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Radiation’s harmful effects on biological organisms have long been studied

through mainly evaluating pathological changes in cells, tissues, or organs.

Recently, there have been more accessible gene expression datasets relating to

radiation exposure studies. This provides an opportunity to analyze responses at

the molecular level toward revealing phenotypic differences. Biomarkers in

toxicogenomics have been suggested as indicators of radiation exposure and

seem to react differently to various dosages of radiation. This study proposes a

predictive gene signature specific to radiation exposure and can be used in

automatically diagnosing the exposure dose. In searching for a reliable gene set

that will correctly identify the exposure dose, consideration needs to be given to

the size of the set. For this reason, we experimented with the number of genes

used for training and testing. Gene set sizes of 28, 100, 200, 300, 400, 500, 600,

700, 800, 900 and 1,000 were tested to find the size that provided the best

accuracy across three datasets. Models were then trained and tested using

multiple datasets in various ways, including an external validation. The

dissimilarities between these datasets provide an analogy to real-world

conditions where data from multiple sources are likely to have variances in

format, settings, time parameters, participants, processes, and machine

tolerances, so a robust training dataset from many heterogeneous samples

should provide better predictability. All three datasets showed positive results

with the correct classification of the radiation exposure dose. The average

accuracy of all three models was 88% for gene sets of both 400 and

1,000 genes. R400 provided the best results when testing the three datasets

used in this study. A literature validation of top selected genes shows high

relevance of perturbations to adverse effects reported during cancer

radiotherapy.
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Introduction

Radiation is all around us from both nature and human

sources. Studies of radiation exposure over the past

75 years—including longitudinal studies of Hiroshima and

Nagasaki survivors, nuclear accidents, radiology workers and

scientists, space travel, and nuclear medicine—have produced

lots of data (Lacombe et al., 2018). Such a diagnostic method

could be used in testing a large number of people exposed during

a natural or artificial disaster with mass radiation exposure in a

timely manner. The current gold standard for ionizing radiation

diagnosis is dicentric chromosome assay (DCA) but it takes time

and expertise to complete each sample (Ostheim et al., 2022).

This means that throughput is limited by the availability of

capable clinicians. Samples will need to travel to the lab for

manual examination and the results will need to be

communicated to the triage center adding delay to time

sensitive diagnosis and treatment. Determining an optimal

dose predictive gene set could help develop a cost-effective,

high-throughput testing system for use on an exposed

population to allow faster triage according to dose (Broustas

C. G. et al., 2017; Biolatti et al., 2021).

For the purposes of this study, concentration was given to

looking for diagnostic biomarkers, which are characteristics

that either indicate the presence of a disease or subtype of a

disease. These characteristics, such as gene expression, indicate

exposure to ionizing radiation (Ghandhi et al., 2015). Many

biomarkers in toxicogenomics have been suggested and studied

with the idea that these biomarkers can provide evidence of

radiation exposure dose, duration, and class (Simon, 2011).

Radiation biomarker studies have identified injuries due to

exposure (Howe et al., 2021, p. 4). The number of genes

identified in the literature review varied by study (Shuryak

et al., 2020) (Panera et al., 2021). Although these studies are

varied over a wide variety of circumstances and factors (such as

species), some common biomarkers were found across studies

which have shown to have a measurable response to radiation

exposure. There has been research on identifying radiation

sensitive genes (Broustas CG. et al., 2017). In this study, we

looked to see if the number of genes used in a predictive

signature affected the models’ accuracies. We also looked at

which machine learning classifier performed the best across

gene set sizes and datasets. Then we tested merging datasets so

that the training samples were more heterogeneous and would

simulate adding a variety of real-world samples to build a more

robust diagnosing model. Lastly, we trained models using two

different datasets and then tested the models on a third dataset’s

samples.

Identifying affected genes and studying their reactions to

exposure doses may provide the means to predict future health

outcomes by connecting known diseases to specific genes and

cellular pathways. Gene expressions biomarkers are affected by

different toxins and aberrations appear quickly after exposure.

Environmental factors such as chemicals can interact with

genes and cause the gene’s production rate to change.

Sometimes genes are up-regulated by chemicals and

production is increased (or vice-versa) (Howe et al., 2021).

These expression changes are the biomarkers used in this study

to find identifiable signatures of sets of genes (Ghandhi et al.,

2015). Since biomarkers should be able to be used to determine

the dose of radiation exposure, a treatment can be prescribed

which will be most effective when started as early as possible.

Due to the fast rate of gene expression, diagnosis could be done

before symptoms appear. One event can cause varying doses

among its subjects, so a method is needed to quickly identify the

dose of each person. Determination of dose can also influence

treatment so fast diagnosis is important. A mass exposure event

will need triaging so that appropriate treatments can be applied

to individuals. Since expertise and lab space are needed for the

current gold standard, a means to diagnose using a high-

throughput method would help categorize victims so that

they can receive the best treatment. Genomic assays can be

taken during such events so that diagnoses can be conducted

very quickly, and appropriate treatments applied to each

person.

