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Computational systems biology (CSB) is a field that emerged primarily as the

product of research activities. As such, it grew in several directions in a

distributed and uncoordinated manner making the area appealing and

fascinating. The idea of not having to follow a specific path but instead

creating one fueled innovation. As the field matured, several interdisciplinary

graduate programs emerged attempting to educate future generations of

computational systems biologists. These educational initiatives coordinated

the dissemination of information across student populations that had already

decided to specialize in this field. However, we are now entering an era where

CSB, having established itself as a valuable research discipline, is attempting the

next major step: Entering undergraduate curricula. As interesting as this

endeavor may sound, it has several difficulties, mainly because the field is

not uniformly defined. In this manuscript, we argue that this diversity is a

significant advantage and that several incarnations of an undergraduate-level

CSB biology course could, and should, be developed tailored to programmatic

needs. In this manuscript, we share our experiences creating a course as part of

a Biomedical Engineering program.
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Introduction

We wish to begin this discussion by stating that this work is neither a review of

systems biology courses nor a generic template of what a “system biology course” should

be. Instead, in this manuscript, we wish to share one researcher/instructor’s motivation

and struggles when “developing” a computational systems biology (CSB) course and why
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and how this researcher/instructor envisioned and implemented

the development of such a course.

First, when developing any course, it is essential to ask a

critical question: What is the topic covered by the course? The

curriculum of any academic department, and at this point, we

wish to emphasize that we are focusing on undergraduate

education, is developed around critical competencies the

graduates of the program need to master.

These key competencies, in the parlance of a curriculum, are

developed through the teaching of “core courses” that graduates

of a specific major are expected to master to a reasonable level (in

addition to general education and discipline-specific elective

courses). These courses come together, almost in the form of

a 3-days hierarchical puzzle, with one layer as the foundation of

the next. At the same time, each layer is also composed of

interlocking elements (courses). So, taking my home

department (Biomedical Engineering, BME) as an example, in

their freshman year, students take mostly math, physics,

chemistry, and biology courses, often in fall/spring sequences,

thus forming a foundation for the sophomore year where

students are introduced to biomedical engineering principles

and human physiology using 1st-year courses as the

foundation and building bridges between BME and

physiology/biology. This leads to the 3rd year with a focus on

BME thermodynamics, kinetics, transport, devices, biomaterials,

and numerical analysis, all of which depend on earlier courses

and feeding off each other. Eventually, students in their 4th year

focus on senior design and BME electives, which draw from the

foundations of earlier years.

In developing a curriculum, and by extension, courses, the

material taught has to be correctly placed in a context that is

defined based on the concept of subject matter. Thus, the subject

matter becomes central in developing a course and needs to meet

two broad criteria: First, the scope of the subject matter needs to

be clearly articulated; and second, different subject matters need

to rationally inter-connect so that, eventually, a discipline can

emerge. Let us consider a typical BME course, “biomedical

transport phenomena.” Although the way the material is

covered can substantially differ from institution to institution

(even from instructor to instructor), the course description will

inevitably boil down to something like “[the course] introduces

and applies the concepts of momentum, mass, and thermal

energy transport in the context of problems of interest in

biomedical sciences and engineering1.” In fact, it is interesting

that a very similar description would also apply to my other

academic home, Chemical Engineering, with a slight change of

the focus of the applications. We should expect descriptions

similar to “[transport phenomena] provides a unified treatment

of momentum, mass, and energy transport in chemical

engineering problems2.” We notice that both course

descriptions rely on a common foundation while differing in

the scope of the applications. Therefore, the fundamentals on

which a course, like “transport phenomena,” is based and the

essential content to be delivered are universal, well-defined, and

generally agreed upon. The delivery or focus may differ; however,

there is no ambiguity regarding the aims, scope, and principles.

The same holds for, basically, all courses that define the “core”

component of any curriculum.

This brings us to computational systems biology. When

thinking about developing a CSB course, the first question

one asks is, “what is systems biology?”3 As one can imagine,

this is an important question because its answer will eventually

determine the content of the course. Without delving into the

history and origins of the field–well above and beyond the scope

of the present manuscript–we quickly realize that defining SB,

let alone CSB, is no easy task. This is best exemplified by NIH’s

attempt to provide a lay person’s definition of the field, which

starts as follows: “Ask five different astrophysicists to define a

black hole, the saying goes, and you’ll get five different answers.

But ask five biomedical researchers to define systems biology, and

you’ll get 10 different answers or maybe more. Systems biology is

an approach in biomedical research to understanding the larger

picture—be it at the level of the organism, tissue, or cell—by

putting its pieces together. It is in stark contrast to decades of

reductionist biology, which involves taking the pieces apart.4”

This attempt to define SB immediately raises a critical concern:

defining the term brings to mind the infamous quote, “I shall not

today attempt further to define the kinds of material I understand

to be embraced within that shorthand description, and perhaps I

could never succeed in intelligibly doing so. But I know it when I

see it, and the motion picture involved in this case is not that”

used in 1964 by United States Supreme Court Justice Potter

Stewart to describe his threshold test for obscenity in Jacobellis v.

Ohio, and second the idea that SB is focused on looking at the big

picture by putting “pieces” together.

A definition succinctly combining the fundamental concepts

was provided by the Institute of Systems Biology (ISB), a

pioneering institution in the field, suggesting that “Systems

biology is based on the understanding that the whole is

greater than the sum of the parts.5” This brings us to

Computational Systems Biology, best described as the

application of modeling and computational methods

(mathematics, physics, engineering, and computing) for

placing holistic systems biology data (the parts of the sum) in

1 Taken from: https://www.bme.ufl.edu/course/biomedical-transport-
phenomena-bme-4632/

2 Taken from: https://cbe.engineering.uiowa.edu/file/cbe5115-
transport-phenomena-syllabus

3 We draw a distinction between systems biology and computational (or
quantitative) systems biology, but we will talk more about that later.

4 https://irp.nih.gov/catalyst/v19i6/systems-biology-as-defined-by-nih

5 https://isbscience.org/about/what-is-systems-biology/
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a context, extracting quantitative information and making

quantifiable predictions based on a wealth of information. We,

therefore, distinguish between systems biology and

computational systems biology6 (SB vs. CSB) in that the latter

focuses primarily on the computational or quantitative methods

for analyzing SB data, as opposed to the experimental methods

and techniques that, by taking a holistic view, generate system-

wide observations of the biological system.

Holistic computational approaches, also known as systems-

based approaches, are not new, especially to the engineering field

(Pistikopoulos et al., 2021). However, it must be noticed that

systems-based approaches originated and have been primarily

developed to address questions in complex engineered systems,

CoES. Systems biology, however, emergence as a result of the

need to study complex biological systems, CoBS, (Androulakis,

2014; Androulakis, 2015). Among the many differences between

CoES and CoBS, two stand out prominently: First, in CoES the

parts making the “whole” are well known and have been defined

and designed by the user; second, how the elements interact with

each are known, since they have been engineered. Although

emergence can be a property of engineered systems (Soria Zurita

and Tumer, 2017) it can be analyzed given that the degrees of

freedom and the rules are better understood.

On the other hand, in CoBS neither the parts not the way the

elements interact are well understood. Emergence in CoBS,

which shapes their behavior, is yet to be characterized (Hao

et al., 2021). This lack of foundational approaches makes

analyzing the “whole” that SB promises challenging.

Which brings us back to our original question: how does one

develop a course focusing on the theory, methods, and

approaches for studying the “whole” when neither the parts

nor the rules that govern the dynamics, and interactions, of

the parts are fully understood? CSB emerged due to a lack of first

principles understanding of biology, and life, leading to the

observation that amassing carefully designed observational

data, combined with reverse-engineering approaches, would

lead to a reconstruction of the physical/biological/

physiological reality. So CSB can be perceived as the

compendium of theoretical, mathematical modeling and

computational7 approaches that will enable us to extract

approximations of the fundamental laws to rationally interpret

the observations and make well educated predictions. However,

because of the enormous complexity of biological systems and

the diversity of modalities in which biological and physiological

data exist, the types of theory, modeling and computational

approaches that can be used form an, almost, uncountable set!

Which brings us to heart of the question: how can one design “a”

course to capture this enormous diversity?

1 Why, who, and what

In designing a course, three questions need to be addressed at

the very beginning: Why would the material be of interest to key

stakeholders, i.e., students and future employers; who are the

students the course will be offered to, i.e., what is their

background and broader interests; and finally, what will the

students be taught, i.e., which topics of the subject in question

will be covered? Regarding CSB, none of these questions are easy

to answer. In this direction, it is also essential to make two critical

observations: 1) Our emphasis is on computational systems

biology (CSB), which implies that the focus is on theoretical,

mathematical, and computational methods for analyzing and,

especially, modeling biological data; and 2) we aim to address

undergraduate students, that is students who have, at best, a solid

understanding of their degree-specific fundamentals. The later

point is crucial and will be further discussed shortly.

1.1 Why teach a course in computational
systems biology?

Nobel Laureate David Baltimore 20 years ago stated that

because of profound scientific and technological advances,

“biology became an information science” (Baltimore, 2001).

As we began to probe biological systems at multiple scales of

physiological organization, at increased spatial and longitudinal

resolution as well as at a population level and started amassing

large amounts of diverse information from the cellular to the host

and eventually population levels, it became apparent that to

upgrade the information content of biological data, mathematical

and computer-based methodologies were required

(Stephanopoulos, 1999). Therefore, the scientific community

has long realized that as the rate of generating biological

information increases, the role of CSB becomes critical for

translating data and information into to actual knowledge,

targets, and actions.

Furthermore, the possibility of incorporating mathematical

and computational modeling in business and regulatory

decisions is what builds momentum for deploying further

systems approaches (Androulakis, 2022). Recently, the FDA

made the development of computational modeling a key

priority in supporting regulatory decision-making (US FDA,

2011), aiming to facilitate faster, cheaper, and better pathways

to market (Drager and Palsson, 2014). FDA’s strategic plan

(FDA, 2011) advocated the development of in silico

computational methods to advance virtual clinical trials

6 We do not draw a distinction between computational systems biology
and quantitative systems biology. We assume that the two
(computational and quantitative) can be used interchangeably in this
context and that both imply the development of mathematical or
computational models for analyzing and interpreting systems biology
data. For consistency we are using the term computational systems
biology (CSB).

7 Please, see appendix
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connecting individual patient characteristics to outcomes;

develop computer models simulating cells and organs to

predict safety and efficacy; and integrate modeling with safety

data to better predict patient-specific clinical risk-benefit. FDA’s

support led to the development of the “Model-informed Drug

Development” pilot program8 to initiate discussions between

regulators and sponsors. A recently concluded scientific

exchange and review of clinical drug applications in various

therapeutic areas (Bai et al., 2021) revealed a wide range of

systems-based approaches for model development, from de novo

models to adaptation of existing ones; as well as the use of a

variety of computational methods, strategies and data modalities

by the pharmaceutical industry. Similarly, the European

regulatory agencies (European Medicines Agency, EMA) have

argued that the value of in silico methods in development and

evaluation has been convincingly demonstrated and that

modeling and simulation has evolved from “being a possible

alternative” to a “must for development of new medicines”

(Musuamba et al., 2021).

