0.001). We also noted that with an

ageing population, the operative age of our patients significantly

increased over our observation period (p-value = 0.013). There

was also a statistically significant relationship between the use of

sutures for skin closure in cases with intra-operative dural tears

and wound drains (p-value < 0.001). However, there was no
frontiersin.org
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statistically significant relationship between the use of wound

drains and the presence of intra-operative dural tears (p-value =

0.554).
3.2. Temporal trend analysis

The Mann–Kendall test was used to analyse the temporal

trends of the variables across our observation time period as

shown in Supplementary Figure S1. During the study period, the

total number of lumbar discectomies and/or decompressions

decreased significantly from 220 surgeries in 2015 to 56 in the

first half of 2022 (−112 estimated in a year) (tau =−0.929, p-
value = 0.002). This decline was observed in all the years with the

exception of 2019, which saw an increase of one operation from

the previous year. It was noted that there was also a decrease in

all spinal procedures post COVID-19, which may account for the

decrease. The frequency of intra-operative durotomies/dural tears

did decrease over the study period; however, no statistical

significance was observed (tau =−0.286, p-value = 0.386), with

rates ranging from 5.8% to 14.2%. The frequency of intra-

operative placement of wound drains also statistically

significantly increased over the study period, rising from 18.6%

in 2015 to 41.1% in 2022 (tau = 0.643, p-value = 0.035). The

preferred method of skin closure also changed over the study

period, demonstrating a preference for closure with sutures in

later years (tau = 0.5, p-value = 0.108) with a rise from 54% in

2015 to 75% in 2022. We observed an exact yet complementary

decrease in the use of surgical clips for skin closure over the

years (tau =−0.5, p-value = 0.108).
3.3. Model performance

Table 3 provides the performance metrics for the three ML

models on the testing dataset. The dural tears model achieved an

accuracy of 91.7615 (95% CI: 88.636–94.602), a PPV of 84.211%

(95% CI: 80.667–90.000), a specificity of 99.032% (95% CI:

96.959–99.750), and an AUC of 0.946 (95% CI: 0.917–0.970).

The drains model achieved an accuracy of 94.894% (95% CI:

92.330–97.160), a PPV of 88.696% (95% CI: 82.308–94.000), a

specificity of 94.694% (95% CI: 90.886–97.025), and an AUC of

0.950 (95% CI: 0.923–0.973). The clips vs. sutures model

achieved an accuracy of 93.750% (95% CI: 91.193–96.307), a

PPV of 94.495% (95% CI: 91.379–97.260), a specificity of

91.177% (95% CI: 84.770–95.153), and an AUC of 0.933 (95%

CI: 0.923–0.973). Figure 2 shows the calibration curves for each

of the models. The dural tears model had a propensity to
TABLE 3 Performance metrics of the machine learning model on the testing

Model Accuracy (%) Precision/PPV (%)

Testing set (n = 235)
Dural tears 91.761 (88.636–94.602) 84.211 (80.667–90.000)

Drains 94.894 (92.330–97.160) 88.696 (82.308–94.000)

Clips vs. sutures 93.750 (91.193–96.307) 94.495 (91.379–97.260)

Frontiers in Surgery 05
underpredict the presence of a dural tear, with a Brier score loss

of 0.082 (95% CI: 0.054–0.114), an intercept of 0.91 (95% CI:

0.46–1.36), and a slope of 0.99 (95% CI: 0.76–1.23). The drains

model demonstrated excellent calibration across all predicted

probabilities with a Brier score loss of 0.051 (95% CI: 0.028–

0.076), an intercept of −0.71 (95% CI: −1.31 to −0.12), and a

slope of 0.75 (95% CI: 0.60–0.91). The clips vs. sutures model

demonstrated a tendency to overpredict the use of sutures for

skin closure, with a Brier score loss of 0.063 (95% CI: 0.037–

0.088), an intercept of −0.01 (95% CI: −0.61–0.60), and a slope

of 0.65 (95% CI: 0.53–0.77). Lastly, the decision curve analysis

on the testing set revealed that all NLP algorithms ensured

greater clinical net benefit at all possible threshold probabilities

relative to the default decisions of changes made for all or none

patients (Figure 3).
3.4. Model explainability

The global feature importance calculations for the NLP

algorithms are presented in Figure 4. These explanations

highlight that for identification of an intra-operative durotomy,

the five most meaningful features (words) are: “repair,”

“intradural,” “dural,” “patch,” and “Valsalva.” The five most

important features (words) for detecting the intra-operative

placement of a lumbar drain are: “drain,” “fascial,” “scoliosis,”

“clotting,” and “incision.” Similarly, for detecting whether

surgical clips or traditional sutures were utilised for skin closure,

the following five words were the most important: “clip,”

“staple,” “warmer,” “lamina,” and “clamp.” In addition, the local

feature importance analysis for an example patient level

operation note demonstrates that the dural tear model is able to

identify the five most important clinically meaningful features to

detect the presence of an intra-operative dural tear (Figure 5).