This paper proposes a predictive gene signature that is

specific to radiation exposure and can be used in automatic

diagnosing of the exposure dose. Having a robust training dataset

from many heterogeneous samples should provide better

predictability across a broad population of diverse people. Our

study concentrated on samples exposed to X-ray, Beta, and

Gamma ray types of radiation. To ensure that the most

inclusive model is built which will be sensitive to gene

responses across diverse populations, a wide range of samples

from all demographics and geographical locations should be used

for training. The datasets downloaded in this study were based on

radiation and their effects on gene expressions and found on

Gene Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo).

Analysis of the combined responses of these genes to differing

levels of radiation show promise of identifying predictive

signatures of exposure. This paper found that a machine

learning model trained on a signature set of genes’

expressions can provide accurate predictions of the dose of

radiation exposure. A signature gene set was developed for

this purpose and is called R400. A signature of a larger

number of genes was also developed called R1000 which

extends the R400 gene set to include 1,000 genes. The genes

for each signature are listed in the Supplementary Tables S4, S5

respectively. Three datasets were used: GSE90909, GSE58613,

and GSE65292. All three datasets showed positive results with

correct classification of the dose of the radiation exposure. The

accuracy of each model was 91%, 74%, and 100% respectively.

The average accuracy of all three models was 88% for gene sets of

both R400 and R1000 genes. All scripts and programs used in this

study are available online on GitHub at https://github.com/

Howaboutthis1/R400.
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Materials and methods

GEO datasets

From Gene Expression Omnibus (GEO), the GSE90909,

GSE58613, and GSE65292 datasets (see Table 1) were

downloaded for the use of this study. A disease-gene

correlation scheme was built and run on the GSE90909 dataset.

GSE90909[12288 genes, 51 samples (only x-ray samples were

selected)] was built in a study which exposed blood samples to

various doses of radiation ex vivo. There were 12 different healthy

human donors (6 females and 6 males) and a total of 92 samples

included in the dataset (Broustas CG. et al., 2017).

GSE58613[21225 genes; 53 samples (only healthy samples

were selected)] contained samples from healthy humans and

humans with various illnesses, aged between 21 and 66. Some

samples were irradiated ex-vivo and some were taken after

total body irradiation was performed. Blood samples were

taken before and after patients underwent radiation

treatment. Various exposure doses and lengths of time

since irradiation were used in the original study (Lucas

et al., 2014).

GSE65292[12073 genes; 35 samples] has gene expression

data for human blood samples that were irradiated ex vivo

with a variety of doses. The radiation was applied at two dose

rates denoted as “acute” and “low” (Ghandhi et al., 2015).

TABLE 1 Summary of datasets used for R400 gene set selection.

Dataset# Dataset Organism Platform Exposure type Samples
(chosen/
Total)

Dose range

1 GSE90909 Human Agilent-026652 Whole Human Genome Microarray 4x44K v2 Ex Vivo (51/92) 0–4 Gy

2 GSE58613 Human Affymetrix Human Genome U133A 2.0 Array Ex Vivo & Total body (53/264) 0–6 Gy

3 GSE65292 Human Agilent-026652 Whole Human Genome Microarray 4x44K v2 Ex Vivo (35/35) 0–4.45 Gy

FIGURE 1
Workflow presented in this paper.
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The aim of considering several datasets is to see if predictions

can be made to diagnose the exposure dose using a specific gene

expression signature, we call R400. Moreover, recent studies are

showing that certain genes are differentially responsive at various

dosages. Lacombe et al. stated that combinations will be needed

rather than individual biomarkers and that more studies are

needed to overcome the differences in studies’ protocols and

methods (Lacombe et al., 2018). The three datasets used in this

study had limited demographic information available. Expanding

and adding datasets to the training sets with samples from diverse

populations should improve the efficacy across various

demographics.

Proposed framework

Figure 1 shows the workflow of the steps outlined in this

paper. Phase 1 consisted of cleaning and preparing the datasets

for feature selection which resulted in a correlation score for each

gene. This allowed for various gene set sizes to be built from the

top genes and tested throughout the study.

Phase 2 was training models with various gene set sizes and

various classifier models using 5-fold cross validation. Testing

accuracies were used to select the model with the best predictive

capabilities for the external validation by combining datasets in

Phase 3.

Phase 3 was external validation which was performed such

that two datasets were processed as described earlier and merged

into a training set. The third dataset was then used to test the

model. GSE90909 was selected as the test set since its range of

doses was within the range of doses in each of the other two

datasets and its models showed accurate predictions during

individual dataset testing. The raw data is prepared, and

feature selection is done considering that each gene selected as

a feature must be present in all three datasets. Next, the two

datasets were merged, normalized, and used to train a classifier

model. The third dataset, used for training, was then normalized,

and tested on the classifier for dose prediction.