It is, therefore, clear that the need for providing education

around CSB exists; it is only expected to grow; and it will serve

not only the academic and research communities but also the

pharmaceutical industry and the regulatory agencies in making

business and approval decisions, with the expectation that

demand in this broader domain is only expected to increase.

The latter may be the main driver since the broader

pharmaceutical sector is the leading employer of college

graduates in life sciences, including biomedical (and chemical)

engineering.

1.2 Who should take a computational
systems biology course?

The number of systems biology courses and programs is

increasing across the world. A simple search would produce

numerous hits. However, one must also observe that most of

these programs are either graduate (Ph.D.) or interdisciplinary

programs, and often CSB courses are offered as a graduate or

high-level undergraduate electives. The implication is that an

implicit self-selection process is in place, and students, especially

undergraduates, who gravitate towards these courses do so

because they have already developed a strong interest and the

necessary background. The challenge we faced in developing a

CSB course was driven by our desire to introduce a more general

population of students to concepts of CSB to expand their arsenal

and improve their professional prospects.

However, CSB emerged by the need to bring together diverse

disciplines, including mathematics, engineering, and

computational sciences, to handle data and address questions

arising from life-science fields, such as cell andmolecular biology,

neuroscience, pharmacology, physiology, and medicine. So,

unlike other subjects, which can be more readily associated

with a single discipline, in CSB “beauty is in the eyes of the

beholder.” SB, and by extension CSB, is the “emergent” result of

scientific explorations rather than the attempt to establish a

discipline-specific foundation. So, unlike subjects that form

the foundation of a “degree” and whose fundamental

principles are widely accepted and agreed upon (see the

Transport Phenomena example discussed earlier), CSB

emerged in an asynchronous and distributed manner while

various researchers were attempting to rationalize data and

information that was generated in diverse groups during their

research activities. As such, CSB is the result of an environment

characterized by high entropy levels!

This creates issues because it is not clear how to design a course

to match student background on the one hand and the broad

spectrum of questions raised under a CSB umbrella on the other.

1.3 What to teach in a computational
systems biology course

I had my first exposure to CSB about 15 years ago. At the

time, my experimental collaborator, an “old fashioned, hardcore,

card-carrying” biologist, described to me his first microarray

experiments as follows “it felt like I had spent my entire life

looking at a tree in my backyard while sitting on my porch and

suddenly I climbed the roof of my house and realized I could see

the forest.” This is, I believe, a very nice description of SB,

especially as we merge SB with pharmacology and physiology

into what is now referred to as quantitative systems

pharmacology (Vodovotz et al., 2013; Androulakis, 2015; Rao

et al., 2016a; Scheff et al., 2016; Putnins et al., 2022). Looking

beyond the tree closest to us, not only at all the other trees but

also at all other living and nonliving things one can find in a

forest, and realizing how they depend on each other, changes our

perspective. But once we realized there is a forest, we also realized

that there are several ways to look at and explore it.

It is reasonable to assume that the concept of SB may have

existed in people’s minds for many years (Mesarovic, 1968);

however, it was not until systematic and systemic perturbations

became readily available (Ideker et al., 2001) that this realization

was appreciated. We then recognized that the biological “forest”

could be viewed from different angles, depending on the

perturbation, i.e., point of view. This made us move beyond

the correlational or simple(r) modeling approaches, which would

suffice when the amount of data was easily manageable or the

hypothesis well defined, to more advanced methods. However,

looking at a problem from different angles, depending on the

type of question one asks, results in fundamentally different

approaches for analyzing the observations.
8 https://www.fda.gov/drugs/development-resources/model-

informed-drug-development-pilot-program
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Unlike more “traditional” disciplines and subjects, systems

biology evolved along with technological advances, enabling the

generation of data modalities of increased complexity. Being an

evolving endeavor, the more questions were answered, the more

questions were generated. One can look at events at the level of

the transcriptome, the proteome, the metabolome, or the

epigenome to the exposome. One can consider individual

signaling cascades or networks within and across cells and

organs. We can consider deterministic or stochastic dynamics,

discrete or continuous, equation or rule-based, and more

recently, machine learning and AI. The data can be

numerical, textual, or interpreted. And the list goes on and on

(Scheff et al., 2016). The complexity in nicely described in (Klipp

et al., 2016), outlining a comprehensive, albeit not exhaustive, list

of topics assembled in an attempt to construct an inclusive

“Systems biology textbook.”

However, what further complicates “teaching” of systems

biology at the undergraduate level is that the methodologies

require a solid theoretical, mathematical, and computational

foundation, or at least a good understanding of basic concepts

and methods. One can readily appreciate the need for some basic

statistics and probability; fundamentals of ordinary differential

equations, dynamics, and stability; linear algebra; basic concepts

of network theory; optimization, which will serve as the

foundation for more specific topics from parameter estimation

to machine learning; a certain level of familiarity with basic

programming concepts along the lines of (Kernighan and Pike,

1999); good understanding with a programming environment/

language such as MATLAB, R, Python; basic concepts of

numerical analysis, primarily ODE integration; and the list

can go on and on. And, of course, we have purposely left out

any biological, physiological, and pharmacological background

that is needed to at least appreciate the origin, role, and

information content of the data that is to be analyzed and

modeled!

Of course, it is inconceivable to design a one-semester course

that will discuss in depth all the subjects. It would be hard enough

to compress each of them into one course, let alone cover them all

in one semester or term and do so at the undergraduate level

while students develop foundations.

And then comes yet another complication: By definition

systems biology is an interdisciplinary topic that we wish to

introduce to students of various backgrounds. Therefore, the

“one size fits all” approach is bound to fail! Unlike the

“transport phenomena” example we discussed earlier,

where both chemical and biomedical engineers share a

common engineering foundation on which discipline-

specific variations can be developed, a common underlying

structure does not exist in CSB. Instead, students of different

backgrounds (mathematics, computer science, engineering,

life science, medicine) have mastered building blocks but do

not necessarily have an appreciation for the broader topics or

how they come together.

Despite, or maybe inspired by, these difficulties several

outstanding attempts have been made to “formalize” CSB by

assembling critical information in the form of a standalone

textbook to be used either in a classroom or as an

independent study guide. There have been many excellent

attempts, and we will not provide a comprehensive list here.

Instead, a few examples will be used to illustrate some key points9.

It is interesting to note a sequence authored by a pioneer in the

field, Bernhard Palsson. His 2006 book (Palsson, 2006),

motivated by his outstanding work on metabolic flux analysis,

focused the discussion on the analysis and reconstruction of

metabolic networks, primarily emphasizing their steady-state

properties. His 2011 book (Palsson, 2011) considers the

description of dynamic states; therefore, kinetic aspects of

metabolism play a central role. The combination of the two

leads to the emergence of network dynamics which is the theme

of several equally impressive attempts. The excellent book by

Marcus Covert (Covert, 2015) aims to expand on dynamics and

presents the material in two sections. The first mainly focuses on

methodological discussions of topics such as control theory,

Boolean representations, solutions of ODEs, graphical analysis,

numerical integration, and stochastic simulation. The first part,

therefore, is essentially describing a set of tools. The second

section takes a closer look at how these tools enable the analysis of

transcriptional regulation, signal transduction, and metabolism

modules and introduces the students to mode complex models.

The approach of Eberhard Voit, a pioneer in developing

mathematical models in biology (Voit, 2018), further expands

the modeling tools by presenting a broader introduction to

mathematical modeling, including parameter estimation,

sensitivity analysis, and population dynamics. Then moves

into the modeling of specific sub-systems (from genes to

signaling to proteins to metabolism) but then concludes by

extending the envelope towards physiological systems and

applications of CSB modeling in pharmacology and medicine.

Thus, the horizons of the possible applications of CSB are further

extended. The final example we will discuss is the book by Alon

(2001) which takes a fascinating view of how to approach, and

teach, CSB in that it focuses on basic building blocks, i.e., motifs,

and shows how these structures (feedforward, feedback, etc.) can

lead to the emergence of interesting dynamics (biostability,

memory, oscillations, robustness, optimality) and how this

modularity guides and underlies function. So, this approach is

focused more on design principles.

So, it is fascinating to see how the “blind men and an

elephant10” parable plays in the field of CSB and how the

“holistic” approach interestingly leads to different points of

9 We sincerely apologize that we cannot provide a comprehensive list of
systems biology textbooks. This was only a practical limitation, and the
selection does not reflect bias of any kind.

10 https://en.wikipedia.org/wiki/Blind_men_and_an_elephant
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view depending on how one wishes to view the whole. This is not

bad; it simply emphasizes the synthetic nature of the field and

that in SB we attempt to reconstruct a physical reality based on

observations whose nature is complementary instead of

fundamental, making the field attractive!

This diversity focuses on the actual protagonist: The course

instructor. We believe that instructor preferences could shape the

content and focus of a CSB course. This should not be perceived

as a drawback or limitation but rather a welcome. The field is rich

and should remain diverse, and the practitioners need to bring

the required diversity to maintain a robust, holistic approach.

2 One approach to teaching
computational systems biology with
an eye on quantitative systems
pharmacology

Quantitative Systems Pharmacology (QSP) is the result of the

coming together of four disciplines: 1) Systems biology, 2)

systems pharmacology, 3) systems physiology, and 4) data

science (Allerheiligen et al., 2011; Azer et al., 2021), all under

the umbrella of dynamic systems theory (Chae, 2020). The aim is

to develop integrated, multi-scale models predictive of treatment

response (Androulakis, 2015; Rao et al., 2016a; Scheff et al.,

2016). CSB is one of the closest relatives to QSP (Ghosh et al.,

2011) since the latter integrates pharmacology, physiology, and

data science using principles, concepts, and computational

approaches initially developed under the CSB formalism for

describing events at the cellular and molecular levels.

In our attempt to address the needs of a population, primarily

undergraduate biomedical engineers, and better prepare them for

an evolving workforce; we wished to develop a systematic way to

expose students to CSB concepts with “an eye” on QSP. In

designing the sequence of themes to be discussed, we wished

to remain grounded in reality, realizing that the material and

approach were directed toward a student population that had.

a) Reasonable familiarity, including elements of linear algebra,

calculus, and differential equations, as expected of a

biomedical engineering student.

b) Good familiarity with very basic biology concepts, as expected

of a biomedical engineering major.

c) Reasonable familiarity with physiology principles, as expected

of a biomedical engineering major.

d) Limited, if any, pharmacology background.

e) Little, if any, knowledge and/or exposure to computational

sciences (especially machine learning).

f) Limited understanding of dynamic theory and analysis

concepts (such as bifurcation, stability analysis, etc.).

g) Little, if any, experience in developing dynamic models

beyond what would be discussed in a typical

undergraduate-level biomedical engineering course.

h) Limited, if any, understanding of optimization, which

inevitably will extend to non-linear regression and model

building in general.

i) Little familiarity with numerical computing beyond topics

covered in a typical biomedical engineering numerical

modeling course.

j) Limited familiarity with computer programming in

environments such as Matlab, R, or Python; and last but

not least.

k) The audience of the course is expected to be students who

neither have prior knowledge and experience with the

development of mathematical and computational models,

let alone CSB, nor have identified this field as one in

which they wish to excel in the future.

