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Accelerated efforts to identify intervention strategies for the COVID-19 pandemic caused
by SARS-CoV-2 need to be supported by deeper investigations into host invasion and
responsemechanisms.We constructed the neighborhood interactome network of the 332
human proteins targeted by SARS-CoV-2 proteins, augmenting it with 1,941 novel human
protein-protein interactions predicted using our High-precision Protein-Protein Interaction
Prediction (HiPPIP) model. Novel interactors, and the interactome as a whole, showed
significant enrichment for genes differentially expressed in SARS-CoV-2-infected A549
and Calu-3 cells, postmortem lung samples of COVID-19 patients and blood samples of
COVID-19 patients with severe clinical outcomes. The PPIs connected host proteins to
COVID-19 blood biomarkers, ACE2 (SARS-CoV-2 entry receptor), genes differentiating
SARS-CoV-2 infection from other respiratory virus infections, and SARS-CoV-targeted
host proteins. Novel PPIs facilitated identification of the cilium organization functional
module; we deduced the potential antiviral role of an interaction between the virus-targeted
NUP98 and the cilia-associated CHMP5. Functional enrichment analyses revealed
promyelocytic leukaemia bodies, midbody, cell cycle checkpoints and tristetraprolin
pathway as potential viral targets. Network proximity of diabetes and hypertension
associated genes to host proteins indicated a mechanistic basis for these co-
morbidities in critically ill/non-surviving patients. Twenty-four drugs were identified using
comparative transcriptome analysis, which include those undergoing COVID-19 clinical
trials, showing broad-spectrum antiviral properties or proven activity against SARS-CoV-2
or SARS-CoV/MERS-CoV in cell-based assays. The interactome is available on a
webserver at http://severus.dbmi.pitt.edu/corona/.

Keywords: interactome analysis, protein-protein interactions, computational prediction, COVID-19, SARS-CoV-2,
drugs, drug repurposing

Edited by:
Alyssa E. Barry,

Deakin University, Australia

Reviewed by:
Gokhan Ertaylan,

Flemish Institute for Technological
Research (VITO), Belgium

Ranjith Kumavath,
Central University of Kerala, India

*Correspondence:
Madhavi K. Ganapathiraju

madhavi@pitt.edu

Specialty section:
This article was submitted to

Integrative Systems Immunology,
a section of the journal

Frontiers in Systems Biology

Received: 24 November 2021
Accepted: 11 February 2022

Published: 29 April 2022

Citation:
Karunakaran KB, Balakrishnan N and
Ganapathiraju MK (2022) Interactome

of SARS-CoV-2 Modulated Host
Proteins With Computationally
Predicted PPIs: Insights From

Translational Systems Biology Studies.
Front. Syst. Biol. 2:815237.

doi: 10.3389/fsysb.2022.815237

Frontiers in Systems Biology | www.frontiersin.org April 2022 | Volume 2 | Article 8152371

ORIGINAL RESEARCH
published: 29 April 2022

doi: 10.3389/fsysb.2022.815237

http://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.815237&domain=pdf&date_stamp=2022-04-29
https://www.frontiersin.org/articles/10.3389/fsysb.2022.815237/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.815237/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.815237/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.815237/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.815237/full
http://severus.dbmi.pitt.edu/corona/
http://creativecommons.org/licenses/by/4.0/
mailto:madhavi@pitt.edu
https://doi.org/10.3389/fsysb.2022.815237
https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.815237


1 INTRODUCTION

COVID-19 (Coronavirus Disease 2019) is an infectious virus
outbreak which emerged as an epidemic in one city in December
2019, and within 3 months swept across 220 countries and
territories, developing into a pandemic global health crisis
with more than 180 million confirmed infected cases and
more than 4 million deaths as of 1 July 2021 (WHO). The
novel coronavirus (SARS-CoV-2/nCoV-19) has been identified
as the causative agent of this disease (Rothan and Byrareddy,
2020). Coronaviruses are a large family of viruses that are
pathogenic in mammals and birds. In humans, they cause
respiratory infections ranging from the common cold to
possibly fatal acute respiratory distress syndrome (ARDS) and
acute lung injury (ALI), which are noted in COVID-19 as well as
in its predecessors, namely, SARS (severe acute respiratory
syndrome, 2002–2003) and MERS (middle east respiratory
syndrome, 2012) (Gralinski and Baric, 2015). SARS-CoV-2 is
airborne, and causes no symptoms in several infected people who
may become silent carriers of the disease to the more vulnerable
population. COVID-19 is spreading at an exponential rate
globally, prompting scientists across the globe to investigate
the mechanisms of its host invasion and host response to viral
infection, in hopes of discovering treatment strategies to combat
the outbreak.

The viral infection sets off a cascade of interactions among
multiple genes and proteins in the host cell. This complex
network has the potential to restrict viral replication in host
cells, or conversely, to be taken over by the virus for its
perpetuation. Several research groups have studied the effects
of SARS-CoV-2 on the host from a systems-level perspective
(Blanco-Melo et al., 2020a; Gordon et al., 2020a; Zhou et al.,
2020a). 332 human proteins that bind to SARS-CoV-2 proteins
were identified through affinity purification—mass spectrometry
(AP-MS) by Gordon et al. (Gordon et al., 2020b). Melo et al.
identified more than 6,000 genes differentially expressed in A549,
Calu-3 and NHBE cell lines upon SARS-CoV-2 infection, and in
COVID-19 patients (Blanco-Melo et al., 2020b). Bojkova et al.
monitored SARS-CoV-2 infection in Caco2 cell line and
generated temporal infection profiles of 2,687 genes in the
host translatome and 6,258 proteins in the proteome (Denisa
Bojkova and Koch, 2020). Data generated by these studies can be
employed to conduct systematic, unbiased and data-driven
investigations into COVD-19 from the perspective of the host,
by constructing the relevant protein interactome (i.e., protein-
protein interaction network).

Protein-protein interactions (PPIs) drive the cellular
machinery and facilitate biological processes including signal
transduction, formation of cellular structures and enzymatic
complexes. When viral proteins bind to some proteins in the
host cell, this effect may spread along the interactome through
regulatory and biophysical interactions, affecting other proteins
in the PPI network, posing deeper implications for viral infection,
host immunity, and the effect of therapeutics (Barabási et al.,
2011). Despite being critical to unravelling novel disease
mechanisms and drugs, ~75% of estimated PPIs are currently
unknown and several disease-associated genes have no known