Raw data pre-processing
The raw datasets were imported into R using Bioconductor,

Biobase, and GEOquery packages. When the gene expression

samples were extracted, some of the data required for training

and testing were not included in a machine-readable format. The

doses of each sample had to be added so that the classifier could

learn which dose was exposed to each sample. Gene assays

sometimes use probe names rather than gene symbols to

identify the expressions of each gene. Gene names were,

therefore, mapped and extracted from each dataset’s metadata

for readability during gene selection and test results. The datasets

were imported from the Gene Expression Omnibus (GEO)

repository in raw format and needed to be formatted so that

dose, gene name, and sample id lined up among the datasets. The

three databases were left as untouched as possible with the only

change being made at this point was to match the dose

measurements of centiGrays (cGy) to Grays (Gy) by dividing

them by 100. This was done so that the classifier would evaluate

the doses in each dataset on the same scale. The expression data

was further prepared by replacing any NAs with averages of each

of that gene’s expressions. The dose data was transformed to

numeric values and added to each of the samples’ gene

expressions for the machine learning training and testing steps.

GSE90909 contained samples which were exposed to x-ray or

neutron radiation. The doses for this dataset ranged from 0 to

4 Gy. For radiation type consistency across datasets, only the

x-ray and control samples were used providing 51 samples for

testing. GSE58613 contained samples from healthy and total

body irradiated (TBI) individuals which either received no

treatment, Granulocyte colony stimulating factor (G-CSF), or

lipopolysaccharide (LPS) treatments. The radiation source was

Caesium-137 (Cs137) which emits beta and gamma rays. The

doses in this dataset ranged from 0 to 600 cGy which were

converted into 0–6 Gy to match the dose scale of the other

two datasets. For consistency across datasets only the healthy,

non-treated samples were used resulting in 26 samples for

testing. All of the samples in GSE65292 were used. There are

35 samples with doses ranging from 0 to 4.45 Gy. Radiation was

applied using a x-ray irradiator.

Gene ranking and selection
The three datasets chosen for this study have 12,288 genes

(GSE90909), 22,277 genes (GSE58613), and 12,073 genes

(GSE65292). Including large number of genes would limit

applicability for high-throughput radiation exposure testing

especially when many genes are non-reactive. In addition,

including more genes (or features) can impact the

performance of the machine learning (ML) algorithm (Soufan

et al., 2015). Therefore, we reduced the number of genes using the

Pearson’s correlation method which has shown improved

performance in gene expression datasets (Soufan et al., 2015;

Spainhour et al., 2019). Pearson’s correlation method was used to

rank all of the genes by calculating a correlation score for each

gene to allow the top dose-correlated genes to be sorted and

selected. These scores were then used to select a set of top genes

and then perform evaluation using machine learning models. As

external verification, the genes discovered were compared to

genes listed in current literature and the dose response was

verified using fastBMD (www.fastbmd.ca), an online

benchmark dose analysis service which accepts GEO datasets

that conform to their standard file format (Ewald et al., 2021).

Different gene set sizes were modeled to find the optimum size

for best prediction accuracy. Choosing genes in GSE90909 with

correlation scores above 0.80 defined 28 genes as candidates as

predictive biomarkers. Other tested gene set sizes were 100, 200,

300, 400, 500, 600, 700, 800, 900 and 1,000 of the top correlated

genes in each dataset.
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Correlation analysis of gene to dose was used to sort all of the

genes for feature selection. Only genes that were included in all

three of the datasets used in this study were included. To

determine the optimal gene set size, machine learning was run

on Matlab’s classifier app using 15 of the built-in classifier types

with 5-fold cross validation when training. This was done for

gene set sizes of: 28, 100, 200, 300, 400, 500, 600, 700, 800,

900 and 1,000. Two datasets were used separately to determine

the best gene set size across datasets using the validation

accuracies. The ML model type with the best results was

exported and used for testing unknown datasets on a model

trained on a two-dataset training set. The Linear Discriminant

classifier most often obtained the best results and was chosen as

the model type for the 70/30 split experiments.

Machine learning for dose classification
prediction

Before setting out to determine the optimal gene set size, the

best model type needed to be found for model testing. Review of

past toxicogenomics literature revealed 1,000 genes has been

successfully used in feature selection for dose-response models

like in T1000 and L1000 (Soufan et al., 2019). To find the model

type to use going forward, we tested 15 machine learning model

types on 11 gene set sizes. The machine learning model types are

listed in the ranking table (Supplementary Table S3) in the

supplemental files. Gene set sizes of 28, 100, 200, 300, 400,

500, 600, 700, 800, 900, and 1,000 were used for training and

testing on each of the 15 model types using two different datasets

separately. In total, 330 models were built. All of the training was

done using 5-fold cross-validation and the training results are

tabulated in the supplementary file (Supplementary Table S3).

Matlab’s linear discriminant classifier (LDA) most often had the

best training validation accuracies across gene set sizes.

Performance evaluation and experimental setup
The performance of each model was evaluated by looking at

the correctly predicted percentage of testing samples. Accuracy =

# of correct predictions/# of testing cases (such that # of correct

predictions = number of predictions where the predicted label

matches that actual dose). Models’ predictions either correctly

matched actual doses or they did not. Correctly matched

predictions were counted as True Positives (TP). There are no

True Negatives (TN) predicted so for all accuracy calculations in

this paper TN = 0.