In other words, we wish to treat this as a typical biomedical

engineering course where students develop essential skills and

reach a general audience providing them with enough

information to spark their interest and establish a

foundation they could further build. The course is designed

so that it is offered to seniors in Biomedical (or Chemical)

Engineering and is a typical 3-credit, semester-long course.

This course is currently offered as a stand-alone course

providing students with the required foundation to pursue

advanced (graduate) coursework.

The above attributes, as earlier discussed, are fundamental

because usually, when designing and delivering a CSB course, it is

implicitly assumed that students are either experts in some/all

quantitative aspects or have a strong interest and/or desire to

develop this competency. Here, we wanted to expose students

and, if not creating an interest and desire to pursue the field, at

least provide enough information so that they could either be

engaged in meaningful discussions in future professional

interactions or appreciate that CSB could be a likely avenue

for addressing questions and problems in the future. It was,

therefore, important to also introduce students to the essence of

mathematical and computational modeling and its central role.

2.1 Course structure and components

2.1.1 On models and modeling
2.1.1.1 Objective and key concepts

The course begins with an introduction of basic, high-level,

contrasting key concepts:

1) Complicated vs. complex systems

2) Predictability vs. emergence

3) Engineered vs. biological systems

4) Hypothesis vs. data-driven research

5) Reductionism vs. holistic approaches

6) Theoretical vs. Mathematical vs. computational approaches

(see Appendix)
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The discussion subsequently introduces the need for

mathematical and computational approaches. Since these

assume the existence of a model, the discussion starts with the

following working definition “a model is a reduced

representation of physical reality.” The definition is used to

establish that a model depends on.

a) Context: Biological, clinical, or mathematical/

computational; and

b) Scope: Resolution, appropriateness, feasibility,

reproducibility, relevance, and translational potential

The discussion emphasizes the role of model systems

(i.e., how the physical reality is observationally approximated,

reflecting specific aspects of interest which are monitored and

recorded) and system models (i.e., the types and kinds of

mathematical and computational abstractions that are

developed to represent, approximate and simulate the model

system).

The purpose of the first module is to introduce students to

the “modeling continuum”, Figure 1, which sets the process

within a context. The continuum encompasses the following

steps: 1) Define a physical reality, e.g., the development of human

disease; 2) state overarching goals, e.g., reduce tumor growth rate;

3) identify targetable inquiries, e.g., specific molecular pathway,

target, or drug molecule; 4) develop an appropriately reduced

representation of physical reality, e.g., in vitro, ex vivo, in vivo

model with specific characteristics; 5) construct a model system,

e.g., specific instantiation such as animal model or cell culture

with clearly defined properties amenable to measurements as well

qualitative and quantitative description; 6) construct the system

model, e.g., express important properties of the model system

using computational and mathematical approaches in a way that

these can reasonably describe the observed response of the model

system.

2.1.1.2 Suggested literature

Reading materials include.

1) What is systems biology (Breitling, 2010)

2) The nature of experimental observations (Jose, 2020)

3) Likely pitfalls of systems biology (Joyner and Pedersen, 2011)

4) Mathematical modeling in a clinical setting (Buchman, 2002;

Buchman, 2004; Buchman, 2009)

5) The classic work of Claude Bernard (Bernard, 1949) is a

reference material of broader interest. A key quote from the

book is used as a central motivation, namely, “The application

of mathematics to natural phenomena is the aim of all science

because phenomenal law should always be mathematically

expressed.”

2.1.1.3 Outcome

Enable students to develop a solid understanding the purpose

of computational and mathematical modeling, its strengths, and

limitations in the context of biological and physiological systems.

2.1.2 Principles of indirect response modeling
2.1.2.1 Objective and key concepts

This module introduces the basic concepts of

physicochemical modeling and focuses on the basic principles

of indirect response modeling (IRM) as an approach to provide a

semi-mechanistic template and formalism for describing the

propagation of external signals across complex cascades of

signal transduction and transformation. The discussion also

involves simple models characteristic of more complex

interactions, such as tolerance, rebound, and transit

compartment modeling for approximating delayed signal

transduction. The IRM concept is introduced alongside a

discussion of mass action law to demonstrate how simple

rules can enable approximation of, yet to be determined,

FIGURE 1
The modeling “continuum” begins with the identification of a
physical reality, for example, a disease of interest. Subsequently,
relatively smaller but better described sub-tasks are identified
which are subsequently decomposed into specific targets for
further exploration. Once the latter task has been completed, a
reasonable representation of the original system has to be
developed and then materialized in the form an in vitro, ex vivo or
in vivo model system which is, at the same time, a reasonable
replicate of the physical reality as well as a rendition that can be
manipulated, probed, and characterized. So, for instance, the
appropriate reduced representation of physical reality can be a
particular strain of mouse, whereas the model system can be a
collagen-induced arthritis model in mice. The model system and
the targeted inquiries are mathematically and computationally
described and the resulting the CSB system model is used to
explain and/or predict observations obtained with the model
system. The validation of the model concerns the comparison of
model predictions to available experimental data.
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dynamic interactions. IRM is discussed in the context of

modeling the dynamics of biological/biochemical and

physiological dynamics, focusing on the ubiquitousness of this

modeling approach.

The concept of IRM is introduced as a simple yet robust

framework which enables the construction of semi-mechanistic

representations in a modular form. These expandable structures

enable the formation of a complex network that can exhibit non-

intuitive dynamics based on simple components. In Figure 2, we

depict a few characteristic structures. The fundamental unit 1)

presumes that any response expresses the equilibrium between a

0th-order rate of synthesis and a 1st-order degradation. So, at

“steady state,” the response, R, system is assumed to exist at a

condition such that:

dR

dt
� ksyn − kdR � 0 → Rss � ksyn

kd
(1)

R can describe any physiological response of interest. Any

external signal, s, acting on the system can impact either the

synthesis or degradation processes and does so by inducing or

suppressing the synthesis and/or degradation dynamics. The

suppression and induction terms can assume functional forms

consistent with the hypotheses to be tested. Therefore, the

constitutive Eq. 1 takes the form

dR

dt
� ksynf(s) − kdg(s)R

For example, if we assume that the external signal drives

some receptor-mediated effect on the system, then

f(s) � (1 ∓ ksyn,fs

Ksyn,f + s
)

g(s) � (1 ∓ kdeg ,gs

Kdeg ,g + s
)

The signal s can be either a constant or a time-dependent

entity itself, and, as seen in (b), a transient signal stimulating the

degradation of R, leads to its reversible suppression.

FIGURE 2
Mathematical structures of increased complexity combing the principles of mass action and IRM. (A) The basic dynamics of a physiological or
biological response described as the balance of a 0th order synthesis and 1st order degradation. Suchmodels are often used to quantify homeostatic
levels of biomarkers; (B) external signals act on either the synthesis or the degradation of a response. The hypothesis behind IRM is that although the
exact signal transduction may not be known in detail, the effects are approximated using functional forms acting either the synthesis or
degradation elements. The function forms themselves can encapsulate more complex phenomena, such as receptor saturation; (C) combining
simpler structures and establishing interactions among them can induce more complex responses such rebound and memory effects by
incorporating second signals regulated by the primary; finally (D) tolerance is used as another example of an interesting behavior emerging by
combining simple, but cross-regulating, modules. It is important to realize that in all these examples, the mathematical expressions are simple and
implement putative hypotheses. As opposed to being mathematical terms of arbitrary complexity leading to complex responses, the dynamics
emerge as a result of connectivity of simple elements.
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With these modules as the basis, we can begin to articulate

mode complex structures. For example, in 3) we have a typical

precursor-mediated response leading to a non-intuitive

“rebound” effect in R. The network we construct assumes

that the signal s stimulates the degradation of R, but also

stimulates the degradation of a precursor, P, which also drives

the degradation of the response. Even though the constitutive

elements are simple, the emergent response is rather

interesting as it induces a so-called “rebound” effect with

the response R being transiently reduced; however, the return

the steady state as the external signal clears exhibits a rebound

as the precursor gets depleted.

The final example 4) describes a simple tolerance model,

whereby the signal s induces the synthesis of the response

but also drives a secondary signal which induces the

degradation of R. One can then demonstrate that for this

system:

dR

dt
� k1(1 + ks

K + s
) − k2xR � 0

dx

dt
� k3(1 + ks

K + s
) − k4x � 0

0

Rss � k1k4
k2k3

xss � k3
k4

(1 + ks

K + s
)

Running a simple experiment in which a constant signal s is

presented to the system over a period of time, and subsequently,

it is increased, we notice that the eventual steady state of the

system is independent of the magnitude of the signal. This

collection of simple modules enables the description of a

system that eventually develops tolerance.

This module aims to provide students with basic concepts of

kinetics and demonstrate how complex dynamics can emerge

when simple(r) elements are appropriately connected. This

subject will be revisited in subsequent modules of the course.

2.1.2.2 Suggested literature

Reading materials include.

1) Basic principles of physicochemical modeling (Aldridge et al.,

2006; Bae et al., 2019)

2) A basic introduction to capacity-limited systems as a

fundamental concept guiding biological transformations at

all levels (Jusko, 1989)

3) Fundamentals ideas supporting the theory of IRM

(Krzyzanski and Jusko, 1997; Krzyzanski and Jusko, 1998;

Sharma and Jusko, 1998; Mager et al., 2003)

4) Modeling of physiologic responses using IRM (Jusko and Ko,

1994)

2.1.2.3 Outcome

Enable students to develop the basic foundation of

mathematical expressions based on simple rules (mass action,

resource-limited kinetics) to describe a wide range of biological

and physiological processes.

2.1.3 Pharmacogenomics
2.1.3.1 Objective and key concepts

Pharmacogenomics, loosely described as the study of how

drugs impact transcriptional responses, is introduced as a way to

incorporate “drugs” (instead of external signals). This module

illustrates how physicochemical modeling and IRM structures

can be used to start establishing complex structures describing

transcriptional, translational, and post-translation effects. The

students are introduced to the cascade of events involving.

1) Signal reception

2) Signal transduction

3) Biological response

Pharmacogenomics introduces high-throughput data

(transcriptomic, proteomic and metabolomic data) and

demonstrates how multiple data modalities can be connected

using mathematical models and structures discussed in the

previous (IRM) module, Figure 3.

2.1.3.2 Suggested literature

Reading materials include.