PPIs. More than ~600,000 PPIs are said to exist in the human
interactome (Keskin et al., 2016) and only ~150,000 PPIs are
known from PPI repositories such as HPRD (Keshava Prasad
et al., 2008) and BioGRID (Stark et al., 2006). Detecting the PPIs
using experimental techniques such as co-immunoprecipitation
(Co-IP) (Blasche and Koegl, 2013; Trepte et al., 2015) is
prohibitively laborious and time-consuming at large scale.
Tens of thousands of PPIs are being added into the
interactome through systematic high throughput studies with
yeast two hybrid (Y2H) system (Luck et al., 2020) and AP–MS
(Huttlin et al., 2020). Despite this, a large part of the interactome
remains unknown. Hence, computational algorithms have been
developed to predict PPIs in human as well as model organisms
(Deng et al., 2003; Raja et al., 2013; You et al., 2013; Emamjomeh
et al., 2014; Hopf et al., 2014; Jia et al., 2015; Kotlyar et al., 2015;
Garzón et al., 2016; Malavia et al., 2017a). We have previously
developed a computational model called HiPPIP (High-Precision
Protein-Protein Interaction Prediction) that was deemed highly
accurate by computational evaluations and experimental
validations (Zhu et al., 2014; Ganapathiraju et al., 2016a;
Dunham and Ganapathiraju, 2022). HiPPIP computes features
of protein pairs such as cellular localization, molecular function,
biological process membership, genomic location of the gene, and
gene expression in microarray experiments, and classifies the
pairwise features as interacting or non-interacting based on a
random forest model (Ganapathiraju et al., 2016a). Though each
of the features by itself is not an indicator of an interaction, a
machine learning model was able to use the combined features to
make predictions with high precision. The threshold of HiPPIP to
classify a protein-pair as “a PPI” was set high in such a way that it
yields very high-precision predictions even if low recall.
Seventeen of the predicted PPIs were tested experimentally
and were shown to be true PPIs, namely, 8 PPIs validated by
co-immunoprecipitation: DDX58-OASL (Zhu et al., 2014),
HMGB1-FLT1 (Ganapathiraju et al., 2016a), HMGB1-KL
(Ganapathiraju et al., 2016a), STT3A-RPS25 (Ganapathiraju
et al., 2016a), STT3A-SYCP3 (Ganapathiraju et al., 2016a),
STT3A-MCAM (Ganapathiraju et al., 2016a), PDCD1-
<hidden> (unpublished validation), YWHAE1-<hidden>
(unpublished validation), five PPIs validated by in vitro pull-
down and mass spectrometry: ALB-KDR (Karunakaran et al.,
2021), ALB-PDGFRA (Karunakaran et al., 2021), BAP1-PARP3
(Karunakaran et al., 2021), CLPS-CUTA (Karunakaran et al.,
2021), HMGB1-CUTA (Karunakaran et al., 2021) and 4 PPIs
validated by co-localization: STX3-LPXN (Ganapathiraju et al.,
2016a), STX4-MAPK3 (Ganapathiraju et al., 2016a), IFT88-KL
(unpublished validation) and WDR5-IGFBP3 (unpublished
validation). Some of the predicted PPIs proved to have high
translational impact. For example, we predicted that the human
OASL protein (IFN-inducible oligoadenylate synthetases-like)
interacts with RIG-I (retinoic acid-inducible gene I); it was
validated to be a true PPI. Further investigations conclusively
showed that this interaction is responsible for activating cellular
innate immunity to virus infections: OASL enhances antiviral
signalling mediated by the viral RNA sensor RIG-I by binding
through its C-terminal ubiquitin-like domain (Zhu et al., 2014).
Other high-impact results from interactome analysis include
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shared PPIs explaining inverse epidemiological relationship
between schizophrenia and rheumatoid arthritis (Malavia
et al., 2017b) and cilia-transduced cell signaling in congenital
heart disease (Li et al., 2015; Liu et al., 2017), and more
(Karunakaran et al., 2019a).

In this work, we present the human protein-protein
interactome of the proteins targeted by SARS-CoV-2 (Gordon
et al. (2020a)). A concept diagram of the analysis carried out here
is shown in Figure 1. Key contributions of this work are about
2,000 previously unknown human PPIs that are computationally
predicted with high-precision, and the results of analyzing the
network of known and predicted interactions with functional
annotations and with SARS-CoV-2-relevant transcriptomic and
proteomic data. Importantly, we are making this interactome,

with rich annotations, available on a webserver and in graph
formats downloadable for further computational analyses.

2 RESULTS

We collected 332 host proteins that were identified to interact
with 27 SARS-CoV-2 viral proteins identified from the 2019-
nCoV/USA-WA1/2020 strain by Gordon et al. (2020a). To
assemble the interactome of these host proteins, we compiled
known PPIs from HPRD (Keshava Prasad et al., 2008) (Human
Protein Reference Database) and BioGRID (Stark et al., 2006)
(Biological General Repository for Interaction Datasets), and
predicted novel PPIs by applying the HiPPIP algorithm

FIGURE 1 | Concept diagram of the analysis presented in the paper: Clockwise from top-left: (A). SARS-CoV-2 enters the host cell with the help of an interaction
between its surface-anchored “spike protein” and the ACE2 receptor on the host cell. Once the virus gains entry into the host cell, it hijacks the host cellular machinery to
promote viral genome replication, and viral mRNA and protein synthesis (B). SARS-CoV-2 viral proteins (purple) produced in this manner interact with a specific set of
host cell proteins (dark blue; identified by Gordon et al. (2020a). In this study, (C). we assembled the known (light blue) and computationally predicted/novel (red)
interactors of the host proteins, and (D). systematically studied this expanded neighbourhood network of virus-targeted host proteins (E). Various types of analysis
carried out in this work. Several more systems studies are possible with the interactome both because of new types of analysis or analysis with new data sources. Cilium,
PML bodies and midbody figures are from (Morgan, 2007; Wilson, 2015; Hoischen et al., 2018) (with creative commons license on WikiMedia). Novel PPIs of the SARS-
CoV-2 targeted host proteins predicted by HiPPIP can be found at http://severus.dbmi.pitt.edu/corona/.
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described in our earlier work (Ganapathiraju et al., 2016b)
(Supplementary Table S1). Note that the interactome
presented here is human protein interactome, and not a virus-
host interactome; the relevance to COVID-19 is that the core
proteins for which the interactome is assembled are those that the
viral proteins bind to. Specifically, as shown in Figure 2, we
assembled the known and novel interactors (round light blue and
red colored nodes, respectively) of the host proteins (square-
shaped dark blue colored nodes) targeted by SARS-CoV-2 viral
proteins (diamond-shaped green colored nodes). HiPPIP
predicted ~2,600 PPIs of which ~600 PPIs were previously
known, leaving ~2,000 PPIs to be considered as novel PPIs of
the host proteins. There were an additional 3,500 PPIs that were
known and not predicted by HiPPIP. This is as expected as the
HiPPIP prediction threshold has been fixed to achieve high
precision by compromising recall, which is required for
adoption into biology; in other words, it is set to predict only
a few PPIs out of the hundreds of thousands of unknown PPIs,
but those will be highly accurate. It has to be noted that neither
PPI prediction nor high throughput PPI screening can be
performed with high-precision and high-recall. Co-IP based
methods show high-precision and extremely-low recall

(detecting only one PPI at a time), whereas multi-screen high-
quality yeast 2-hybrid methods show high-precision with low
recall (detecting a few tens of thousands of PPIs). Thus, HiPPIP is
on par with other methods in terms of precision and the number
of new PPIs detected. Recently, state-of-the-art algorithms that
were developed after HiPPIP have been extensively evaluated, but
none of them reached the superior performance achieved by
HiPPIP (Dunham and Ganapathiraju, 2022). Seventeen novel
PPIs predicted by HiPPIP in our other studies were tested, and all
validated to be true; the experiments were carried out by diverse
research labs. Overall, the host protein (HoP) interactome
consisted of 4,408 proteins and 6,076 interactions. A partial
network of host proteins and their novel interactors is shown
in Figure 3A. Several COVID-centric network biology studies
(Zhou et al., 2020b; Gysi et al., 2020; Kumar et al., 2020) presented
analysis of the “known PPI neighborhood” of the host proteins
targeted by SARS-CoV-2. Contrary to this, in our study, we
augment this neighborhood with 1,941 computationally
predicted PPIs of high precision (Figure 2), so as to 1)
present a more complete version of the host protein
interactome, 2) facilitate discovery of previously unknown
disease mechanisms, and 3) allow characterization of under-

FIGURE 2 |Neighborhood networks of SARS-CoV-2-targeted host proteins expanded by novel PPIs: Genes are shown as nodes and PPIs as edges. The network
diagrams illustrate augmentation of the host protein interactome with computationally predicted novel interactors (shown as round red colored nodes). The data
pertaining to the interaction (golden yellow edges) of SARS-CoV-2 viral proteins (shown as diamond shaped dark green colored nodes) with host proteins (square
shaped dark blue colored nodes) was collected from Gordon et al. (Gordon et al., 2020a). The data pertaining to known PPIs (blue edges) of the host proteins with
known interactors (round light blue colored nodes) was collected from BioGRID and HPRD. To present a more complete version of the interactome, we computationally
predicted novel PPIs (red edges) of the host proteins with novel interactors (round red colored nodes) using the HiPPIP algorithm. Each of these novel PPIs not only
serves as valuable candidates for further experimentation, but also facilitates systems-level analysis of the host protein interactome and generation of new testable
hypotheses. Note that the figure only shows the neighbourhood networks of a few selected viral proteins. The complete list of interactions between viral proteins and host
proteins, and between host proteins and its interactors can be found in http://severus.dbmi.pitt.edu/corona/.
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studied host proteins through functional associations of their
predicted interactors. Moreover, the network is made available on
an interactive webserver to enable biologists to examine the novel
interactions relevant to their specific protein or pathway of
interest, and as downloadable files in various formats to
facilitate its investigation in conjunction with transcriptomic/
proteomic data by computational systems biologists.