Each model’s results were summarized on a multi-class

confusion matrix which is a table consisting of two axes: one axis

for the model’s predicted doses and one axis for the actual doses of

the samples. The same dose classes are used and ordered on both

axes, so that predicted and actual doses intersect diagonally. When a

predicted dose is correctly classified as the actual dose, they meet on

the corresponding cell of the confusion matrix so that the diagonal

line of cells from the top, left corner to the bottom, right corner

represents the correctly predicted samples.

The classification models use decision boundaries to best

identify discrete dose classes. This allows calculations of

prediction accuracies based upon the number of correctly (on

the diagonal) and incorrectly (off the diagonal) predicted doses.

Evaluation 1: Internal testing setup

Each dataset’s samples were split into 70% training sets and a

30% testing sets. Then, 5-fold cross-validation was executed

within each training set. Cross-validation was used to enhance

the internal parameters of the ML models. The 30% partitions

were tested on the models and the accuracies of each experiment

are shown in Table 2. We have applied this testing setup on all

three datasets separately and reported the results.

Evaluation 2: External testing setup

We have considered a different testing setup as an external

validation of the model. Since the Linear Discriminant model

provided the overall best results in this study (Supplementary

Table S3), it was used to train a model on two datasets

combined and reported the results on the third dataset. Two

datasets were combined to provide the highest range coverage of

doses (0–6 Gy). Then, the third dataset was used for testing only. It

was chosen because all of its doses were within the range of doses of

the combined dataset. We report performance scores using the

separate test and consider this as an external validation of themodel.

R400 and R1000 construction
R400 and R1000 were built by pulling the top 400 and

1,000 genes with the highest correlation scores that exist in all

three datasets. Then the genes were ordered by correlation rank

according to GSE90909’s order. GSE90909 was used as the test

dataset on the models built using the other two datasets. The

results in Table 2 show that GSE90909 had eight out the top ten

testing accuracies. The best accuracy that was not from

GSE90909 was for GSE58613 at 400 genes (87%) and

GSE90909’s second best score was using 400 genes (93%). The

overall accuracies of the models built using 400 genes

outperformed the other gene set sizes. It should be noted that

high accuracies were also noted at gene set sizes of 700 and 800 but

individual dataset accuracies of these sets were not as high as at

400 genes (Table 2; Figure 2). One problem that may occur with a

patient’s sample is that it may not contain all the genes found in

R400 so a larger gene set, called R1000, was created. It contains

R400 plus 600 more genes so that the top 400 genes found in the

patient’s sample can be pulled from R1000 for testing.

Results

Dose-response prediction results

We have performed 330 experiments using 15 classifiers

across 11 gene set sizes. For dataset 1, linear discriminant
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classifier (LDA) achieved the highest accuracy 9/11 times (82%).

For dataset 2, LDA had the highest accuracy 4/11 times (36%).

For each dataset, LDA most often had the highest accuracy. The

average test results of the two datasets reached its maximum of

90% at 400 genes (Figure 2). For these reasons, gene sets sizes of

400 and 1,000 were decided upon for testing models built on

multiple datasets and testing datasets which were not used in

training. To confirm the preliminarily test results, Matlab’s linear

discriminant classifier with 5-fold cross validation was used on all

x-ray and control samples of GSE90909. All healthy, non-

treatment and control samples from GSE58613 were used for

the second model and all samples of GSE65292 were used for the

third model. Two datasets were combined and partitioned at 30%

test/70% train. The results show promise because there is a clear

clustering near the correct predictions diagonal of the confusion

matrix (Figure 3A). If tolerances are increased, the accuracy can

be improved from 61.3% to 96.8% by catching neighbouring cells

in the confusion matrix (Figure 3B). This is reasonable given that

the two datasets have variances in their data.

Analysis of sizes of gene sets

The accuracies of the ML classifier predictions in this study

indicate that a predictive gene signature for diagnosing the dose

of exposure to a sample has merit and that the number of genes

TABLE 2 Average multi-class accuracies of ML models.

R28
(%)

R100
(%)

R200
(%)

R300
(%)

R400
(%)

R500
(%)

R600
(%)

R700
(%)

R800
(%)

R900
(%)

R1000
(%)

GSE90909 Test 47 87 87 67 93 73 87 100 93 87 93

Train 94.4 88.9 86.1 91.7 88.9 91.7 88.9 94.1 80.6 81.6 80.6

GSE58613 Test 47 67 67 73 87 80 47 40 80 67 60

Train 76.3 73.7 81.6 81.6 65.8 71.1 68.4 81.6 68.4 73.7 76.3

BOTH-
NR

Test 48.4 35.5 45.2 54.8 45.2 35.5 67.7 67.7 67.7 58.1 54.8

Train 63.0 54.8 54.8 53.4 52.1 53.4 49.3 50.7 46.6 50.7 49.3

Averages Test 47 60 63 66 74 64 61 59 78 67 64

Train 75 70 73 74 65 69 65 73 63 67 68

FIGURE 2
Graph of accuracies of models trained on 70% and tested on 30% of datasets.
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used in the gene signature affected the predictive accuracies of

classifier models. There appears to be an optimal number of

genes which increases the accuracy of predictions. Although

there were variations in the results as the gene set size

changed, they generally increased at 400 genes. This was seen

during the classifier selecting stage and in the 70train/30test runs.