1) Using transcriptomic data to develop pharmacogenomic

models (Jin et al., 2003)

2) Development of large models (Ayyar and Jusko, 2020)

3) Model-based integration of -omic data (Kamisoglu et al.,

2017; Ayyar et al., 2018)

4) Combining disease models with pharmacologic interactions

(Rao et al., 2016b)

By the end of the first three modules, the students would have

developed a basic understanding and appreciation for the need

for modeling and basic mathematical formalisms, based on

ODEs, for expressing the dynamics of biological and

physiological transformations.

2.1.3.3 Outcome

Enable students to appreciate the ability of a mathematical or

computational model to reflect a quantifiable representation of a

biological hypothesis.

2.1.4 The power of feedback and the emergence
of ultra-sensitivity, hysteresis, stability,
bistability, and periodicity
2.1.4.1 Objective and key concepts

Having established the functional forms combining mass

action law and IRM, in this module, we proceed to discuss two

critical topics.

a) How math does biology: We discuss how rewiring seemingly,

simple structures and combining basic mathematical modules

gives rise to non-obvious dynamics responses. We focus on ultra-
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sensitivity (how the differential response to external signals can

be modulated to become dependent on external signals within

narrow ranges), hysteresis (enabling the system to develop

memory), and stability and bistability (how a system can exist

in several states). This component is essential as it introduces the

general student population to novel conceptual and

computational concepts (such as sensitivity, hysteresis, and

bistability). It discusses how non-intuitive, complex, and

emergent properties result from simple, fundamental

transformations.

b) How biology does math: We discuss how nature has evolved

signaling structures composed of elementary biological

modules described by basic mass action laws. However, the

emergent response is highly nonlinear once these modules

come together. This discussion is critical to establish the

relevance of mathematical formalisms in mirroring

biological reality. Signaling cascades lead to

hypersensitivity and biostability. The importance of this

component is to present students with how nature has

evolved mechanisms to support foundational elements,

Figure 4.

Particular emphasis is given to feedback and its role in

biology and homeostasis (El-Samad, 2021). This module

concludes with a discussion of circadian rhythms as a

prime example of exciting dynamics (periodicity) emerging

through combining the abovementioned elements. This

discussion is primarily stimulated through the analysis of

the fundamental models of Goodwin and Goldbeter

(Goodwin, 1965; Goldbeter, 1995) and expanded to recent

models of the hypothalamic-pituitary-adrenal, HPA, axis

(Rao and Androulakis, 2019).

2.1.4.2 Suggested literature

Reading materials include.

1) Ultra-sensitivity, bistability, and hysteresis (Ferrell and Ha,

2014a; Ferrell and Ha, 2014b; Ferrell and Ha, 2014c)

2) Signal amplification in molecular networks (Zhang et al.,

2013)

3) Design principles of biological control systems (Tyson et al.,

2003)

4) Design principles of biochemical oscillators (Novak and

Tyson, 2008)

5) Model circadian oscillators (Goodwin, 1965; Goldbeter, 1995)

2.1.4.3 Outcome

Introduce students to mathematical formalisms composed of

simple computational elements that describe complex, nonlinear

dynamics observed in biological and physiological systems.

Demonstrate how the assembly of such units replicates

biological reality. Emphasize that emergence is the result of

appropriately connected simplicity.

2.1.5 Optimization, parameter estimation, and
model assessment
2.1.5.1 Objective and key concepts

Parameter estimation sits at the core of model building in

CSB! (Myers et al., 2019). In this module, the students are

introduced to basic optimization concepts, such as types of

FIGURE 3
Themodalities described in Figure 2 can be connected to an arbitrary degree, linking components across multiple scales. In this illustration, the
external signal (D) binds to a receptor (R) creating a complex (DR), which upon translocation to the nucleus gets activated (DRn ) which subsequnelty
regulates the expression of genes (mRNA1 ,mRNA2) which upon translation produce proteins (Protein1,Protein2) which further cross-regulate the
system.
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formulations, unconstrained and constrained optimization,

optimality criteria, essentials of gradient decent and stochastic

optimization, sensitivity analysis, the multiplicity of solutions,

global vs. local minima, parameter estimation in dynamic

systems, uncertainty, and flexibility analysis. The students are

exposed to the core, underlying principles of standard parameter

estimation problems whose solution is required for quantifying,

i.e., deciphering parameters, in the models described earlier. The

discussion emphasizes the difficulties associated with parameter

estimation in large CSB models, particularly as it relates to

challenges associated with such models, namely, lack of model

completeness and lack of reliable data. Finally, the course

discusses the important issue of model assessment: deciding

on the appropriateness of the model. In addition to

introducing basic concepts for model validation, the

discussion further emphasizes the broad nature and scope of

CSB models and the complexities in introduces related to

assessing the appropriateness.

2.1.5.2 Suggested literature

Reading materials include.

1) Parameter estimation in systems biology (Poyton et al., 2006;

Gutenkunst et al., 2007; Ashyraliyev et al., 2009; Liepe et al.,

2014; Meyer et al., 2014; Degasperi et al., 2017)

2) The intrinsic difficulty of estimating parameters in biology

(Gutenkunst et al., 2007)

3) An enormous number of excellent optimization textbooks

exist. The classic textbook (Gill et al., 1981) is suggested as a

gentle introduction to basic concepts of optimization

4) On model assessment (Androulakis, 2022)

2.1.5.3 Outcome

Enable students to understand the optimization foundation

of parameter estimation and develop a basic knowledge of the

formulation of a parameter estimation problem, focusing on

dynamic systems.

2.1.6 Elements of machine learning
2.1.6.1 Objective and key concepts

The discussion up to this point is based on a fundamental

premise: biological hypotheses exist or can be speculated. Using

basic principles (mass action law, indirect response), these

FIGURE 4
Howmath does biology vs. how biology does math. (left) the dynamics of an activation (A ↔ A*) produces interesting dynamics depending on
the existence, and type, of feedback. No feedback (top) produces a system existing in a single steady state depending on the strength of the external
signal, s; (middle) adding simple linear feedback creates a system with two steady state, one stable and one unstable; whereas (bottom) a Michaelis-
Menten (receptor situatable) feedback will produce two stable and one unstable steady state, thus creating the possibility for a bistable, and
eventually, oscillating system. Ultra-sensitivity (right top) is mathematically modeled using a Hill-type equation, however, in nature (right bottom)
signaling cascades, like the MAPK, exhibiting successivemulti-site catalyzed reactions, among others, produce physiological ultra-sensitivity. Simple
modeling, using mass action of the multi-site catalyzed systems replicates the dynamics generated by the, non-physical, Hill equation.
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hypotheses are expressed using mathematical expressions.

Subsequently, computational are performed containing the

model(s) in the context of (often limited) available data.

Machine learning is discussed in the context of assisting

model development when hypotheses can be readily formed,

but a significant amount of (diverse) data exist. Therefore, closing

the gap due to the lack of hypotheses can be accomplished by

“intelligent” analyses of the data.

Machine learning is an enormous topic, and this (brief)

module aims to make students aware of the possibilities.

Topics covered include:

i) Supervised (classification) and unsupervised (clustering)

methods

ii) Support vector machines

iii) Data reduction (PCA, muti-dimensional scaling)

iv) Feature selection

v) Universal function approximations (neural networks)

2.1.6.2 Suggested literature

Reading materials include (the literature is enormous, and it

is not the purpose of this module to cover the entire literature)

1) Machine learning fundamentals (Fukunaga, 1990) and recent

developments in the context of machine learning (Sing, 2022)

2) The role of machine learning in assisting model building

(Benzekry, 2020; Zhang et al., 2022)

3) Machine learning applications in the fields of systems biology

and pharmacology (Nguyen et al., 2009; Yang et al., 2018;

Gaw et al., 2019; Guthrie et al., 2019; McComb et al., 2021)

2.1.6.3 Outcome

Expose students to the challenges and opportunities

associated with assembling and analyzing vast, diverse

amounts of data in the absence of underlying principles and

discuss how proper and systematic analyses can lead to novel

insights and testable hypotheses.

2.1.7 Getting started with quantitative systems
pharmacology
2.1.7.1 Objective and key concepts

The last module of the course exposes students to a

translational aspect of CSB, which discusses the principles

mentioned above in the context of disease and

pharmacological treatments. This integrated view defines what

is now commonly referred to as Quantitative Systems

Pharmacology (QSP). While developing the course, we felt

that this conclusion to the course would be critical for

Biomedical Engineering students since it is very likely that

most of them will eventually be employed by the

pharmaceutical industry. Therefore, exposure to the subject

and understanding the basic modeling and computational

principles would provide a significant competitive advantage.

The field of QSP is quite broad (Androulakis, 2015; Androulakis,

2016; Scheff et al., 2016; Hartmanshenn et al., 2018; Putnins and

Androulakis, 2019), and impossible to cover the range of

applications. Through discussion of case studies (involving

invited speakers), the module aims to bring to the forefront

the translational opportunities CSB/QSP creates, most notably in

generating a virtual cohort of patients/subjects enabling the in

silico testing of hypotheses in populations. In this module, data-

driven (Boolean) and hybrid data/mechanistic (agent-based)

models are also introduced.

2.1.7.2 Suggested literature

Reading materials include.

1) QSP methodology toolboxes (Cheng et al., 2017; Ribba et al.,

2017; Ermakov et al., 2019; Kirouac et al., 2019; Chae, 2020;

Derbalah et al., 2020; Hosseini et al., 2020; Gong et al., 2021)

2) QSP applications (Rieger and Musante, 2016; Stein and

Looby, 2018)

3) QSP applications (Bai et al., 2014; Gadkar et al., 2014; Gadkar

et al., 2015; Lu et al., 2015; Allen et al., 2016; Rieger and

Musante, 2016)

4) Translational aspects of mathematical models (Foteinou et al.,

2009; Foteinou et al., 2011)

5) Boolean (Putnins and Androulakis, 2019; Putnins and

Androulakis, 2021; Putnins et al., 2022) and agent-based

(Dong et al., 2010; Nguyen et al., 2013) modeling.

2.1.7.3 Outcome

The final module of the course aims to discuss how the

concepts discussed throughout the course materialize in the

context of QSP, which defines a field with definite and clear

translational potential.

2.1.8 Capstone project
2.1.8.1 Objective and key concepts

The course concludes with a final project in which the

students, working in small groups, are assigned a paper and

are requested to:

a) Describe the overarching problem discussed in the article,

including motivation and a brief literature review

b) Describe the basic biological concepts that are modeled, the

mathematical model(s) and approaches(s) used, and how

these connect to concepts discussed in class

c) To the best of their abilities; students should reproduce as

many of the results in the paper as possible. If they fail to do

so, they need to discuss why

d) Prepare a presentation (not to exceed 15 min) describing the

above points

The primary purpose of these discussions is for the students

to 1) be exposed to a wide variety of problems; 2) see how
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modeling is used; 3) appreciate that building and running a

mathematical model—even if everything is given is not as easy as

one may think; and 4) realize the fundamentally interdisciplinary

nature of CSB! The project allows the class to initiate a discussion

on model reproducibility and the need for establishing

repositories (such as GitHub) and methods for assessing

published computational models.