We verified whether any of the 2,000 novel PPIs came up in
recently released interactome maps such as HuRI (HI-Union)
(Luck et al., 2020) and BioPlex (Huttlin et al., 2020). While there
was no overlap with the HI-union dataset, there were 8 PPIs in the
BioPlex map (ADAM9-ADAM32, P3H3-OS9, PVR-NECTIN2,

SRRM2-SNIP1, PABPC4-LUC7L2, PRKACA-AKAP1,
NDUFA13-ECSIT, and NPTX1-NPTX2). The small overlap is
not surprising because even high-throughput biotechnological
methods discover different parts of the interactome with only
small overlaps with each other, thus demonstrating
complementary strengths (Luck et al., 2020).

2.1 Wiki-CORONA: A Web Server of Novel
Host PPIs
The HoP interactome is available on a website called Wiki-
CORONA (http://severus.dbmi.pitt.edu/corona/). It has advanced

FIGURE 3 | Network views of protein-protein interactions in the host protein interactome: (A) Partial view of the HoP interactome: Genes are shown as nodes and
PPIs as edges. As the full network is very large, only a partial view showing a large connected component of novel interactors and their neighbors, all of which have
transcriptomic/proteomic evidence related to SARS-CoV-2 (Supplementary Table S2), is shown. Legend: Dark blue square-shaped nodes: host proteins targeted by
SARS-CoV-2; red nodes/edges: novel interactors/interactions; light blue nodes and blue edges: known interactors and interactions. (B) ACE2 interactome: PPIs of
ACE2 protein, extended to show four host proteins that are two-edges away from it. Color legend is as in (A-C) Modules identified from network topology: Five out of
seventeen total modules each with 3 or more nodes are shown. Each module was enriched in a specific GO biological process: (i) Endosomal transport, (ii)
Ribonucleoprotein complex biogenesis, (iii) Cilium organization, (iv) Nuclear transport and (v) Epigenetic regulation of gene expression. Within each module shown in (i-v),
nodes with bold italicized labels depict genes with at least one transcriptomic/proteomic evidence relevant to SARS-CoV-2.
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search capabilities, and presents comprehensive annotations,
namely Gene Ontology, diseases, drugs and pathways, of the two
proteins of each PPI side-by-side. Here, a user can query for results
such as “PPIs where one protein is anti-viral and the other is
involved in immunity,” and then see the results with the functional
details of the two proteins side-by-side. The PPIs and their
annotations also get indexed in major search engines like Google
and Bing. Querying by biomedical associations is a unique feature
which we developed in Wiki-Pi that presented known interactions
of human proteins (Orii and Ganapathiraju, 2012).

2.2 Interconnections of ACE2 With Host
Proteins Targeted by SARS-CoV-2
SARS-CoV-2 engages the host receptor ACE2 (angiotensin-
converting enzyme 2) for cell entry (Hoffmann et al., 2020).
The interactions of SARS-CoV-2 viral proteins with host
proteins were studied by Gordon et al. in human embryonic
kidney cells (HEK-293T/17) (Gordon et al., 2020a), which show
very low endogenous expression of ACE2 (Warner et al., 2005);
even if HEK-293 cells were transfected with ACE2 to allow
heterologous ACE2 expression, its protein product may
undergo proteolytic cleavage mediated by ADAM17 (Lambert
et al., 2005). Possibly due to this reason, ACE2 was not identified
as a host protein in that study (Gordon et al., 2020b). Therefore,
we assembled the known and novel PPIs of ACE2 separately,
owing to its crucial role in SARS-CoV-2 infection. Then, we
extracted the shortest paths in the interactome connecting ACE2
to any of the 332 host proteins using methods described in our
prior work, LENS (Lens for Enrichment and Network Studies of
human proteins) (Handen and Ganapathiraju, 2015). We found
that ACE2 was connected to 4 host proteins targeted by SARS-
CoV-2 (SIL1, LOX, MDN1 and NINL) through an intermediate
interactor, i.e. separated by two edges, where one or both
intermediary PPIs were novel predicted ones (see red edges in
Figure 3B). Thus, we showed that novel PPIs connect ACE2 to
multiple host proteins through intermediary proteins.

These connections revealed interesting insights: ACE2 is a key
player of the renin-angiotensin hormone system that regulates
blood pressure and electrolyte balance (Burrell et al., 2004). In
line with this, we found that its interactors, AGT (angiotensin),
GHRL, CLTRN and POMC, were associated with the Reactome
Pathway peptide hormone metabolism (p-value = 2.9 × 10−5).
ACE2 and its interactors were also enriched in the Gene Ontology
(GO) Biological Process circulatory system process (ACE2, AGT,
NTS, POMC, GHRL and the host protein MYL4; p-value = 1 ×
10−3). Three host proteins were associated with numerous
vascular and cardiac phenotypes: LOX with abnormality of
blood volume homeostasis, aortic root aneurysm, ascending
aortic dissection, carotid artery dilatation, coronary artery
atherosclerosis, cystic medial necrosis of the aorta, descending
thoracic aorta aneurysm, dilatation of the cerebral artery, left
ventricular failure, peripheral arterial stenosis, MYL4 with
paroxysmal atrial fibrillation and bradycardia, and SIL1 with
abnormal aldolase level. The co-morbidity of hypertension,
diabetes and cardiovascular diseases among the group of
COVID-19 patients with high fatality rate (Fang et al., 2020a)

warrants a closer look at ACE2 and the host proteins linked to
cardiac and vascular phenotypes. We also examined the
interconnections of the host proteins with other proteins that
facilitate SARS-CoV-2 entry into host cells, namely, TMPRSS2,
CTSB, CTSL, NRP1, AGTR2 and OR51E2 (Cantuti-Castelvetri
et al., 2020; Cui et al., 2020; Hoffmann et al., 2020; Kerslake et al.,
2020). Five out of these 6 proteins—TMPRSS2, CTSB, CTSL,
NRP1, and AGTR2—were found to be connected to 33 host
proteins via 52 intermediate interactors including 12 novel
interactors (Supplementary Figure S1). Detailed investigations
may be necessary to understand the relationships of these host
cellular entry proteins to other host factors targeted by SARS-
CoV-2.