Interestingly, the local feature importance analysis for the drains

and clips vs. sutures model demonstrated that the algorithm

primarily searched only for the words “drain” and “clip,”

respectively, to make the prediction, with the other

aforementioned features possessing very little impact on the

outcome.
4. Discussion

This study analysed the trends in the use of various intra-

operative elements in spine surgery and developed NLP

algorithms capable of reliably identifying these elements in

operative notes. The automated identification of these elements
set with 95% confidence intervals.

Specificity (%) AUC Brier score loss

99.032 (96.959–99.750) 0.946 (0.917–0.970) 0.082 (0.054–0.114)

94.694 (90.886–97.025) 0.950 (0.923–0.973) 0.051 (0.028–0.076)

91.177 (84.770–95.153) 0.933 (0.923–0.973) 0.063 (0.037–0.088)
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FIGURE 2

Calibrationcurvesof the natural languageprocessingmodels for identifying (A) dural tears, (B) wounddrains, and (C) clips vs. sutures, in the testing set (n=235).
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can facilitate more efficient clinical coding and billing processes,

help optimise hospital quality improvement and safety efforts,

assist clinicians in auditing surgical practices, and guide overall

resource allocation. This study demonstrates that our NLP

algorithms are capable of reliably and accurately identifying the

placement of intra-operative wound drains, the presence of

incidental dural tears, and whether surgical clips or sutures were

utilised for skin closure. This is the first ever study from a

country with a public healthcare system that has demonstrated

the feasibility of using automated NLP systems in operative notes

to potentially guide both surgical practices and resource allocation.

The use of NLP techniques in spine surgery has seen a rise in

the recent years and is projected to rapidly grow in the future (23,

24). The ability of NLP to perform precise automated surveillance

of operative notes, to answer clinically relevant questions, serves to

reduce the burden of time-intensive and error-prone reviews by

clinical coders (25, 26). The delays in clinical coding within the

National Health Service (NHS) impose a significant burden, with

the potential for funding to be blocked if coding is not

completed within a prerequisite timeframe (27). The average

accuracy of this coding has been reported at approximately 83%,

with large inter-study variability (28). Such problems exist in

majority of healthcare systems worldwide and necessitate the

development of automated techniques capable of facilitating these
Frontiers in Surgery 06
burdensome manual record review processes. Within this realm,

Zaidat et al. have already developed an XLNet model capable of

automatically generating CPT billing codes from operative notes

for three specific surgical procedures: anterior cervical discectomy

and fusion (ACDF), posterior cervical discectomy and fusion

(PCDF), and cervical disc arthroplasty (CDA) (2). Such models

have the potential to greatly reduce manual review/input, minimise

errors in the coding process, and promote standardisation. Most

recently, Shost et al. have also demonstrated a model capable of

reliably identifying the type of spinal surgery performed via

analysis of patient consent forms (29). The ability to rapidly

classify surgical practices can be beneficial to both hospitals and

the practicing surgeons. This will help track surgical volume,

surgery-specific patient outcomes, and also provide trainees with a

method of tracking individual surgical experience. In addition,

NLP algorithms have also demonstrated predictive value in

classifying lumbar spine imaging findings and in determining the

need for surgical intervention in patients with low back pain via

analysis of radiological and clinical reports (30). These examples

highlight the importance of NLP techniques in improving the

provision of patient care and demonstrate the clinical utility of

such models in enhancing hospital and surgical practices.

Our NLP algorithms were developed to identify the presence of

three important intra-operative factors that play a role in guiding
frontiersin.org
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FIGURE 3

Decision curve analyses comparing expected clinical net benefit of the three models: (A) dural tears, (B) wound drains, and (C) clips vs. sutures, on the
testing set.
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the resource allocation and surgical practices of a neurosurgical

department. In this study, the prevalence of incidental durotomy

was 9.9%, in line with the recent literature on lumbar surgery

(18, 31, 32). Our model demonstrated adequate discrimination

and performance in identifying intra-operative dural tears and

highlighted the use of clinically relevant features (words) to make

its predictions. Previous studies by Karhade et al. have also been

successful in the identification of incidental durotomy with an

accuracy of 99%, surpassing the performance of CPT and ICD-

10 codes, which demonstrated an accuracy of only 64% (18).

Interestingly, however, the feature importance in their NLP

algorithm showed different features compared with ours, further

underscoring the potential variability in NLP algorithm

performance across different cohorts that are geographically

separated, and highlighting the need for broader validation

studies (17). The importance of reliably identifying cases of
Frontiers in Surgery 07
intra-operative incidental durotomy is highlighted by evidence

suggesting that patients with durotomies tend to have increased

operative durations and inpatient length of stay (LOS) (33).

Thus, accurate depiction of the rates of incidental durotomy can

aid postoperative patient counselling, quantify surgical

complication rates, and help track surgical performance.