2.1.8.2 Sample projects

The topics vary each year and are selected to cover a wide

range of issues, serving the additional purpose of exposing

students to various problems, questions, and approaches.

Projects in years included, among others:

1) Modeling genetic networks with noisy and varied

experimental data: the circadian clock in Arabidopsis

thaliana (Locke et al., 2005)

2) Mathematical modeling of p53 pulses in G2 phase with DBA

damage (Zhang et al., 2014)

3) Recurrent initiation: A mechanism for triggering p53 pulses

in response to DNA damage (Batchelor et al., 2008)

4) Modeling a simplified regulatory system of blood glucose

(Liu and Tang, 2008)

5) Autoinhibition with transcriptional delay: A simple

mechanism for the zebrafish somitogenesis oscillator

(Lewis, 2003)

6) Mathematical model of NF-κB regulatory module (Lipniacki

et al., 2004)

7) Control of neuronal excitability by calcium-binding proteins

(Bischop et al., 2012)

8) A skeleton model for the network of cyclin-dependent

kinases driving the mammalian cell cycle (Gerard and

Goldbeter, 2011)

9) A new model for the HPA axis explains the dysregulation of

stress hormones on the timescale of weeks (Karin et al.,

2020)

10) Modeling the COVID-19 epidemic and implementation of

population-wide interventions in Italy (Giordano et al.,

2020)

11) Modeling cortisol dynamics in the neuroendocrine axis

distinguishes depression and post-traumatic stress

disorder (PTSD) in humans (Sriram et al., 2012)

12) Modeling sex differences in pharmacokinetics,

pharmacodynamics, and disease progression effects of

naproxen in rats with collagen-induced arthritis (Li et al.,

2017)

2.1.8.3 Outcome

The project aims to be a truly integrative experience at many

levels: 1) By forming groups assigned randomly, students learn

how to coordinate and organize; 2) by assigning topics randomly,

students are challenged to move away from their personal

comfort areas while delving into new areas; 3) the project

requires students to address a range of questions, from

discussing the overarching need to understanding the basic

biology, to translating physiological reality to mathematical

formalisms to eventually using computational methods and

numerical analysis to express system dynamics, thus enabling

students to appreciate all the cross-disciplinary steps involved in

developing and supporting a computational activity; finally 4)

students appreciate the importance of supporting a

computational model as well as its value-added. Finally, the

students receive only high-level guidance from the instructor,

as the aim is precisely to have students appreciate the

complexities associated with the process of developing a

computational analogue. Therefore, while small in scale, the

capstone projects aim at exposing students to the entire

“supply chain” of developing a CSB model! Students are

expected to appreciate the process of developing and using

judiciously a computational model, maybe more so that the

specific technicalities involved in its development.

2.1.9 Computational sources and framework
A CSB course is, by definition, a computational course. The

capstone project serves the purpose of enabling students to

implement numerical simulations. In this course, students can

use an environment that better suits their needs and capabilities.

Historically, at our institution, MATLAB is the platform of choice

and is the default in Biomedical Engineering. Therefore, students

usually opt to develop their codes in that environment. Other

options could include R or Python; however, since it is not the

purpose of this course to introduce a new programming platform,

we do not impose constraints in that respect. One could envision

tailoring the course to R or Python, but that assumes that either the

students are familiar and comfortable with these options or that part

of the course is dedicated to developing that skill. We felt that class

time was better spent on discussing the modeling component rather

than programming languages.

2.1.10 Course assessment
Student assessment can be conducted in several ways. In this

implementation, a student’s grade depends on a mid-term exam

focusing on the material described in Sections 2.1.1–2.1.5 and the

capstone project (the Supplementary Materials section provides

samples of exam questions). The capstone project is conducted in

groups, with each group made up of 3–4 students to achieve a

reasonable balance. Students are expected to submit a written

report and deliver a 30 min class presentation followed by a Q/A

session in which the presenters pose the class questions. The

project is expected to include the following components:

a) Describe the overarching question, including motivation and

appropriate literature review

b) Describe the basic biological concepts that needed further

assessment and the necessary mathematical formalisms for

their representations.
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c) Reasonably reproduce the computational results presented in

the paper. Students are expected to make a serious effort in

these directions and should discuss what worked and, more

importantly, where they failed to reproduce published results.

For the latter, students are expected to describe possible

causes, including lack of data, parameter values, or

incomplete descriptions.

d) Finally, the students are required to critically assess the

model’s value and the results and elaborate on possible

deficiencies and/or suggested improvements.

3 Concluding remarks

In medicine, there is a clear distinction between a disease and

a syndrome. The former has a clear and defining cause,

distinguishing symptoms, and, usually, a characteristic

treatment. A syndrome, on the other hand, is the

manifestation of a group of symptoms that may not always

have a definite cause. Sepsis, for instance, is a classic example

of a syndrome that is described by a set of physiological,

biological, and biochemical abnormalities resulting from a

dysregulated response to infection. A disease like

conjunctivitis (pink eye), on the other, had an unambiguous

description (inflammation or infection of the outer membrane of

the eyeball and inner eyelid. It has a clear cause (viral or bacterial

infection) and specific symptoms (redness, itching, and tearing)

and can be treated with the use of antihistamines.

It may not sound very appropriate, but to some extent,

discipline-specific courses are more like “diseases,” whereas

“integrated or integrative” topics, such as CSB, are more like

“syndromes.” When discussing CSB it is hard to define the

content uniquely. In our embodiment, for example, we do not

discuss the vast area of metabolic engineering or metabolic and

flux balance analysis, among others. This is not because they are

not relevant or essential but because we described one attempt to

approach the question. Much like diseases vs. syndromes, the

latter are not amenable to well-defined treatments and exact

regiments. Instead, one looks at the history and background of

the patient, other biases which may emerge due to circumstances,

and the type of expertise available at the time of treatment.

Similarly, when developing a CSB biology curriculum, one

needs to consider the “patient,” i.e., the student, and the “health

care provider,” i.e., the department. In that respect, we presented

a plan developed with primarily biomedical engineers in mind.

The development is built on the background, expertise, and

expected employment opportunities of a typical biomedical

engineer at the undergraduate level. On the other hand, the

course’s instructor also brings their own biases, perspectives, and

experiences which act, to some extent, as filters prioritizing

components eventually forming the broader topic. In that

respect, we felt that a CSB with “an eye” on QSP would

provide students with defined expertise. Last but not least,

CSB courses can play a significant role in increasing

bioengineering student awareness on the importance of

theory, modeling, and computation in an era when

quantitative skills dwindle to dangerous levels (Gatchell and

Linsenmeier, 2014).

In conclusion, we aimed to present one approach to CSB

while emphasizing that the beauty of the field is precisely its

richness. CSB cannot, and should not, be uniquely defined.

Instead, it establishes a continuum of approaches, a syndrome,

and the more avenues we create, the more significant its impact.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary Material, further

inquiries can be directed to the corresponding author.

Author contributions

The author confirms being the sole contributor of this work

and has approved it for publication.

Funding

IA acknowledges financial support from GM131800.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their

affiliated organizations, or those of the publisher, the

editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fsysb.2022.

1044281/full#supplementary-material

Frontiers in Systems Biology frontiersin.org14

Androulakis 10.3389/fsysb.2022.1044281

https://www.frontiersin.org/articles/10.3389/fsysb.2022.1044281/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsysb.2022.1044281/full#supplementary-material
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.1044281


References

Aldridge, B. B., Burke, J. M., Lauffenburger, D. A., and Sorger, P. K. (2006).
Physicochemical modelling of cell signalling pathways.Nat. Cell Biol. 8, 1195–1203.
doi:10.1038/ncb1497

Allen, R. J., Rieger, T. R., and Musante, C. J. (2016). Efficient generation and
selection of virtual populations in quantitative systems pharmacology models. CPT.
Pharmacometrics Syst. Pharmacol. 5, 140–146. doi:10.1002/psp4.12063

Allerheiligen, S., Abernethy, D., Altman, R. B., Brouwer, K., Califano, A., David,
Z., et al. (2011). Quantitative and systems pharmacology in the post-genomic era :
New approaches to discovering drugs and understanding therapeutic. An NIHWhite
Paper by the QSP Workshop Group.

Alon, U. (2001). An introduction to systems biology: Design principles of biological
circuits. Boca Raton: Chapman and Hall

Androulakis, I. P. (2014). A chemical engineer’s perspective on health and
disease. Comput. Chem. Eng. 71, 665–671. doi:10.1016/j.compchemeng.2014.
09.007

Androulakis, I. P. (2016). Quantitative systems pharmacology: A framework for
context. Curr. Pharmacol. Rep. 2, 152–160. doi:10.1007/s40495-016-0058-x

Androulakis, I. P. (2015). Systems engineering meets quantitative systems
pharmacology: From low-level targets to engaging the host defenses. Wiley
Interdiscip. Rev. Syst. Biol. Med. 7, 101–112. doi:10.1002/wsbm.1294

Androulakis, I. P. (2022). Towards a comprehensive assessment of QSPmodels: What
would it take? J. Pharmacokinet. Pharmacodyn. doi:10.1007/s10928-022-09820-0

Ashyraliyev, M., Fomekong-Nanfack, Y., Kaandorp, J. A., and Blom, J. G. (2009).
Systems biology: Parameter estimation for biochemical models. FEBS J. 276,
886–902. doi:10.1111/j.1742-4658.2008.06844.x

Ayyar, V. S., and Jusko, W. (2020). Transitioning from basic toward systems
pharmacodynamic models: Lessons from corticosteroids. Pharmacol. Rev. 72 (1),
414–438. doi:10.1124/pr.119.018101

Ayyar, V. S., Sukumaran, S., DuBois, D. C., Almon, R. R., and Jusko, W. J. (2018).
Modeling corticosteroid pharmacogenomics and proteomics in rat liver.
J. Pharmacol. Exp. Ther. 367, 168–183. doi:10.1124/jpet.118.251959

Azer, K., Kaddi, C. D., Barrett, J. S., Bai, J. P. F., McQuade, S. T., Merrill, N. J., et al.
(2021). History and future perspectives on the discipline of quantitative systems
pharmacology modeling and its applications. Front. Physiol. 12, 637999. doi:10.
3389/fphys.2021.637999

Bae, S.-A., Fang, M. Z., Rustgi, V., Zarbl, H., and Androulakis, I. P. (2019). At the
interface of lifestyle, behavior, and circadian rhythms: Metabolic implications.
Front. Nutr. 6, 132. doi:10.3389/fnut.2019.00132

Bai, J. P., Fontana, R. J., Price, N. D., and Sangar, V. (2014). Systems
pharmacology modeling: An approach to improving drug safety. Biopharm.
Drug Dispos. 35, 1–14. doi:10.1002/bdd.1871

Bai, J. P. F., Schmidt, B. J., Gadkar, K. G., Damian, V., Earp, J. C., Friedrich, C.,
et al. (2021). FDA-industry scientific exchange on assessing quantitative systems
pharmacology models in clinical drug development: A meeting report, summary of
challenges/gaps, and future perspective. AAPS J. 23, 60. doi:10.1208/s12248-021-
00585-x

Baltimore, D. (2001). “How biology became an information science,” in The
invisible Future. Editor P. J. Denning. New York: Mc Graw-Hill

Batchelor, E., Mock, C. S., Bhan, I., Loewer, A., and Lahav, G. (2008). Recurrent
initiation: Amechanism for triggering p53 pulses in response to DNA damage.Mol.
Cell 30, 277–289. doi:10.1016/j.molcel.2008.03.016

Benzekry, S. (2020). Artificial intelligence and mechanistic modeling for clinical
decision making in oncology. Clin. Pharmacol. Ther. 108, 471–486. doi:10.1002/cpt.
1951

Bernard, C. (1949). An Introduction to the study of experimental medicine.
New York: Henry Shuman Inc. (English translation of the 1864 orinal French
work).