2.3 Identification of Network Modules From
the Host Protein Interactome
Viruses have been shown to target network modules of host
proteins (Jäger et al., 2012; Hafirassou et al., 2017; Yang et al.,
2019). These modules could either correspond to 1) protein
complexes in which proteins interact within a specific
location/time/condition to perform a function in a coordinated
manner (e.g., RNA splicing machinery and transcription
machinery), or 2) to form dynamic, yet functionally coherent
units, in which the proteins interact with one another at different
times/conditions to carry out a biological process (e.g., signaling
pathways and cell cycle regulation) (Spirin and Mirny, 2003). We
employed “Netbox” software implementation with data
consisting of SARS-CoV-2 target proteins (core proteins) and
all human PPIs (Cerami et al., 2010) to identify network modules.
It expands the core proteins by adding nodes from the
interactome whose number of links to core proteins are
statistically significant compared to its degree in the human
interactome. From this network, it identifies highly
interconnected modules. It was able to connect 323 proteins
(220 host proteins targeted by SARS-CoV-2 and 103 linker
proteins) into 21 modules, of which 14 modules had 4 or
more nodes each. For comparison, when novel PPIs were not
included, it connected 199 proteins (138 host proteins and 61
linker proteins) into 18 modules of which 10 had 4 or more
proteins each. Scaled modularity score (Z-score compared to
random networks) was 17.0 with novel PPIs, and it was 14.5
without novel PPIs (Z-score compared to corresponding random
networks). Five modules formed with novel interactors had
statistically significant enrichment of GO biological process
terms: epigenetic regulation of gene expression (p-value = 3.3 ×
10−4, odds ratio = 10.4), nuclear transport (p-value = 2.4 × 10−12,
odds ratio = 21.6), cilium organization (p-value = 1.28 × 10−3,
odds ratio = 7.8), ribonucleoprotein complex biogenesis (p-value =
0, odds ratio = 22.4), and vesicle-mediated transport between
endosomal compartments (p-value = 9.4 × 10−6, odds ratio =
123.4) (Figures 3Ci–v). When novel PPIs were excluded, some of
these associations were missed (epigenetic regulation of gene
expression and cilium organization) and the modules were
smaller, but 3 additional functional modules were found: cell
cycle G2/M phase transition (p-value = 1.9 × 10−3, odds ratio =
21.7), DNA replication (p-value = 4.9 × 10−3, odds ratio = 55.25)
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and cell-cell signaling by Wnt (p-value = 4.9 × 10−3, odds ratio =
9.3). Hence, although several biological processes detected by
including the novel PPIs could also be detected using only the
known PPIs, functional modules such as cilium organizationwere
only uncovered on inclusion of the novel PPIs that we predicted
for the host proteins (namely, COMT-HOPX, MRPS5-IMMT,
G3BP1-HAND1, ACSL3-MAP2, PRKACA-AKAP1, PIGO-
PHKA1 and G3BP2-USO1). In summary, the novel PPIs
improved existing COVID-related knowledge by facilitating
the identification of functional modules, which would have
remained hidden if one had only used known PPIs for module
identification.

2.4 Overlap of the Host Protein Interactome
With Transcriptome and Proteome Data
We systematically analyzed the overlap of the HoP interactome
with gene expression profiles induced by SARS-CoV and SARS-
CoV-2. Statistically significant overlaps were found with the
genes differentially expressed in A549 (human lung alveolar
carcinoma) cell lines transfected with ACE2 and infected with
a high load of SARS-CoV-2 (multiplicity of infection/MOI = 2.0)
(p-value = 3.67 × 10−17, odds ratio = 1.26), Calu-3 (human lung
epithelial carcinoma) cell line infected with a high SARS-CoV-2
load (MOI = 2.0) (p-value = 1.98 × 10−3, odds ratio = 1.12) and
postmortem lung samples of COVID-19 positive patients
(p-value = 8.3 × 10−17, odds ratio = 1.37) [GSE147507
(Blanco-Melo et al., 2020b)]. Significant enrichment of the
novel interactors that were predicted to interact with the host
proteins targeted by SARS-CoV-2 was noted in the A549 cell line
(p-value = 1.6 × 10−3, odds ratio = 1.17) and COVID-19 patient
(p-value = 1.18 × 10−2, odds ratio = 1.19) datasets. Many proteins
in the interactome, including novel interactors, were differentially
expressed in epithelial cells infected with SARS-CoV (GSE17400,
Calu-3 cell, 48 h post-infection; p-value = 4.76 × 10−12). Several
proteins also showed differential expression after infection by
Urbani strain of SARS-CoV (GSE37827, Calu-3 cells, 72 h post-
infection), in peripheral blood mononuclear cells of SARS
patients (GSE1739 (Reghunathan et al., 2005)), in A549 cell
line infected with a low SARS-CoV-2 load (MOI = 0.2) and in
NHBE (normal human bronchial epithelial) cell line infected with
a high SARS-CoV-2 load (MOI = 2.0), but their overlaps were not
statistically significant. Most importantly, the interactome
demonstrated statistically significant overlaps with the genes
differentially expressed in the leukocytes of COVID-19
patients with ARDS admitted to the intensive care unit (ICU)
versus those receiving non-intensive care (p-value = 4.63E-10,
odds ratio = 1.13) (GSE157103 (Overmyer et al., 2021)) and
whole blood of COVID-19 patients critical in ICU with ARDS
versus non-critical patients on oxygen [p-value = 0.035, odds
ratio = 1.04) (GSE172114 (Carapito et al., 2021)). This suggested
that the HoP interactome can be used as a framework to
contextualize the gene expression signatures differentiating the
various clinical outcomes of COVID-19. Additionally, we showed
the overlap of the interactome with genes differentially expressed
in blood samples of COVID-19 patients admitted to the ICU with
ARDS compared with non-critical patients on oxygen (p-value

= 6.03 × 10−7, odds ratio = 1.11) (GSE172114 (Carapito et al.,
2021)) and in peripheral blood mononuclear cells (PBMCs) of
COVID-19 patients in ICU versus healthy subjects (p-value =
1.55 × 10−27, odds ratio = 1.25) and COVID-19 patients with
moderate symptoms versus healthy subjects (p-value = 5.08 ×
10−30, odds ratio = 1.35) (GSE152418 (Arunachalam et al.,
2020)). Statistically significant enrichments for novel
interactors were also found with PBMCs of ICU-admitted
COVID-19 patients (p-value = 1.69 × 10−5, odds ratio =
1.18) and those with moderate symptoms (p-value = 8.01 ×
10−4, odds ratio = 1.18). In summary, the overlaps of the
transcriptional profiles induced by SARS-CoV/SARS-CoV-2
with the HoP interactome 1) ascertained the biological validity
of the HoP interactome, 2) contextualized the differentially
expressed genes within the mechanistic framework of the
protein interactome and 3) highlighted novel interactors of
the host proteins targeted by SARS-CoV-2 that may be
prioritized for further study.

Melo et al. had identified 120 genes differentially expressed
upon infection by SARS-CoV-2 in the A549 cell line compared
with infection by respiratory syncytial virus and/or influenza A
virus (GSE147507 (Blanco-Melo et al., 2020a)). Of these, only 2
differentially expressed genes (DEGs) were among the 332 host
proteins targeted by SARS-CoV-2. Our study revealed several
interesting links between host proteins and these DEGs
(Figure 4A): 1) although only 2 DEGs were found among the
host proteins themselves, 31 DEGs were direct interactors of 38
host proteins, with some DEGs interacting with multiple host
proteins; 2) 13 novel PPIs existed between the two sets: AAR2-
SAMHD1, TUBGCP2-C1R, IMPDH2-C1S, GOLGA7-TCIM,
RAB8A-STEAP1, GDF15-EHF, REEP5-PDK4 FAM162A-
PARP14, STOML2-CDH1, FGA-RAB14, FBXL12-C19orf66,
ECSIT-C19orf66 and EIF4H-PTPN12; 3) 108 DEGs and 285
host proteins connected to each other via a common interactor
(there were 808 such shared interactors between DEGs and host
proteins; statistically significant overlap with odds ratio = 1.5,
p-value = 7.12 × 10−54); 4) Pathway enrichment analysis of
overlapping interactome (consisting of 808 shared interactors,
and the DEGs and the host proteins that they interact with)
revealed enrichment of several immune-related pathways (each
with FDR-corrected p-value < 0.05).

Messner et al. had identified 27 protein biomarkers whose
expression varied according to the WHO severity grades for
COVID-19 infection (i.e. no oxygen support, with oxygen
support and critical) (Messner et al., 2020). Out of these, 11
biomarkers were identified in our study as interactors of the host
proteins targeted by SARS-CoV-2. This included 8 proteins,
ACTB, C1R, C1S, CD14, FGA, GSN, ITIH3 and SAA1, which
were predicted as novel interactors of the host proteins, TCF12,
RALA, TUBGCP2, IMPDH2, REEP5, RAB14, RHOA andGNG5.