FIGURE 3
Confusionmatrix of combined Datasets 1 & 2. Panel (A) shows a strict accuracy of 61.3%where TP are predictions that match true classes. Panel
(B) allows a prediction that lands adjacent to the true class to be counted at a TP which brings the accuracy up to 96.8%. Widening the tolerance of
allowed cells is reasonable due to datasets having different dose classes. i.e., Dataset 3 has no 0.3 class but it does have a 0.25 class.

FIGURE 4
Confusion matrix of dose prediction from model trained on Datasets 1 & 2, then tested on Dataset 3.
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Test accuracies at 400 genes were 93% for GSE90909, 87% for

GSE58613 (Figure 2). As datasets becamemore heterogeneous by

mixing two datasets, the accuracy of the 400 genemodel was 48%.

Accuracies dropped further when testing samples were from a

dataset that was not included in the model training (Figure 4).

The testing accuracies of the mixed dataset model had a narrow

range of 20%–22% across gene set sizes. The training validation

accuracies, however, crested above 80% in the curve from

200 genes (83.6%) to 400 genes (80.3%) and hit the maximum

at 300 genes (85.2%) (Supplementary Table S2). The results

found during this study support the proposal of an optimized

gene signature based on 400 genes. We have named this set of

genes R400.

Models were able to predict the dose of exposure after being

trained on datasets. Although accuracies varied throughout the

range of experiments performed in this study, there was an

underlying trend of predictability in each of the models.

Accuracies dropped as complexities were added to the

experiments. In this study, we found that 400 genes provided

the best overall results across GSE90909 and GSE58613. At

700 genes, GSE90909 (by itself) obtained the highest testing

accuracy of 100% but GSE 58613 scored 40% which averages to

70%. At 400 genes, they scored 93% and 87% respectively which

averages to 90% and is the best performance (Table 2).

Predicting dose from one dataset on a
model built using multiple other datasets
using Evaluation 2

For a diagnostic model to be useful, it must be able to

diagnose a sample that is not from a known dataset, and it

must be able to incorporate different datasets in its training. To

test if such a model would achieve good results, a multiple-

dataset model was constructed. This time, the two datasets

GSE58613 and GSE65292 were normalized and combined and

used to train machine learning classifiers in Matlab. The dataset

GSE90909 was normalized and used for testing the model. All

three datasets were normalized separately and then two datasets

were combined.

The combined dataset of 1&2 was used as the training set for

classification machine learning app of Matlab then recorded

model validation results and exported model. The model was

used to predict doses of samples from a 3rd dataset. Multiple gene

set sizes were tested ranging from 28 to 1,000. When the test sets

were tested on the models, the dose prediction can be improved if

the correct detection diagonal is again widened to catch adjacent

cells in the confusionmatrix for nearest dose diagnosis (Figure 4).

That will improve usability in the field when the training dataset

may not have seen samples similar to the unknown samples that

they are testing. The predictions appear to have a tangent line

which seems to imply a bias or skewing of the results

(Supplementary Figures S2–S4) which should be possible to

account for so that predictive capabilities are maintained

across a wide range of patients. This linear skewing/bias

suggests a linear relationship with dose for this gene set so

linear regression was done using Matlab.

Linear regression models were trained on the combined,

normalized dataset of GSE58613 and GSE65292 which was

used for the training of the ML classification models. Then

the unknown samples from GSE90909 were tested on two

models built using R400 and R1000. The Root Mean Square

Error (RMSE) of the test results from R400 were slightly better

than those from R1000 and the plots of predicted vs. actual doses

seem to show a skew or bias between the datasets because the

plotted data all falls in similar linear clumping pattern to the left

of the correct prediction diagonal line (Supplementary

Figure S4).

Discussion

The work in this paper is intended to see if a specific test or

assay can be developed to diagnose the dose of ionizing radiation

exposure of samples efficiently and accurately from various

situations and locations. We looked for an optimized number

of genes with the best predictability. Having an optimized gene

set size would allow radiation-dose prediction specific assay

equipment to be developed so that machine learning models

can be used in the place of expert examinations for high-

throughput diagnoses. We run a total of 2,475 experiments

(i.e., 15models x 5folds x 11gene sets x 3datasets) with gene

set sizes of 28, 100, 200, 300, 400, 500, 600, 700, 800, 900, and

1,000 across three datasets. For such models to be as accurate as

possible, they will need to be trained using as wide of a population

base as available to have the best real-world matching

heterogeneity. For this study only genes that were included in

all three datasets were considered candidates for the R400/

R1000 signatures so that the machine learning models would

not have any missing features’ values for training or testing.

There appears to be an optimized size of the gene set used in

machine learning for radiation exposure dose prediction.