Bischop, D. P., Orduz, D., Lambot, L., Schiffmann, S. N., and Gall, D. (2012).
Control of neuronal excitability by calcium binding proteins: A new mathematical
model for striatal fast-spiking interneurons. Front. Mol. Neurosci. 5, 78. doi:10.
3389/fnmol.2012.00078

Breitling, R. (2010). What is systems biology? Front. Physiol. 1, 9. doi:10.3389/
fphys.2010.00009

Buchman, T. G. (2004). Nonlinear dynamics, complex systems, and the
pathobiology of critical illness. Curr. Opin. Crit. Care 10, 378–382. doi:10.1097/
01.ccx.0000139369.65817.b6

Buchman, T. G. (2002). The community of the self. Nature 420, 246–251. doi:10.
1038/nature01260

Buchman, T. G. (2009). The digital patient: Predicting physiologic dynamics with
mathematical models. Crit. Care Med. 37, 1167–1168. doi:10.1097/CCM.
0b013e3181987bbc

Chae, D. (2020). Introduction to dynamical systems analysis in quantitative
systems pharmacology: Basic concepts and applications. Transl. Clin. Pharmacol.
28, 109–125. doi:10.12793/tcp.2020.28.e12

Cheng, Y., Thalhauser, C. J., Smithline, S., Pagidala, J., Miladinov, M., Vezina, H.
E., et al. (2017). QSP toolbox: Computational implementation of integrated
workflow components for deploying multi-scale mechanistic models. AAPS J.
19, 1002–1016. doi:10.1208/s12248-017-0100-x

Covert, M. W. (2015). Fundamentals of Systems Biology: From synthetic circuits to
whole-cell models. Boca Raton: CRC Press Taylor & Francis Group.

Degasperi, A., Fey, D., and Kholodenko, B. N. (2017). Performance of objective
functions and optimisation procedures for parameter estimation in system biology
models. NPJ Syst. Biol. Appl. 3, 20. doi:10.1038/s41540-017-0023-2

Derbalah, A., Al-Sallami, H., Hasegawa, C., Gulati, A., and Duffull, S. B. (2020). A
framework for simplification of quantitative systems pharmacology models in clinical
pharmacology. Br. J. Clin. Pharmacol. 88, 1430–1440. doi:10.1111/bcp.14451

Dong, X., Foteinou, P. T., Calvano, S. E., Lowry, S. F., and Androulakis, I. P.
(2010). Agent-based modeling of endotoxin-induced acute inflammatory response
in human blood leukocytes. PLoS One 5, e9249. doi:10.1371/journal.pone.0009249

Drager, A., and Palsson, B. O. (2014). Improving collaboration by standardization
efforts in systems biology. Front. Bioeng. Biotechnol. 2, 61. doi:10.3389/fbioe.2014.00061

El-Samad, H. (2021). Biological feedback control-Respect the loops. Cell Syst. 12,
477–487. doi:10.1016/j.cels.2021.05.004

Ermakov, S., Schmidt, B. J., Musante, C. J., and Thalhauser, C. J. (2019). A survey
of software tool utilization and capabilities for quantitative systems pharmacology:
What we have and what we need. CPT. Pharmacometrics Syst. Pharmacol. 8, 62–76.
doi:10.1002/psp4.12373

FDA (2011). Advancing regulatory science at FDA. A Strategic Plan.

Ferrell, J. E., Jr., and Ha, S. H. (2014). Ultrasensitivity part I: Michaelian responses
and zero-order ultrasensitivity. Trends biochem. Sci. 39, 496–503. doi:10.1016/j.tibs.
2014.08.003

Ferrell, J. E., Jr., and Ha, S. H. (2014). Ultrasensitivity part II: Multisite
phosphorylation, stoichiometric inhibitors, and positive feedback. Trends
biochem. Sci. 39, 556–569. doi:10.1016/j.tibs.2014.09.003

Ferrell, J. E., Jr., and Ha, S. H. (2014). Ultrasensitivity part III: Cascades, bistable
switches, and oscillators. Trends biochem. Sci. 39, 612–618. doi:10.1016/j.tibs.2014.
10.002

Foteinou, P. T., Calvano, S. E., Lowry, S. F., and Androulakis, I. P. (2011). A
physiological model for autonomic heart rate regulation in human endotoxemia.
Shock 35, 229–239. doi:10.1097/SHK.0b013e318200032b

Foteinou, P. T., Calvano, S. E., Lowry, S. F., and Androulakis, I. P. (2009).
Translational potential of systems-based models of inflammation. Clin. Transl. Sci.
2, 85–89. doi:10.1111/j.1752-8062.2008.00051.x

Fukunaga, K. (1990). Introduction to statistical pattern recognition. San Diego:
Elsevier.

Gadkar, K., Budha, N., Baruch, A., Davis, J. D., Fielder, P., and Ramanujan, S.
(2014). A mechanistic systems pharmacology model for prediction of LDL
cholesterol lowering by PCSK9 antagonism in human dyslipidemic populations.
CPT. Pharmacometrics Syst. Pharmacol. 3, e149. doi:10.1038/psp.2014.47

Gadkar, K., Lu, J., Sahasranaman, S., Davis, J., Mazer, N., and Ramanujan, S.
(2015). Evaluation of HDL modulating interventions for cardiovascular risk
reduction using a systems pharmacology approach. J. Lipid Res. 57, 46–55.
doi:10.1194/jlr.M057943

Gatchell, D. W., and Linsenmeier, R. A. (2014). Similarities and differences in
undergraduate biomedical engineering curricula in the United States. Proc. of the
ASEE Conference and Exposition, Indianapolis, IN

Gaw, N., Hawkins-Daarud, A., Hu, L. S., Yoon, H., Wang, L., Xu, Y., et al. (2019).
Integration of machine learning and mechanistic models accurately predicts
variation in cell density of glioblastoma using multiparametric MRI. Sci. Rep. 9,
10063. doi:10.1038/s41598-019-46296-4

Gérard, C., and Goldbeter, A. (2011). A skeleton model for the network of cyclin-
dependent kinases driving the mammalian cell cycle. Interface Focus 1, 24–35.
doi:10.1098/rsfs.2010.0008

Ghosh, S., Matsuoka, Y., Asai, Y., Hsin, K. Y., and Kitano, H. (2011). Software for
systems biology: From tools to integrated platforms. Nat. Rev. Genet. 12, 821–832.
doi:10.1038/nrg3096

Frontiers in Systems Biology frontiersin.org15

Androulakis 10.3389/fsysb.2022.1044281

https://doi.org/10.1038/ncb1497
https://doi.org/10.1002/psp4.12063
https://doi.org/10.1016/j.compchemeng.2014.09.007
https://doi.org/10.1016/j.compchemeng.2014.09.007
https://doi.org/10.1007/s40495-016-0058-x
https://doi.org/10.1002/wsbm.1294
https://doi.org/10.1007/s10928-022-09820-0
https://doi.org/10.1111/j.1742-4658.2008.06844.x
https://doi.org/10.1124/pr.119.018101
https://doi.org/10.1124/jpet.118.251959
https://doi.org/10.3389/fphys.2021.637999
https://doi.org/10.3389/fphys.2021.637999
https://doi.org/10.3389/fnut.2019.00132
https://doi.org/10.1002/bdd.1871
https://doi.org/10.1208/s12248-021-00585-x
https://doi.org/10.1208/s12248-021-00585-x
https://doi.org/10.1016/j.molcel.2008.03.016
https://doi.org/10.1002/cpt.1951
https://doi.org/10.1002/cpt.1951
https://doi.org/10.3389/fnmol.2012.00078
https://doi.org/10.3389/fnmol.2012.00078
https://doi.org/10.3389/fphys.2010.00009
https://doi.org/10.3389/fphys.2010.00009
https://doi.org/10.1097/01.ccx.0000139369.65817.b6
https://doi.org/10.1097/01.ccx.0000139369.65817.b6
https://doi.org/10.1038/nature01260
https://doi.org/10.1038/nature01260
https://doi.org/10.1097/CCM.0b013e3181987bbc
https://doi.org/10.1097/CCM.0b013e3181987bbc
https://doi.org/10.12793/tcp.2020.28.e12
https://doi.org/10.1208/s12248-017-0100-x
https://doi.org/10.1038/s41540-017-0023-2
https://doi.org/10.1111/bcp.14451
https://doi.org/10.1371/journal.pone.0009249
https://doi.org/10.3389/fbioe.2014.00061
https://doi.org/10.1016/j.cels.2021.05.004
https://doi.org/10.1002/psp4.12373
https://doi.org/10.1016/j.tibs.2014.08.003
https://doi.org/10.1016/j.tibs.2014.08.003
https://doi.org/10.1016/j.tibs.2014.09.003
https://doi.org/10.1016/j.tibs.2014.10.002
https://doi.org/10.1016/j.tibs.2014.10.002
https://doi.org/10.1097/SHK.0b013e318200032b
https://doi.org/10.1111/j.1752-8062.2008.00051.x
https://doi.org/10.1038/psp.2014.47
https://doi.org/10.1194/jlr.M057943
https://doi.org/10.1038/s41598-019-46296-4
https://doi.org/10.1098/rsfs.2010.0008
https://doi.org/10.1038/nrg3096
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.1044281


Gill, A., Philip, E., and Wright, H. W. (1981). Practical optimization. San Diego:
Academic Press.