Next, we considered the overlap between 65 host proteins that
were identified to interact with SARS-CoV proteins by Pfefferle
et al. (2011) and the host proteins targeted by SARS-CoV-2. Only
4 proteins were common to both (BZW2, MARK2, MARK3 and
SMOC1) (Figure 4B). However, the interactome revealed that 50
host proteins targeted by SARS-CoV-2 had direct interactions
with 32 host proteins targeted by SARS-CoV, and that 8 of these
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were novel PPIs (N4BP2L2-EXOSC8, NMB-MRPS5, MKRN2-
MRPS25, HOXC6-BRD2, XPA-AP2M1, VKORC1- DCTPP1,
RSRP1-CEP350 and TPSAB1-ADAMTS1). 29 host proteins
targeted by SARS-CoV were connected to 249 host proteins
targeted by SARS-CoV-2 via a common interactor.

GO biological process terms such as autophagic mechanism
(odds ratio = 4.5, p-value = 2.2 × 10−5) regulation of
mitochondrion organization (odds ratio = 7.5, p-value = 5.5 ×
10−5) and protein localization to mitochondrion (odds ratio = 7.8,
p-value = 3.74 × 10−4) were enriched in the overlapping
interactome, suggesting that these processes may be commonly
targeted by both these viruses. Mitochondria may be directly
targeted by viral proteins, and may be affected by the cellular
changes arising from viral infection. They may also play a crucial
role in viral pathogenesis due to their function as immune
signalling hubs (Khan et al., 2015). These organelles are
constantly eliminated and recycled through a process called
mitophagy. Viruses can modulate mitochondrial function and
mitophagy to exacerbate infection (Khan et al., 2015).

In summary, 63 out of the 65 host proteins targeted by SARS-
CoV, and 108 out of the 120 genes differentially expressed upon

SARS-CoV-2 infection interacted directly or through an
intermediate interactor with the host proteins targeted by
SARS-CoV-2 (Figure 4).

3,787 (86%) proteins in the interactome are supported by the
abovementioned transcriptomic and proteomic evidence, and are
listed in Supplementary Table S2. In fact, the selected novel
interactors shown in Figure 2A all have transcriptomic/
proteomic evidence.

We studied tissue-specific expression of the proteins in the
interactome using GTEx data (Lonsdale et al., 2013). Genes with an
expression level greater than 1 TPM (transcripts per million) and
relative expression at least 5-fold higher in a particular tissue
(tissue-enriched) or a group of 2-7 tissues (group-enriched)
were considered (Fagerberg et al., 2014). As expected, many
genes showed specific expression in lung, which is the target
tissue of the virus, and in spleen, which regulates the immune
response of the host (Figure 5). Host proteins targeted by SARS-
CoV-2 had novel PPIs with 37 lung-specific proteins and
49 spleen-specific proteins. Apart from these expected tissue
associations, we noted that the host proteins also had novel
PPIs with 61 brain-specific and 28 heart-specific proteins, which

FIGURE 4 |Overlap of the host proteins targeted by SARS-CoV-2 with genes differentially expressed upon SARS-CoV-2 infection and with host proteins targeted
by SARS-CoV: (A) 120 genes were identified to be differentially expressed in A549 cell line upon SARS-CoV-2 infection compared with infection by respiratory syncytial
virus and/or influenza virus. Of these, 2 are also host proteins targeted by SARS-CoV-2, 31 have direct PPIs with SARS-CoV-2 host proteins and 75 link to SARS-CoV-2
host proteins via an intermediate interactor. Thus, 108 out of 120 genes differentially expressed upon SARS-CoV-2 infections are closely connected to SARS-2
host proteins. Note that only closest connections are shown; i.e., a directly interacting DEGmay also be connected via an intermediate interactor to host proteins, but it is
counted among former. (B) Similar counts are shown for 65 host proteins targeted by SARS-CoV: 4 are common, 30 have direct PPIs, and 29 link to SARS-CoV-2 host
proteins via an intermediate interactor. Thus, 63 out of 65 host proteins targeted by SARS-CoV are closely connected to host proteins targeted by SARS-CoV-2.
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is of importance as cerebrovascular diseases and coronary heart
diseases are co-morbidities among COVID-19 non-survivors
(Figure 5) (Fang et al., 2020b).

2.5 Functional Enrichment Analysis of the
Host Protein Interactome
We identified functional associations of the HoP interactome
using the gene set analysis toolkit called WebGestalt (Liao
et al., 2019). WebGestalt computes enrichment of specific
functional groups (e.g., a Reactome Pathway) in an input
list (e.g., genes in the HoP interactome). Statistical
significance is computed using Fisher’s exact test, and
corrected using the Benjamini–Hochberg method for
multiple test adjustment. WebGestalt was chosen for its
user-friendly interface, intuitive plots, large collection of
functional categories from different types of functional
databases and multiple enrichment analysis methods. This

analysis yielded information from different biological levels
that may potentially be influenced by SARS-CoV-2 infection:

(1) Co-morbidity relationships: proteins encoded by the genes
associated with diabetes and hypertension showed
network proximity to the host proteins targeted by
SARS-CoV-2

(2) Subcellular locations: PML (promyelocytic leukaemia) bodies
and the midbody may function as subcellular targets of SARS-
CoV-2, since proteins localizing to these structures were found
to be significantly enriched in the HoP interactome

(3) Cellular processes: enrichment of proteins involved in cell cycle
phase transitions may allude to SARS-CoV-2 modulating
critical junctures in the host cell cycle to facilitate viral infection

(4) Cellular pathways: the post-transcriptional tristetraproline-
mediated regulatory pathway is significantly associated
with the interactome and may be targeted by SARS-
CoV-2 proteins to weaken host immune response

FIGURE 5 | Tissue-specific genes in the host protein interactome: Number of genes from the interactomewhich show tissue specificity are shown. The genes show
at least 5-fold higher expression in a tissue or a group of 2-7 tissues compared to all the other tissues.
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2.6 Co-Morbidity Relationships
We studied the association of interactome genes with any genetic
disorders/traits in theOMIMdatabase. 155 genes in the interactome,
including 9 host protein-encoding genes, and 121 known interactors
and 25 novel interactors of host proteins, were found to be associated
with 35 disorders (overlap of each disease had p-value < 0.05). This
included 13 types of cancers, 7 metabolic disorders, 4 neurological
disorders, 3 developmental disorders, 2 eye-related disorders, 2
vascular diseases, 1 infectious disease, 1 inflammatory disorder, 1
respiratory disorder and 1 skin disease (Figure 6; Table 1). Some of
these diseases enriched in the interactome are co-morbidities among
non-survivors and critically ill COVID patients (e.g., diabetes,
hypertension, cerebrovascular events and cancer) (Fang et al.,
2020b; Sidaway, 2020). 13 genes in the interactome were
associated with non-insulin dependent diabetes mellitus (odds
ratio = 10.8, p-value = 4.38 × 10−10), 6 genes with essential
hypertension (odds ratio = 12, p-value = 2.34 × 10−5), 3 genes
with ischemic stroke (odds ratio = 14.4, p-value = 1.7 × 10−3) and 10
genes with lung cancer (odds ratio = 14.1, p-value = 2.36 × 10−9).

Network proximity of the proteins associated with these co-morbid
conditions to the SARS-CoV-2 host proteins may explain why
patients with these conditions are increasingly affected by the
viral infection. Further investigations are necessary to dissect
these co-morbidities. Treatment strategies that prevent the
deterioration of the underlying genetic conditions must be
devised to combat COVID-19 in susceptible individuals.
Additionally, neurological disorders such as Alzheimer’s disease
(odds ratio = 15.3, p-value = 5.13 × 10−7) and schizophrenia
(odds ratio = 12, p-value = 4.19 × 10−6) were also found to be
enriched in the interactome, warranting further investigations into
these potential co-morbidities.