Preliminary reduction of a gene set size from 12,288 to

28 genes, selected for correlation scores above 0.80, resulted in

improved prediction accuracy from 51.9% to 94.2%. The

optimum number of genes seems to peak between 400 and

800 genes depending on the dataset used. Data across studies

have variations in the experiments that can cause results from

one study to have dissimilarities in datasets from a similar study.

Things such as equipment differences, procedures, and donor

population sampling can make similar biological reactions have

differently recorded results compared to results from other

studies. For this reason, a specific gene set used in multiple

studies can provide differing results. This study found an optimal

ordered gene set comprised of the 400 top selected genes which

we call R400. Since some samples presented for testing may not
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contain all genes in R400 and because predictive accuracy also

peaked at 800 genes (Figure 2), a gene set was created with

1,000 genes which we called R1000. As such, R400 is a subset of

R1000; it is comprised of the top 400 available genes of R1000.

We think these two gene sets are important because the accuracy

peaked at a number close to 400 genes and again at close to

1,000 genes. The order of the gene set affected the model’s

accuracy. This means that the accuracy of a model built on

R400 will have best results if the order of the genes is maintained

as is listed in the Supplementary Table S4. The same goes for

R1000 which is provided as Supplementary Table S5.

The gene set size for this paper was initially chosen to be

28 by limiting inclusion to only those genes with a Pearson

correlation score >0.80.Much of the literature found on radiation

effects on specific genes listed two to six genes as being reactive to

exposure. Other toxicogenomics studies have narrowed the

number of genes to 1,000 and 1,500 (Subramanian et al.,

2017). Earlier we have reported T1000 and illustrated better

results were obtained with the gene set size of 1,000 (Soufan et al.,

2019). Further, we explored grouping these genes and

summarizing their expression into modules to support

deciding if a chemical exposure was toxic or non-toxic (Ewald

et al., 2021, 2020). Similarly, this study also found higher

accuracies by including up to 1,000 genes (Figure 2; Table 2).

In this study, as the heterogeneousness of the samples

increased, the predictions became less accurate. For example,

when two datasets were merged to create a larger, more diverse

dataset, accuracies dropped (Table 2). Even lower accuracies were

seen when models were trained on one or more datasets and then

samples from another dataset were used for testing. Even so, the

predictions seemed to maintain a straight, diagonal pattern but

were skewed from the left-down diagonal (Figure 4).

Machine learning was able to predict the dose of radiation

exposure of samples across different datasets using the same

gene set. Average accuracies for each gene set size peaked at 79%

for R800 and 76% for R400 (Table 2). When a model was

trained on one or two datasets, it was able to predict dose for

samples from a dataset not used in the training. Accuracies fell

when a new dataset was used on a model created from other

datasets, but the results still showed a strong predictive

capability when consideration is taken of the discrete nature

of the classification model and the fact that the model may not

have a specific class for the actual dose in a sample. To allow for

this, tolerances can be increased by accepting predictions which

are adjacent to the diagonal (Figure 3) and dose measures can be

expanded so that the neighboring classifications can be

combined when appropriate. For example, a dose of 0.56 Gy

is the closest class available in the model to the actual dose of

0.50 Gy in the sample being tested. An allowance can be made

here because of the predictability of diagnosis is still relevant

and helpful at this point. When determining the accuracy of

tests, the size of the differences between predicted and actual

doses were considered.

The limitations of the predictive model that is proposed here

comes from the training data it depends upon. Variations in the

conditions and settings under which the samples were collected

can have great influence on the accuracy of the model. Variations

in populations and the limited number of samples available also

limit the robustness of the model. If a sample is submitted for

testing that is very dissimilar to the training samples, the accuracy

of the prediction may suffer. To overcome this shortcoming, a

wide range of samples should be used for training.

Another variance that seems to be possible is a skewing or

bias effect shown in the results of datasets on models built from

other datasets (Figure 4; Supplementary Figures S2–S4). This is

an important point of consideration since a practical use of

R400 would be to test samples with unknown exposure doses for

patient diagnosis. A calibration method could be developed to

allow correct predictions that fall on the skew line. A model

trained on combined datasets does seem to have dose prediction

capability on unknown samples. More datasets can be added to

the model to increase its predictive comprehensiveness for

samples with unknown exposure situations. The positive

results of combining two datasets and testing on a third

dataset imply a model that can be more broadly used by

adding more samples from new datasets. This should make

the mode more applicable to a wider population making it

better able to test unknown samples from varied clinical

scenarios.

Having a robust training dataset from many heterogeneous

samples should provide better predictability across a broad

population of diverse people. To ensure that the most

inclusive model is built which will be sensitive and specific to

gene responses across diverse populations, a wide range of

samples from all demographics and geographical locations

should be used for training. We set out to test the validity of

using a training set built from multiple datasets to increase the

predictability of samples from unknown sources. To do so,

datasets had to be merged to simulate the on-going collection

of training data for a robust, real-world model.