Giordano, G., Blanchini, F., Bruno, R., Colaneri, P., Di Filippo, A., Di Matteo, A.,
et al. (2020). Modelling the COVID-19 epidemic and implementation of
population-wide interventions in Italy. Nat. Med. 26, 855–860. doi:10.1038/
s41591-020-0883-7

Goldbeter, A. (1995). A model for circadian oscillations in the Drosophila period
protein (PER). Proc. Biol. Sci. 261, 319–324. doi:10.1098/rspb.1995.0153

Gong, C., Ruiz-Martinez, A., Kimko, H., and Popel, A. S. (2021). A spatial
quantitative systems pharmacology platform spQSP-IO for simulations of tumor-
immune interactions and effects of checkpoint inhibitor immunotherapy. Cancers
(Basel) 13, 3751. doi:10.3390/cancers13153751

Goodwin, B. C. (1965). Oscillatory behavior in enzymatic control processes. Adv.
Enzyme Regul. 3, 425–438. doi:10.1016/0065-2571(65)90067-1

Gutenkunst, R. N., Waterfall, J. J., Casey, F. P., Brown, K. S., Myers, C. R., and
Sethna, J. P. (2007). Universally sloppy parameter sensitivities in systems biology
models. PLoS Comput. Biol. 3, 1871–1878. doi:10.1371/journal.pcbi.0030189

Guthrie, N. L., Carpenter, J., Edwards, K. L., Appelbaum, K. J., Dey, S., Eisenberg,
D. M., et al. (2019). Emergence of digital biomarkers to predict and modify
treatment efficacy: Machine learning study. BMJ Open 9, e030710. doi:10.1136/
bmjopen-2019-030710

Hao, Z., Liu, J., Wu, B., Yu, M., and Wegner, L. H. (2021). Strong emergence in
biological systems: Is it open to mathematical reasoning? Acta Biotheor. 69,
841–856. doi:10.1007/s10441-021-09423-1

Hartmanshenn, C., Rao, R. T., Bae, S. A., Scherholz, M. L., Acevedo, A., Pierre, K.
K., et al. (2018). Quantitative systems pharmacology: Extending the envelope through
systems engineering. Computer Aided Chemical Engineering, 3–34.

Hosseini, I., Feigelman, J., Gajjala, A., Susilo, M., Ramakrishnan, V., Ramanujan,
S., et al. (2020). gQSPSim: A SimBiology-based gui for standardized QSP model
development and application. CPT. Pharmacometrics Syst. Pharmacol. 9, 165–176.
doi:10.1002/psp4.12494

Ideker, T., Thorsson, V., Ranish, J. A., Christmas, R., Buhler, J., Eng, J. K., et al.
(2001). Integrated genomic and proteomic analyses of a systematically perturbed
metabolic network. Science 292, 929–934. doi:10.1126/science.292.5518.929

Jin, J. Y., Almon, R. R., DuBois, D. C., and Jusko, W. J. (2003). Modeling of
corticosteroid pharmacogenomics in rat liver using gene microarrays. J. Pharmacol.
Exp. Ther. 307, 93–109. doi:10.1124/jpet.103.053256

Jose, A. M. (2020). The analysis of living systems can generate both knowledge
and illusions. eLife 9, e56354. doi:10.7554/eLife.56354

Joyner, M. J., and Pedersen, B. K. (2011). Ten questions about systems biology.
J. Physiol. 589, 1017–1030. doi:10.1113/jphysiol.2010.201509

Jusko, W. J., and Ko, H. C. (1994). Physiologic indirect response models
characterize diverse types of pharmacodynamic effects. Clin. Pharmacol. Ther.
56, 406–419. doi:10.1038/clpt.1994.155

Jusko, W. J. (1989). Pharmacokinetics of capacity-limited systems. J. Clin.
Pharmacol. 29, 488–493. doi:10.1002/j.1552-4604.1989.tb03369.x

Kamisoglu, K., Acevedo, A., Almon, R. R., Coyle, S., Corbett, S., Dubois, D. C.,
et al. (2017). Understanding physiology in the continuum: Integration of
information from multiple -omics levels. Front. Pharmacol. 8, 91. doi:10.3389/
fphar.2017.00091

Karin, O., Raz, M., Tendler, A., Bar, A., Korem Kohanim, Y., Milo, T., et al.
(2020). A new model for the HPA axis explains dysregulation of stress
hormones on the timescale of weeks. Mol. Syst. Biol. 16, e9510. doi:10.
15252/msb.20209510

Kernighan, B. W., and Pike, R. (1999). The practie of programming. Indianapolis:
Addison-Wesley Longman Publishing Co., Inc.

Kirouac, D. C., Cicali, B., and Schmidt, S. (2019). Reproducibility of
quantitative systems pharmacology models: Current challenges and future
opportunities. CPT. Pharmacometrics Syst. Pharmacol. 8, 205–210. doi:10.
1002/psp4.12390

Klipp, E., Liebermeister, W., Wierling, C., and Kowald, A. (2016). Systems biology:
A textbook. New Jersey, United States: John Wiley & Sons.

Krzyzanski, W., and Jusko, W. J. (1998). Integrated functions for four basic
models of indirect pharmacodynamic response. J. Pharm. Sci. 87, 67–72. doi:10.
1021/js970168r

Krzyzanski, W., and Jusko, W. J. (1997). Mathematical formalism for the
properties of four basic models of indirect pharmacodynamic responses.
J. Pharmacokinet. Biopharm. 25, 107–123. doi:10.1023/a:1025723927981

Lewis, J. (2003). Autoinhibition with transcriptional delay: A simple mechanism
for the zebrafish somitogenesis oscillator. Curr. Biol. 13, 1398–1408. doi:10.1016/
s0960-9822(03)00534-7

Li, X., DuBois, D. C., Almon, R. R., and Jusko, W. J. (2017). Modeling sex
differences in pharmacokinetics, pharmacodynamics, and disease progression
effects of naproxen in rats with collagen-induced arthritis. Drug Metab. Dispos.
45, 484–491. doi:10.1124/dmd.116.074526

Liepe, J., Kirk, P., Filippi, S., Toni, T., Barnes, C. P., and Stumpf, M. P. (2014). A
framework for parameter estimation and model selection from experimental data in
systems biology using approximate Bayesian computation. Nat. Protoc. 9, 439–456.
doi:10.1038/nprot.2014.025

Lipniacki, T., Paszek, P., Brasier, A. R., Luxon, B., and Kimmel, M. (2004).
Mathematical model of NF-kappaB regulatory module. J. Theor. Biol. 228, 195–215.
doi:10.1016/j.jtbi.2004.01.001

Liu, W., and Tang, F. (2008). Modeling a simplified regulatory system of blood
glucose at molecular levels. J. Theor. Biol. 252, 608–620. doi:10.1016/j.jtbi.2008.
02.021

Locke, J. C., Millar, A. J., and Turner, M. S. (2005). Modelling genetic networks
with noisy and varied experimental data: The circadian clock in Arabidopsis
thaliana. J. Theor. Biol. 234, 383–393. doi:10.1016/j.jtbi.2004.11.038

Lu, W., Cheng, F., Jiang, J., Zhang, C., Deng, X., Xu, Z., et al. (2015). FXR
antagonism of NSAIDs contributes to drug-induced liver injury identified by
systems pharmacology approach. Sci. Rep. 5, 8114. doi:10.1038/srep08114

Mager, D. E., Wyska, E., and Jusko, W. J. (2003). Diversity of mechanism-based
pharmacodynamic models. Drug Metab. Dispos. 31, 510–518. doi:10.1124/dmd.31.
5.510

McComb, M., Bies, R., and Ramanathan, M. (2021). Machine learning in
pharmacometrics: Opportunities and challenges. Br. J. Clin. Pharmacol. 88,
1482–1499. doi:10.1111/bcp.14801

Mesarovic, M. D. (1968). Systems theory and biology. Cham: Springer.

Meyer, P., Cokelaer, T., Chandran, D., Kim, K. H., Loh, P.-R., Tucker, G., et al.
(2014). Network topology and parameter estimation: From experimental design
methods to gene regulatory network kinetics using a community based approach.
BMC Syst. Biol. 8, 13–18. doi:10.1186/1752-0509-8-13

Musuamba, F. T., Skottheim Rusten, I., Lesage, R., Russo, G., Bursi, R., Emili, L.,
et al. (2021). Scientific and regulatory evaluation of mechanistic in silico drug and
disease models in drug development: Building model credibility. CPT.
Pharmacometrics Syst. Pharmacol. 10, 804–825. doi:10.1002/psp4.12669

Myers, C. R. (2019). “Zen and the art of parameter estimation in systems biology,”
in Systems Immunology: An introduction to modeling methods for scientists. Editors
J. Das and C. Jayaprakash (Boca Raton: CRC Press Taylor & Francis Group),
123–138.

Nguyen, T. T., Calvano, S. E., Lowry, S. F., and Androulakis, I. P. (2013). An
agent-based model of cellular dynamics and circadian variability in human
endotoxemia. PLoS One 8, e55550. doi:10.1371/journal.pone.0055550

Nguyen, T. T., Nowakowski, R. S., and Androulakis, I. P. (2009). Unsupervised
selection of highly coexpressed and noncoexpressed genes using a consensus
clustering approach. OMICS A J. Integr. Biol. 13, 219–237. doi:10.1089/omi.
2008.0074

Novak, B., and Tyson, J. J. (2008). Design principles of biochemical oscillators.
Nat. Rev. Mol. Cell Biol. 9, 981–991. doi:10.1038/nrm2530

Palsson, B. (2006). Systems biology: Properties of reconsructted networks.
Cambridge, UK: Cambridge University Press.

Palsson, B. (2011). Systems Biology: Simulation of dynamic network states.
Cambridge, UK: Cambridge University Press.