2.7 Subcellular locations
Gene Ontology enrichment analysis of the interactome identified
several subcellular locations that may be targeted by SARS-CoV-
2. Cellular locations included points of virus entry such as the
cell-substrate junction, nuclear periphery and specific sites from
where viral proteins may potentiate viral replication, gene

FIGURE 6 |Network proximity of diabetes and hypertension to host proteins targeted by SARS-CoV-2: Dark blue nodes are host proteins targeted by SARS-CoV-
2, light blue nodes are known interactors and red nodes are novel interactors. Nodes with bold black italicized labels are diabetes-associated genes, whereas nodes with
bold orange colored italicized labels are hypertension-associated genes.
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expression and modulate the immune response of the host such
as the midbody, nuclear chromatin and PML (promyelocytic
leukaemia) body (each term with p-value < 1 × 10−4). PML
bodies are nuclear sub-compartments that repress viral
replication through entrapment or epigenetic silencing of the

viral genomes (Scherer and Stamminger, 2016). Components of
PML bodies activate interferon-stimulated genes and cytokines,
and may also be upregulated on induction of interferons (Scherer
and Stamminger, 2016). Viruses have been known to target PML
bodies to circumvent the anti-viral defences of the host cell

TABLE 1 | List of OMIM diseases enriched in the interactome: Details of enrichment of the disease genes in the interactome including the number of disease-associated
genes, odds ratio and statistical significance (p-value) of enrichment are shown.

OMIM disease Number of
disease

genes in the
interactome

Odds
ratio of

enrichment

p-value of
overlap

Genes

BREAST CANCER 15 15.033683 5.86E-14 PPM1D, NQO2, RB1CC1, AKT1, ATM, BRCA1, CASP8,
CDH1, ESR1, RAD51, CHEK2, BARD1, KRAS, TSG101,
TP53

LEUKEMIA, ACUTE MYELOID 12 13.120305 2.26E-10 LPP, NSD1, RUNX1, CBFB, DNMT3A, CHIC2, GATA2,
KRAS, TERT, NPM1, NSD3, NUP214

COLORECTAL CANCER 10 17.181352 2.26E-10 AXIN2, AKT1, APC, CTNNB1, FGFR3, EP300, NRAS,
BUB1B, TP53, SRC

DIABETES MELLITUS, NONINSULIN-DEPENDENT 13 10.782779 4.38E-10 MAPK8IP1, GCK, AKT2, HMGA1, IRS1, KCNJ11,
MTNR1B, PPARG, PTPN1, SLC2A2, HNF1A, TCF7L2,
WFS1

LUNG CANCERALVEOLAR CELL CARCINOMA,
INCLUDED

10 14.149348 2.36E-09 BRAF, CASP8, MAP3K8, CYP2A6, RASSF1, EGFR,
ERBB2, KRAS, PRKN, PPP2R1B

PROSTATE CANCER 8 14.802395 8.97E-08 MAD1L1, AR, CDH1, KLF6, CHEK2, ZFHX3, PTEN, CD82
ALZHEIMER disease 7 15.30722 5.13E-07 A2M, APP, BLMH, ACE, PLAU, NOS3, PAXIP1
SCHIZOPHRENIA 7 12.026946 4.19E-06 MTHFR, AKT1, COMT, DRD3, RTN4R, SYN2, DISC1
LEUKEMIA, ACUTE LYMPHOBLASTIC 5 17.181,352 1.69E-05 TAL1, TAL2, GNB1, BCR, NUP214
HYPERTENSION, ESSENTIAL 6 12.026946 2.34E-05 AGTR1, ADD1, ATP1B1, GNB3, NOS2, NOS3
HEPATOCELLULAR CARCINOMA 5 13.363273 7.09E-05 ET, APC, CASP8, CTNNB1, TP53
THYROID CANCER, NONMEDULLARY, 2 4 19.243114 7.09E-05 SRGAP1, HRAS, NRAS, PTEN
LEUKOENCEPHALOPATHY WITH VANISHING
WHITE MATTER

4 19.243114 7.09E-05 EIF2B2, EIF2B1, EIF2B5, EIF2B3

OBESITYLEANNESS, INCLUDED 6 9.6,215,569 8.15E-05 ADRB3, CARTPT, GHRL, ADRB2, MC4R, PPARG
MALARIA, SUSCEPTIBILITY TOMALARIA,
RESISTANCE TO, INCLUDED

6 8.489609 1.49E-04 CISH, FCGR2B, HBB, NOS2, CD36, TNF

MENINGIOMA, FAMILIAL, SUSCEPTIBILITY TO 4 16.035928 1.49E-04 NF2, PDGFB, PTEN, SMARCE1
BECKWITH-WIEDEMANN SYNDROME 4 16.035928 1.49E-04 NSD1, CDKN1C, KCNQ1, IGF2
OVARIAN CANCEROVARIAN CANCER,
EPITHELIAL, INCLUDED

4 16.035928 1.49E-04 AKT1, CDH1, CTNNB1, PRKN

HYPERCHOLESTEROLEMIA, FAMILIAL 4 13.745081 3.18E-04 ABCA1, APOA2, GHR, PPP1R17
MITOCHONDRIAL COMPLEX I DEFICIENCY 6 7.2161677 3.71E-04 NDUFAF3, TMEM126B, NDUFAF2, NDUFAF1, NDUFA1,

NDUFB9
PARKINSON disease, LATE-ONSET 4 12.026946 5.31E-04 SNCAIP, MAPT, ATXN2, TBP
GASTRIC CANCERGASTRIC CANCER,
INTESTINAL, INCLUDED

4 12.026946 5.31E-04 CASP10, APC, KLF6, ERBB2

DIABETES MELLITUS, PERMANENT NEONATAL 3 14.432335 0.001751964 GCK, INS, KCNJ11
JUVENILE MYELOMONOCYTIC LEUKEMIA 3 14.432335 0.001751964 CBL, ARHGAP26, PTPN11
STROKE, ISCHEMIC 3 14.432,335 0.001751964 ALOX5AP, F2, NOS3
LYMPHOMA, NON-HODGKIN, FAMILIAL 3 12.026946 0.003145343 CASP10, RAD54B, BCL10
WILMS TUMOR 1 3 12.026946 0.003145343 GPC4, IGF2, WT1
PHEOCHROMOCYTOMA 3 9.0202,096 0.007708062 RET, MAX, VHL
RHEUMATOID ARTHRITIS 3 9.0202,096 0.007708062 SLC22A4, CIITA, PADI4
RETINITIS PIGMENTOSA 3 7.2161677 0.015013329 PDE6G, CRX, ARL6
ASTHMA, SUSCEPTIBILITY TO 3 6.5601524 0.018768223 ADRB2, PHF11, TNF
PRADER-WILLI SYNDROME 3 6.5601524 0.018768223 NDN, MKRN3, MAGEL2
TRACHEOESOPHAGEAL FISTULA WITH OR
WITHOUT ESOPHAGEAL ATRESIA

4 4.5816938 0.019809755 CHD7, FANCC, FANCF, MYCN

ENDOMETRIAL CANCER 2 9.6215569 0.028209828 CDH1, PTEN
EPIDERMOLYSIS BULLOSA, JUNCTIONAL, NON-
HERLITZ TYPE

2 9.6215569 0.028209828 LAMC2, LAMA3

WOLF-HIRSCHHORN SYNDROME 2 9.6215569 0.028209828 CTBP1, NSD2
MACULAR DEGENERATION, AGE-RELATED, 1 2 9.6215569 0.028209828 PLEKHA1, APOE
DIABETES MELLITUS, INSULIN-DEPENDENT 2 8.0179641 0.040083771 ITPR3, HNF1A
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(Scherer and Stamminger, 2016). 61 proteins in the HoP
interactome are PML components. These include the host
protein AKAP8L, which has been known to promote
retroviral gene expression, and 55 known interactors and 5
novel interactors (RNF111, SP140, ELF4, NFE2, and CIART)
of other host proteins targeted by SARS-CoV-2. Our model
predicted an interaction of EIF4E2 with SP140, an interferon-
inducible PML component; SARS-CoV-2 may target these
proteins. The midbody is a microtubule-rich structure that
connects the daughter cells and marks the site of abscission
during cytokinesis. Viruses have been known to recruit certain
protein complexes that also localize to the midbody during
cytokinesis, to the host cell membrane to promote its scission
and thereby the release of viruses (Morita et al., 2010). This co-
opting of proteins may explain the enrichment of midbody
proteins in the HoP interactome. 83 proteins in the HoP
interactome, including 11 host proteins (RHOA, CENPF, CIT,
RAB8A, NUP62, SCCPDH, SPART, RDX, ARF6, CNTRL and
RALA), 63 known interactors and 9 novel interactors (KIF4A,
BIRC5, INCENP, ALKHB4, DNM2, DDX11, ARL2BP,
ABRAXAS2 and WIS) are known to localize to the midbody.