Literature validation of some selected
genes

Radiation exposure is often encountered when treating

patients with cancer (e.g., lung or breast cancer). While about

half of the patients are tolerant to radiotherapy, others experience

adverse effects (Borrego-Soto et al., 2015). Particles from ionizing

radiation can transfer some of their high energy into atoms and

release electrons that will affect the covalent bonds in DNA

(i.e., cause common bonds in DNA to break) (Borrego-Soto et al.,

2015). This can lead to apoptosis or even uncontrolled

proliferation (Borrego-Soto et al., 2015). The in-place

mechanisms consist of a cascade of biochemical events

triggered by gene regulation in response to such radiation
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exposure events (Borrego-Soto et al., 2015). Cells have

mechanisms to counteract such exposures, including

mechanisms to fix single-stranded DNA breaks, double-

stranded DNA breaks, frame shift mutations and even

generation of ROS or reactive oxygenation species (Borrego-

Soto et al., 2015). Figure 5 highlights how specifically radiation

interacts with p53 and what possible pathways it is triggering

using our top 5 selected genes.

One of the essential anti-cancer or cell repair mechanisms in

our bodies is the p53 pathway. Typically, p53 produced is

ubiquitylated by the cell’s MDM2 ligase and hydrolyzed 26S

proteasome (Roy et al., 2022). However, radiation exposure or

any metabolic stress causes the phosphorylation of p53 to various

degrees at the N-terminus (He et al., 2019). These effects occur

while undergoing acetylation, phosphorylation or sumoylation

via cyclin-dependent kinases, checkpoint kinases, or

Homeodomain-Interacting Protein Kinase-2 (Zhao and Malik,

2022). These phosphorylation patterns prevent MDM2 from

binding and the ubiquitination of p53 (Koo et al., 2022).

Based on the degree and the pattern phosphorylation of p53,

a different pattern of down cascade biochemical events occurs.

Gamma radiation exposure is reported to affect death

receptors based on the Fas gene, belonging to a family of

death receptors called Tumor necrosis factor (Lhuillier et al.,

2021). Activation of Fas receptors promotes apoptosis of cells.

There are also other pathways involved in the extrinsic

p53 pathway. The intrinsic p53 pathway, on the other hand,

consists of the Bcl-2 class of proteins, which relays the release of

Cytochrome-C via permeabilization (Zhang et al., 2021). During

metabolic stress, pro-apoptotic proteins BAX, PUMA and

NOXA are released, stimulating the release of Cytochrome-C

from mitochondria (Chota et al., 2021). Apoptotic Protease-

Activating Factor-1, Procaspase-9 and Cytochrome-C combine

to form apoptosome complexes. The caspase-9 part of the

apoptosome activates caspase3, caspase6 and caspase9,

promoting the final demise of the aberrant cell (Avrutsky and

Troy, 2021).

Radiation causes similar metabolic stress-related events, and

our results indicate a significant similarity between radiation and

other metabolic cascades in cancer-related events. We picked

several top genes from the R400 signature to evaluate our

findings and reported a literature review as supporting evidence.

The GADD45A gene (ranked 1 in our list) is expressed as a

result of stressful growth conditions, including radiation and was

also shown to have a marked increase in expression over 56% of

patients, in stage 0 esophageal cancer (Ishiguro et al., 2016). The

activation was independent but sometimes correlated with the

activation of p53 tumor suppressor genes. Patients with increased

expression of GADD45A showed higher survival rates (Ishiguro

et al., 2016). Moreover, it was found that GADD45A

overexpression by transfection of cancerous cells using Si-

RNA resulted in the cells being stronger and caused fewer

FIGURE 5
Although there are many pathways for cellular stress, usually cellular stress acts via phosphorylation of p53 tumor suppressor genes. P53 is
referred to as the guardian of the genome as it is involved in various repair mechanisms. Based on the phosphorylation pattern of p53, various
biochemical pathways for cell repair are activated. There are other pathways for, e.g., FHL2 pathway which also handle cellular stress and may have
bivalent functions, i.e., act as tumor suppressor or also promoter.
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cells to become apoptotic when exposed to radiation (Zhang

et al., 2011).

The MDM2 gene (ranked 2 in our list) belongs to a class of

oncoproteins that is responsible for carrying p53 from the

nucleus to the cytoplasm, where p53 is degraded by

proteolytic enzymes (Mendoza et al., 2014, p. 2). It was

discovered as a result of amplification of amplicons obtained

from tumorigenic mouse cell line 3T3DM. It inhibits the

p53 tumor suppressor gene, which is triggered during stressful

growth conditions such as radiation and cancer. P53 is

responsible for activating various repair mechanisms such as

antiangiogenic genes, arresting cell growth cycle, apoptosis, DNA

repair and autophagy. Essentially P53 triggers the transcriptional

activation ofMDM2, which in turn blocks p53 unless more p53 is

released with additional or incremental stress on the cell

(Mendoza et al., 2014). It is also reported that exposure of

cells to UV or ionizing radiation was directly correlated to

increased MDM2 expression (Perry, 2004, p. 2). The

TNFSF4 gene (ranked 3 in our list) belongs to the TNF

superfamily, also known as tumor necrosis factor

(“TNFSF4 TNF superfamily member 4 [ Homo sapiens

(human) ]”, National Library of Medicine, 2022), and was

found to be abnormally expressed in breast carcinomas (Li K

et al., 2021). As cancers become more and more aggressive, the

immune system weakens. The reactivation of immune cells was

found to be correlated with increased expression of the

TNFSF4 gene (Li K et al., 2021). A dose-dependent increase

in TNFSF4 was found in response to X-ray radiation (Li et al.,

2014). However, its expression was also found to be associated

with chemotherapeutic resistance of carcinoma cells and reduced

apoptotic behavior of carcinomas when exposed to radiation

along with drugs like cisplatin (Li Y et al., 2021).