Pistikopoulos, E. N., Barbosa-Povoa, A., Lee, J. H., Misener, R., Mitsos, A.,
Reklaitis, G. V., et al. (2021). Process systems engineering – the generation next?
Comput. Chem. Eng. 147, 107252. doi:10.1016/j.compchemeng.2021.107252

Poyton, A. A., Varziri, M. S., McAuley, K. B., McLellan, P. J., and Ramsay, J. O.
(2006). Parameter estimation in continuous-time dynamic models using principal
differential analysis. Comput. Chem. Eng. 30, 698–708. doi:10.1016/j.
compchemeng.2005.11.008

Przedborski, M., Smalley, M., Thiyagarajan, S., Goldman, A., and Kohandel, M.
(2021). Systems biology informed neural networks (SBINN) predict response and
novel combinations for PD-1 checkpoint blockade. Commun. Biol. 4, 877. doi:10.
1038/s42003-021-02393-7

Putnins, M., and Androulakis, I. P. (2019). Boolean modeling in quantitative
systems pharmacology: Challenges and opportunities. Crit. Rev. Biomed. Eng. 47,
473–488. doi:10.1615/CritRevBiomedEng.2020030796

Putnins, M., and Androulakis, I. P. (2021). Self-selection of evolutionary
strategies: Adaptive versus non-adaptive forces. Heliyon 7, e06997. doi:10.1016/j.
heliyon.2021.e06997

Putnins, M., Campagne, O., Mager, D. E., and Androulakis, I. P. (2022). From
data to QSP models: A pipeline for using boolean networks for hypothesis inference

Frontiers in Systems Biology frontiersin.org16

Androulakis 10.3389/fsysb.2022.1044281

https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1038/s41591-020-0883-7
https://doi.org/10.1098/rspb.1995.0153
https://doi.org/10.3390/cancers13153751
https://doi.org/10.1016/0065-2571(65)90067-1
https://doi.org/10.1371/journal.pcbi.0030189
https://doi.org/10.1136/bmjopen-2019-030710
https://doi.org/10.1136/bmjopen-2019-030710
https://doi.org/10.1007/s10441-021-09423-1
https://doi.org/10.1002/psp4.12494
https://doi.org/10.1126/science.292.5518.929
https://doi.org/10.1124/jpet.103.053256
https://doi.org/10.7554/eLife.56354
https://doi.org/10.1113/jphysiol.2010.201509
https://doi.org/10.1038/clpt.1994.155
https://doi.org/10.1002/j.1552-4604.1989.tb03369.x
https://doi.org/10.3389/fphar.2017.00091
https://doi.org/10.3389/fphar.2017.00091
https://doi.org/10.15252/msb.20209510
https://doi.org/10.15252/msb.20209510
https://doi.org/10.1002/psp4.12390
https://doi.org/10.1002/psp4.12390
https://doi.org/10.1021/js970168r
https://doi.org/10.1021/js970168r
https://doi.org/10.1023/a:1025723927981
https://doi.org/10.1016/s0960-9822(03)00534-7
https://doi.org/10.1016/s0960-9822(03)00534-7
https://doi.org/10.1124/dmd.116.074526
https://doi.org/10.1038/nprot.2014.025
https://doi.org/10.1016/j.jtbi.2004.01.001
https://doi.org/10.1016/j.jtbi.2008.02.021
https://doi.org/10.1016/j.jtbi.2008.02.021
https://doi.org/10.1016/j.jtbi.2004.11.038
https://doi.org/10.1038/srep08114
https://doi.org/10.1124/dmd.31.5.510
https://doi.org/10.1124/dmd.31.5.510
https://doi.org/10.1111/bcp.14801
https://doi.org/10.1186/1752-0509-8-13
https://doi.org/10.1002/psp4.12669
https://doi.org/10.1371/journal.pone.0055550
https://doi.org/10.1089/omi.2008.0074
https://doi.org/10.1089/omi.2008.0074
https://doi.org/10.1038/nrm2530
https://doi.org/10.1016/j.compchemeng.2021.107252
https://doi.org/10.1016/j.compchemeng.2005.11.008
https://doi.org/10.1016/j.compchemeng.2005.11.008
https://doi.org/10.1038/s42003-021-02393-7
https://doi.org/10.1038/s42003-021-02393-7
https://doi.org/10.1615/CritRevBiomedEng.2020030796
https://doi.org/10.1016/j.heliyon.2021.e06997
https://doi.org/10.1016/j.heliyon.2021.e06997
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.1044281


and dynamic model building. J. Pharmacokinet. Pharmacodyn. 49, 101–115. doi:10.
1007/s10928-021-09797-2

Rao, R., and Androulakis, I. P. (2019). Allostatic adaptation and personalized
physiological trade-offs in the circadian regulation of the HPA axis: Amathematical
modeling approach. Sci. Rep. 9, 11212. doi:10.1038/s41598-019-47605-7

Rao, R., DuBois, D., Almon, R., Jusko, W. J., and Androulakis, I. P. (2016).
Mathematical modeling of the circadian dynamics of the neuroendocrine-immune
network in experimentally induced arthritis. Am. J. Physiol. Endocrinol. Metab. 311,
E310–E324. doi:10.1152/ajpendo.00006.2016

Rao, R. T., Scherholz, M. L., Hartmanshenn, C., Bae, S. A., and Androulakis, I. P.
(2016). On the analysis of complex biological supply chains: From process systems
engineering to quantitative systems pharmacology. Comput. Chem. Eng, 100–110.
doi:10.1016/j.compchemeng.2017.06.003

Ribba, B., Grimm, H. P., Agoram, B., Davies, M. R., Gadkar, K., Niederer, S., et al.
(2017).Methodologies for quantitative systems pharmacology (QSP)models: Design and
estimation. CPT. Pharmacometrics Syst. Pharmacol. 6, 496–498. doi:10.1002/psp4.12206

Rieger, T. R., and Musante, C. J. (2016). Benefits and challenges of a QSP
approach through case study: Evaluation of a hypothetical GLP-1/GIP dual agonist
therapy. Eur. J. Pharm. Sci. 94, 15–19. doi:10.1016/j.ejps.2016.05.006

Scheff, J. D., Kamisoglu, K., and Androulakis, I. P. (2016). “Mechanistic modeling of
inflammation,” in Systems pharmacology and pharmacodynamics. Editors D. E. Mager
and H. H. C. Kimko (Cham: Springer International Publishing), 325–352.

Sharma, A., and Jusko,W. J. (1998). Characteristics of indirect pharmacodynamic
models and applications to clinical drug responses. Br. J. Clin. Pharmacol. 45,
229–239. doi:10.1046/j.1365-2125.1998.00676.x

Sing, S. (2022). Machine learning and systems biology in genomics and health. Pune:
Springer.

Soria Zurita, N. F., and Tumer, I. Y. (2017). “A survey: Towards understanding
emergent behavior in complex engineered systems,” in ASME 2017 International
Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Cleveland, OH, August 2017.

Sriram, K., Rodriguez-Fernandez, M., and Doyle, F. J., 3rd (2012). Modeling
cortisol dynamics in the neuro-endocrine axis distinguishes normal, depression,
and post-traumatic stress disorder (PTSD) in humans. PLoS Comput. Biol. 8,
e1002379. doi:10.1371/journal.pcbi.1002379

Stein, A. M., and Looby, M. (2018). Benchmarking QSP models against
simple models: A path to improved comprehension and predictive
performance. CPT. Pharmacometrics Syst. Pharmacol. 7, 487–489. doi:10.
1002/psp4.12311

Stephanopoulos, G. (1999). Emerging directions in computer applications to
biotechnology: Upgrading the information content of biological data. Annu. Rev.
Control 23, 61–69. doi:10.1016/s1367-5788(99)00008-5

Tyson, J. J., Chen, K. C., and Novak, B. (2003). Sniffers, buzzers, toggles and
blinkers: Dynamics of regulatory and signaling pathways in the cell. Curr. Opin. Cell
Biol. 15, 221–231. doi:10.1016/s0955-0674(03)00017-6

US FDA (2011). Advancing Regulatory Science at FDA. A Strategic Plan. US Food
and Drug Administration

Vodovotz, Y., An, G., and Androulakis, I. P. (2013). A systems engineering
perspective on homeostasis and disease. Front. Bioeng. Biotechnol. 1, 6. doi:10.3389/
fbioe.2013.00006

Voit, E. O. (2018). A first course in systems biology. New York: Garland
Science.

Yang, H., Sun, L., Li, W., Liu, G., and Tang, Y. (2018). Corrigendum: In silico
prediction of chemical toxicity for drug design using machine learning methods and
structural alerts. Front. Chem. 6, 129. doi:10.3389/fchem.2018.00129

Yazdani, A., Lu, L., Raissi, M., and Karniadakis, G. E. (2020). Systems biology
informed deep learning for inferring parameters and hidden dynamics. PLoS
Comput. Biol. 16, e1007575. doi:10.1371/journal.pcbi.1007575

Zhang, L. W., Cheng, Y. M., and Liew, K. M. (2014). Mathematical modeling of
p53 pulses in G2 phase with DNA damage. Appl. Math. Comput. 232, 1000–1010.
doi:10.1016/j.amc.2014.01.120

Zhang, Q., Bhattacharya, S., and Andersen, M. E. (2013). Ultrasensitive response
motifs: Basic amplifiers in molecular signalling networks. Open Biol. 3, 130031.
doi:10.1098/rsob.130031

Zhang, T., Androulakis, I. P., Bonate, P., Cheng, L., Helikar, T., Parikh, J.,
et al. (2022). Two heads are better than one: Current landscape of integrating
QSP and machine learning : An ISoP QSP SIG white paper by the working
group on the integration of quantitative systems pharmacology and machine
learning. J. Pharmacokinet. Pharmacodyn. 49, 5–18. doi:10.1007/s10928-022-
09805-z

Frontiers in Systems Biology frontiersin.org17

Androulakis 10.3389/fsysb.2022.1044281

https://doi.org/10.1007/s10928-021-09797-2
https://doi.org/10.1007/s10928-021-09797-2
https://doi.org/10.1038/s41598-019-47605-7
https://doi.org/10.1152/ajpendo.00006.2016
https://doi.org/10.1016/j.compchemeng.2017.06.003
https://doi.org/10.1002/psp4.12206
https://doi.org/10.1016/j.ejps.2016.05.006
https://doi.org/10.1046/j.1365-2125.1998.00676.x
https://doi.org/10.1371/journal.pcbi.1002379
https://doi.org/10.1002/psp4.12311
https://doi.org/10.1002/psp4.12311
https://doi.org/10.1016/s1367-5788(99)00008-5
https://doi.org/10.1016/s0955-0674(03)00017-6
https://doi.org/10.3389/fbioe.2013.00006
https://doi.org/10.3389/fbioe.2013.00006
https://doi.org/10.3389/fchem.2018.00129
https://doi.org/10.1371/journal.pcbi.1007575
https://doi.org/10.1016/j.amc.2014.01.120
https://doi.org/10.1098/rsob.130031
https://doi.org/10.1007/s10928-022-09805-z
https://doi.org/10.1007/s10928-022-09805-z
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.1044281


Appendix A:

In the manuscript and the course, we attempt to distinguish

between three types of modeling: theoretical, mathematical, and

computational. The distinction is methodologically important:

A theoretical model is “conceptual” and defines expected

boundaries. A very nice illustration of this type of approach is

presented in (Tyson et al., 2003) (Figures 1, 2 therein) or the

various models described in (Ferrell and Ha, 2014c) (some

depicted in Figure 4 of this manuscript) discussing the

minimal structural characteristics required so that a model

can exhibit a stable steady state, or saturation, or adaptation,

or multiplicity of steady states, or periodic dynamics etc. So, a

theoretical model establishes boundaries. Theoretical models

tend to be minimalistic.

A mathematical model builds on the theoretical model by

expanding critical components of a minimalistic theoretical

representation. An excellent illustration is how the basic

Goodwin oscillator (a prototypical theoretical model for

generating sustained oscillation) is used as the foundation for

building more complex models describing biological circadian

oscillators (Goldbeter, 1995).

A computational model focused on extensive data analysis

using (mostly) black box approaches to replicate the observed

dynamics. Indeed, they can be based on theoretical or

mathematical foundations, but the emphasis is on

computational methodologies (Putnins and Androulakis, 2019;

Putnins et al., 2022). A neural network is a typical example of a

computational model (Yazdani et al., 2020; Przedborski et al.,

2021).
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