2.8 Cellular processes
Enriched biological processes in the interactome included G1/
S and G2/M mitotic cell cycle phase transitions, regulation of
vesicle-mediated transport, covalent chromatin modification
and nuclear transport (p-value < 1 × 10−4). The response of

the host cell to SARS-CoV-2 infection has been shown to be
significantly delayed and devoid of several anti-viral
mechanisms (Blanco-Melo et al., 2020a). During early stages
of the infection, it is possible that the virus induces a G1/S
phase transition to surreptitiously synergize the replication of
the viral genome with that of the host genome (Fan et al.,
2018). In the later stages, it may block the G2/M phase
transition to maximise the levels of viral genome (Fan et al.,
2018). We found novel interactions of host proteins with 34
proteins involved in cell cycle phase transition: ANAPC4,
ANAPC7, ARPP19, CCNB3, CDC14B, CDC16, CDC7,
CEP164, CETN2, CLSPN, CRLF3, DCTN1, DNM2,
DYNC1H1, E2F6, ENSA, FBXL7, GFI1, GML, HYAL1,
INHBA, JADE1, NEUROG1, NPAT, ORC2, PPM1D,
RAD17, SPDYA, TAOK2, TICRR, TRIAP1, XPC, ZFP36L1
and ZNF655. Corroborating our hypothesis, a significantly
large number of Vero E6 cells infected with SARS-CoV-2 were
found to be in S and the G2/M phases, indicating that SARS-
CoV-2 may induce cell cycle arrest between S and G2 phases to
promote infection (Bouhaddou et al., 2020).

2.9 Cellular pathways
The HoP interactome showed a statistically significant
enrichment of several pathways related to viral entry and
infection such as infectious disease, HIV life cycle, vesicle-
mediated transport and membrane trafficking (Figure 7).
Several immunity-related pathways that mediate host response

FIGURE 7 | Pathways associated with the host protein interactome: Number of genes from the interactome associated with selected pathways are shown.
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such as MyD88 dependent TLR4 signalling and ISG15 anti-viral
mechanism were also identified.

The transcriptional profile of the host cell after SARS-CoV-2
infection had revealed a remarkably limited anti-viral response
compared to that elicited by seasonal influenza-A and respiratory
syncytial viruses (Blanco-Melo et al., 2020a). This prompted us to
inspect a post-transcriptional regulatory pathway that was
enriched in the HoP interactome, namely, the Reactome
pathway called tristetraprolin (ZFP36) binds and destabilizes
mRNA (p-value < 1 × 10−4). ZFP36 is an RNA-binding
protein that targets AU-rich sites in the mRNA transcripts
coding for immune proteins and destabilizes them by
promoting deadenylation of their poly (A) tails (Moore et al.,
2018; Blackshear, 2002). YWHAB increases cytoplasmic
localization of ZFP36, possibly preventing destabilization of
these genes and attenuation of immune response (Brook et al.,
2006). We extracted the direct PPIs of the 17 genes belonging to
this pathway from the HoP interactome and isolated this sub-
network for further inspection (Figure 8). Our predictions

showed that the host protein DCAF7, which is known to
function as a scaffold protein and a facilitator of PPIs,
interacted with YWHAB (Figure 8). This raised the possibility
that the virus protein Nsp9 (which interacts with DCAF7) may
somehow perturb YWHAB-induced cytoplasmic localization of
ZFP36 through its action on DCAF7. Nsp9 may activate or
promote the sequestration of YWHAB with DCAF7, thereby
reducing its capacity to form a complex with ZFP36. ZFP36-
mediated destabilization of immune genes may then lead to a
weakened immune response, creating an environment conducive
for SARS-CoV-2 infection. We also identified 3 drugs targeting
the proteins in this sub-network using Drug Bank (Wishart et al.,
2008): resveratrol targeting KHSRP and APP, known interactors
of the host protein EXOSC2, which is involved in the
tristetraprolin (TTP) pathway, staurosporine targeting TTP-
associated MAPKAPK2, which has been predicted to interact
with PABPC1, and dacarbazine targeting the host protein POLA2
(Figure 8). Gene expression profiles induced by these drugs in
various cell lines were found to have a negative correlation with

FIGURE 8 | Tristetraprolin pathway: Dark blue nodes are host proteins targeted by SARS-CoV-2, light blue nodes are known interactors, and red nodes are novel
interactors. Diamond-shaped green colored nodes depict drugs. Nodes with bold black italicized labels are proteins involved in the tristetraprolin pathway.
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SARS-associated gene expression profiles, namely, that of lung
fibroblast MRC5 cells infected with SARS-CoV and peripheral
blood mononuclear cells of SARS patients (analysis using
NextBio; https://www.nextbio.com) (Kupershmidt et al., 2010;
Chattopadhyay and Ganapathiraju, 2017). Resveratrol has been
proposed as a therapeutic option for SARS-CoV-2 based on its
antagonistic properties against MERS-CoV (Lin et al., 2017).

2.10 Interconnections of Ciliary Proteins
With Host Proteins Targeted by
SARS-CoV-2
SARS coronavirus, which emerged in 2002, has been known to
induce necrosis in ciliated airway epithelium of humans in a
species-specific manner (Sims et al., 2005). SARS-CoV-2’s host
receptor ACE2 is highly expressed in ciliated respiratory cells
(Sungnak et al., 2020). Cilia may serve as virus entry points and
potential modulators of viral pathogenesis. This conjecture
prompted us to investigate the ciliary association of the host
proteins targeted by SARS-CoV-2 and their interactors in the
HoP interactome. For this, we studied its overlap with an
interactome of 165 ciliary proteins that we constructed in a
similar manner (Karunakaran et al., 2020). The ciliary protein
interactome contained 1,665 proteins. 617 of these proteins, and
specifically 30 core ciliary proteins, were also found in SARS-
CoV-2’s host protein interactome, and the overlap was found to

be statistically significant (p-value = 2.24E-10, odds ratio = 1.22).
14 novel predicted interactions connected host proteins to ciliary
proteins: NUP98-CHMP5, GG3BP1-DNAH1, SEPSECS-
DNAH1, NEK9-IFT43, TLE1-DNAH5, ATP6AP1-CETN2,
C1orf50-ZMYND12, RAB10-IFT172, TOR1AIP1-GPR161,
DNAJC19-CETN3, NLRX1-IFT46, FKBP7-TTC30B, POLA2-
TMEM216 and NDUFB9-DRC7.

Pathway analysis of the 617 common proteins (i.e., common
to HoP and cilia interactomes) revealed two interesting pathways:
budding and maturation of HIV virion (p-value = 1.29 × 10−6;
odds ratio = 8.8) and anti-viral mechanism by IFN-stimulated
genes (p-value = 1.3 × 10−2; odds ratio = 2.98). We predicted that
the ciliary protein, CHMP5, involved in the former pathway,
interacts with the host protein, NUP98, which is involved in the
latter pathway. This prompted us to ask whether the predicted
interaction connected the functional modules of viral budding to
interferon (IFN) signaling.

2.10.1 Novel Interaction of NUP98 With CHMP5 May
Activate an IFN-Stimulated Pathway That Interferes
With Viral Budding
We extracted the PPIs of the 20 proteins belonging to viral
budding and IFN pathways, and isolated this sub-network
containing 171 proteins and 176 PPIs for further analysis.
Firstly, we identified 343 functional interactions
(i.e., activation, inhibition etc.) among 98 proteins in the

FIGURE 9 | Functional modules of viral budding and interferon-mediated anti-viral pathway: Host proteins are depicted as square shaped nodes. The novel
predicted interaction of the host protein NUP98 with CHMP5 (red dashed line) may set off an ISG15-mediated pathway that culminates in interference of viral budding.
Black colored nodes and transparent nodes indicate overexpression and underexpression in SARS-CoV-infected Calu-3 lung cells respectively. Grey colored nodes
depict genes with normal expression. → indicates “activation,” -| indicates “inhibition” and—indicates “part of the same complex/physical association”.
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network. Strikingly, distinct functional modules were identified
for both the pathways; CHMP5 seemed to serve as a connector
from the viral budding pathway to the IFN pathway through
NUP98 (Figure 9). The gene UBC was shared between the
clusters.