For the wound drains model, our study demonstrated an

accuracy of almost 95%. Previous studies have concluded that

postoperative drains are currently being overused in spinal surgery,

potentially imposing an increased risk of unnecessary

complications, while not lending substantial benefit (34). Most

notably, reports have suggested an elevated risk of surgical site

infections (SSI) (35, 36), although this has been refuted by other

papers (15, 37–39). Ho et al. interestingly report that both the

absence of a wound drain and increased drainage when drains are

used indicate an increased risk of delayed infection after posterior
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FIGURE 4

Global feature importance values for the NLP algorithms: (A) dural tears, (B) wound drains, and (C) clips vs. sutures.
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spine surgery (36). Walid et al. additionally found that the use of

postoperative drains was linked to increased post-haemorrhagic

anaemia, and a subsequent requirement of allogenic blood

transfusions (40), which may impose greater costs to the healthcare

system. Adogwa et al. have also demonstrated that patients with

postoperative drains have a significantly longer LOS compared
Frontiers in Surgery 08
with patients with no drains (37). The combination of such factors

highlights the importance of tracking and quantifying the use of

drains in spine surgery, and therefore the development of our NLP

algorithm will allow for its automated and reliable detection. The

future application of this algorithm in tracking wound drain use

and the associated SSI rates remains to be investigated.
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FIGURE 5

Local feature importance analysis for detecting dural tears in an example individual patient operation note as generated by the NLP algorithm.
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Further, our clips vs. suture model demonstrated an accuracy of

>93% accuracy, and our temporal trend analysis showed a

preference for using sutures for wound closure. Various studies

have concluded that suturing is more efficient when compared

with the use of clips for good wound closure, resulting in lower

rates of separation, prevention of SSI, and ultimately shorter

hospital LOS (41, 42). Contrastingly, postoperative analysis of

visual analogue pain scores comparing the use of clips to non-

absorbable sutures have also demonstrated a significantly quicker

and pain-free experience for patients with stapled wounds (43).

From an economic perspective as well, studies have demonstrated
Frontiers in Surgery 09
that staples/clips are less expensive than sutures and that the

financial gain appears to increase as laceration length increases

(44). However, conflicting literature exists on the impact of

sutures and clips on patients postoperatively (22), with the need

for future robust randomised control trials to further investigate

their effects. Nevertheless, such single-use surgical items are the

largest contributors to the surgical carbon footprint and hence

precise quantification of such use can guide both financial and

environmental practices (45). Therefore, such automated NLP

techniques can facilitate accurate data collection and analysis of

the use of clips and sutures in neurosurgery. Nevertheless, the
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utility of this NLP algorithm in identifying and predicting

postoperative LOS, risk of SSI, and the estimated carbon

footprint after a surgery remains to be explored in a future study.
4.1. Limitations

Despite these results, the study has several limitations. First,

this was a retrospective analysis at a single centre and therefore

the development and testing of the NLP algorithms was

geographically limited to a specific region. This raises questions

about the algorithms’ generalisability and their performance in

diverse linguistic and clinical contexts. Furthermore, the surgeons

affiliated with the healthcare entities in the study likely share

practices that influence the specific terminology used to

document the various intra-operative characteristics, which could

bias the results. Hence, future prospective and external validation

of the algorithms needs to be performed to validate the clinical

utility of the algorithms. In addition, there are other approaches

that can be utilised to adapt our general model to geographically

distinct regions. Geographically customisable models can be

implemented via techniques such as federated learning and

transfer learning. Federated learning enables the collaborative

training of models across multiple centres without data sharing,

preserving both privacy and centre-specific relationships and

trends in the data. Transfer learning further facilitates rapid fine-

tuning, which can efficiently adapt a base model to new regions

by learning from small local datasets, boosting model

performance and reliability. Secondly, though these models are

able to reliably identify the outcomes of interest, a further

manual review by clinical coders will still be required to exclude

any cases of false positives or false negatives. Thus, the need for

manual review will still exist, though with a considerably lower

level of burden. Hence, multicentre, linguistically different

validation studies in hospitals with varying coding/billing

practices are required to determine the reliability of these models.

Lastly, with the advent of state-of-the-art large language models

such as Bidirectional Encoder Representations from Transformers

and Generative Pre-trained Transformer models, the need for

manual annotation of unstructured, free text data may

exponentially reduce. These models are capable of independently

performing named entity recognition and can understand the

contextual nuances of each outcome of interest. For example,

these models would be able to interpret the reason/context for

using a drain, or the reason for a durotomy. Thus, in the future

the goal would be to develop such models capable of functioning

independently without the need for any manual annotation or

review.
5. Conclusion

In conclusion, this study evaluated the feasibility and

reliability of NLP algorithms in determining the presence of

three intra-operative elements in lumbar spine surgery. We

demonstrate that these NLP models possess great
Frontiers in Surgery 10
discriminative ability and accuracy in predicting the presence

of wound drains, incidental dural tears, and the use of clips

or sutures for wound closure. These models can help

automate the clinical coding process, help optimise hospital

quality improvement, and monitor surgical performance and

practices. This is the first ever study from a country with a

primarily public healthcare system that has demonstrated the

feasibility of using automated NLP systems in operative notes

to potentially guide both surgical practices and resource

allocation.
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