The FHL2 (ranked 4 in our list) was reported to be extremely

important for pancreatic cancer survival, and it was found that a

decrease in its expression was correlated to low survival cells

(Zienert et al., 2015). It was found to arrest the cell cycle of

cancerous cells or cells exposed to radiation (Wang et al., 2021,

p. 2). FHL2 was also found to be one of the genes activated during

p53 tumor suppressor activation genes when cells are exposed to

stressful conditions such as cancer or DNA damage as a result of

radiation, although it is not directly related to p53 (Xu et al.,

2014).

POLH (ranked 5 in our list) belongs to a family of DNA

polymerases and was found to be upregulated by DNA damage as

a result of exposure to ionizing radiation. It was also found that

knocking out or downregulating the XPV gene causes mutations

in cells and renders them sensitive to UV radiation and also

causes issues as it impairs p53 activating during DNA damage

and also increases the cancerous cell’s resistance to apoptosis (Liu

and Chen, 2006). PHLDA3 (ranked 6 in our list) is yet another

downstream product of p53 activation. It is one of the many

genres p53 activates as a part of its DNA repair suite. It was found

to be activated in many lung carcinomas, indicating a role as a

protective mechanism against cancers. PHLDA3 was found to

deactivate Akt, which helps the MDM2 protein block p53 in their

autoregulatory feedback loop (Kawase et al., 2009). The

inactivation of the PHLDA3 gene promotes pancreatic

carcinoma development. It was found that the expression of

the PHLDA3 gene was also related to exposure to UV or gamma

radiation (Ohki et al., 2014). These findings confirm that changes

in expression of several of our top-ranked genes can lead to

changes in the cell as part of specific pathways given radiation

exposure.

Conclusion

There seems to exist a specific geneset that will provide an

optimal predictive capability in diagnosing a patient with

exposure to an unknown dose of radiation. The size and

order of these genes when used for model training are

important for accurate and reliable results on test samples.

R400 provided the best results when testing on the three

datasets used in this study. Since other datasets or samples

may not contain expressions from all of R400’s genes,

R1000 was created and included here so that the best

400 genes available in the test data could be selected.

For widespread applicability, more datasets should be

incorporated in model building because more samples can

build a more robust model due to the wider population

representation incorporated by using more donors. Although

the datasets used in this study had limited donor variability, the

combining of datasets was intended to test the viability of

merging dissimilar datasets to increase the gene signature’s

efficacy among diverse populations. Next efforts should be to

find and incorporate radiation-exposure datasets that contain

samples that would increase the variability of the training data

across each of these characteristics. Time/duration of radiation

exposure affects different genes differently. Having a robust

dataset upon which to build the model is important to ensure

its applicability to various scenarios. This includes the factor of

time/duration because as time passes each individual gene in the

signature will continue to react in its predictable fashion. This

suggests that the R400/R1000 gene signature will have a

“predictable” response over time, and by dose. In this paper,

we did not eliminate or include any samples based on time/

duration but instead allowed the inherent heterogeneity of the

datasets to be used in building the models. Each of the datasets

had their own timelines which we also felt contributed to the

variation of time/duration in this study. We can say the genes

showed responses by at least 24 h because that is the shortest

amount of time of testing among the datasets used in this study.

Since the R400/R1000 model evaluates the expressions of each

gene, which each change in predictable ways, the model can learn

to even predict the time/duration of samples given enough

heterogeneity in the training data. This makes the R400/
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R1000 applicable to times ranging from earliest changes to latest

changes. In this study, the model also correctly classified non-

irradiated samples implying that the model can be used as soon as

radiation exposure is suspected.

The results suggest a somewhat linear relationship between

R400 and dose. This correlation is further supported by the

results shown in the skewing of the predictions of a third dataset

tested on a model trained on two other datasets.

Other papers found in the literature review often only listed

three to twenty genes and some listed up to 1,000. Correlation

results of this study looked at a gene set size selected by limiting

the genes to only those with correlation scores above 0.80. This

resulted in a gene set size of 28 for the first dataset. Testing

revealed that more genes than that provided better predictive

results which peaked around 400 and 800 genes. The top

400 genes found in all three datasets gave the best results and

was called R400. A second gene set of the top 1,000 genes found

in all three datasets were ordered and called R1000. Its main

purpose is to provide a greater selection of genes to create a

R400 set for any given sample whichmay not have all of the genes

listed found in the R400 of this paper.
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