We then checked whether the genes in these modules were
differentially expressed in Calu-3 lung cells infected with SARS
CoV Urbani (for 72 h) versus mock infected cells. This was done
to identify the functional interactions that may remain active
during viral infection. It was assumed that differential expression
of the genes would directly impact the proteins encoded by them
and their interactions. 20 genes including NUP98 and CHMP5
were found to be differentially expressed (Figure 9). Viruses
hijack the ESCRT/VPS4 (endosomal sorting complex required for
transport) machinery of the host cell to release viral particles
through membrane scission (Pincetic et al., 2010). This
machinery is normally recruited during endocytic and
membrane repair processes in the host cell. The process of
membrane scission is catalyzed by various ESCRT-III proteins
including CHMP5 (Pincetic et al., 2010). VPS4 is an ATPase that
is found in the cytoplasm in its inactive form. Activation of the
VPS4 and its ATPase activity is essential for membrane budding
and the release of viral particles (Pincetic et al., 2010). VPS4 is
activated on membranes in the presence of its co-activator VTA
(also known as LIP5). VTA is delivered to the membranes by
ESCRT-III proteins such as CHMP5 (Pincetic et al., 2010).
Hence, the interaction of VPS4 and VTA is facilitated by
CHMP5. However, when interferons are induced in the host
cell following viral infection, ISGs (interferon stimulated genes)
such as ISG15, a dimer homologue of ubiquitin, may be activated
(Pincetic et al., 2010). ISG15 may then conjugate to CHMP5 and
promote its accumulation in the membrane, effectively blocking
the interaction of VTA with VPS4 and preventing viral budding
(Pincetic et al., 2010). The novel interaction of CHMP5 with
NUP98 may serve as the critical juncture at which the IFN-
stimulated anti-viral mechanism interferes with viral budding.
NUP98, a protein induced on viral expression, has been shown to
promote anti-viral gene expression in drosophila (Panda et al.,
2014). Both CHMP5 and NUP98 are overexpressed following
SARS-CoV Urbani infection. This interaction may serve as a
signal for the initiation of ISG15-mediated interference of viral
budding. ISG15 may further regulate this mechanism through
feedback inhibition of NUP98. Hence, potentiation of this anti-
viral mechanism through administration of recombinant
interferon alfa-2b and interferon alfacon-1 may be a feasible
therapeutic option for SARS-CoV-2. Both these interferons
induce gene expression profiles negatively correlated with
SARS-associated profiles. The machinery of ESCRT-III and
VPS4 is co-opted into two subcellular structures that are
intricately linked to cilia function, namely, the centrosomes
and the midbody (Morita et al., 2010). It is important to study
these structures as potential modulators of viral infections.

2.11 Potentially Repurposable Drugs
We followed the established approach of comparing drug-
induced versus disease-associated differential expression
(Sirota et al., 2011) to identify drugs for SARS-CoV-2. For

this, we used a software suite called BaseSpace Correlation
Engine (previously called NextBio) (https://www.nextbio.
com) (Kupershmidt et al., 2010; Chattopadhyay and
Ganapathiraju, 2017). This data analysis platform was used
because it allows users to study the effect of diseases and/or
drugs on thousands of pre-processed publicly available gene
expression datasets and has helped to identify drug candidates
for diseases such as schizophrenia (Karunakaran et al., 2019b)
(currently undergoing clinical trials (Vishwajit Nimgaonkar,
2022; Vishwajit Nimgaonkar, 2024)) and mesothelioma
(Karunakaran et al., 2021) in the past. We compiled a list
of 933 chemical compounds whose differential gene expression
profiles (drug versus no drug) were negatively correlated with
at least one of the four SARS differential gene expression
datasets (infected versus non-infected); the 4 SARS datasets
we studied were: Calu-3 epithelial cells infected for 48 h with
SARS-CoV versus mock infected cells (GSE17400), Calu-3
lung cells infected for 72 h with SARS-CoV Urbani versus
mock infected cells (GSE37827), lung fibroblast MRC5 cells
24 h post SARS-CoV infection (high MOI) versus mock
infection (GSE56189) and PBMCs from SARS patients
versus healthy subjects [GSE1739 (Reghunathan et al.,
2005)]. We also compiled a list of 381 chemical compounds
with gene expression profiles negatively correlated with the
profile induced in human bronchial epithelial (NHBE) and
lung cancer (A549) cells infected with the SARS-CoV-2 strain
USA-WA1/2020 [GSE147507 (Blanco-Melo et al., 2020a)]
Although in each case, there would be some genes that are
differentially expressed in the same direction for both the drug
and the disease (i.e., both cause some genes to overexpress, or
both cause some genes to under express), the overall effect on
the entire transcriptome would be an anti-correlation. A
correlation score is generated by NextBio based on the
strength of the overlap between the drug and disease
datasets. Statistical criteria such as correction for multiple
hypothesis testing are applied and the correlated datasets
are then ranked by statistical significance. A numerical
score of 100 is assigned to the most significant result, and
the scores of the other results are normalized with respect to
this top-ranked result.

Next, we identified 1,130 drugs that target at least one protein
in the HoP interactome using WebGestalt (Liao et al., 2019). We
used the “redundancy reduction” feature provided byWebGestalt
to prioritize drugs with highly significant overlaps with the
interactome, while also capturing all the unique target gene
sets. This feature used an affinity propagation algorithm,
which clusters sets of genes in the interactome targeted by
specific drugs using Jaccard index as the similarity metric, and
identifies a “representative” for each cluster (one drug and its
targets), having the most significant p-value among all the gene
sets in that cluster. This resulted in 209 drugs for further
consideration. Given a class of drugs targeting the same set of
proteins, this method ensures that only those individual drugs
that target a statistically significant number of proteins in the
interactome are prioritized for further analysis.

Fifty-six drugs were found in common to the above two
analyses, i.e., these drugs not only targeted genes in the HoP
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TABLE 2 | 51 drugs with expression profiles negatively correlated with SARS-associated profiles: The correlation score is based on the strength of the overlap or enrichment
between the two biosets.

Drug Bioset 1 Bioset 2 Score (scaled
negative

correlations)

# Up
in bioset
1 (p-val),
down in
bioset 2
(p-val)

# Down
in bioset
1 (p-val),
up in

bioset 2
(p-val)

Alprenolol Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + alprenolol, 14 uM _vs._ DMSO
vehicle

100 228
(9.1E-9)

74
(0.1079)

Chloramphenicol Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

Liver of Crj-CD (SD)IGS rats 24 h after 28 days
daily dose of 1000 mg-kg chloramphenicol _vs._
0 mg-kg

100 75
(2.5E-9)

78
(0.0006)

Clotrimazole Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

Liver of rats + CLOTRIMAZOLE at 52 mg-kg-d in
corn oil by oral gavage 3 days _vs._ vehicle

100 119
(6.5E-11)

189
(0.0003)

Didanosine Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

Primary rat hepatocytes + didanosine at 50 uM in
DMSO 1 day_vs._vehicle

100 30
(2.2E-6)

49
(0.0027)

Epinephrine Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

Heart of rats + EPINEPHRINE at 0375 mg-kg-d in
saline by intravenous 5 days _vs._ vehicle

100 107 (2E-7) 75
(1.8E-5)

Fenofibrate Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

Huvec cells treated with fenofibrate for 18 h _vs._
untreated

100 395
(4.2E-16)

230
(3.7E-15)

Fenoprofen Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

Kidney of rats + FENOPROFEN at 52 mg-kg-d in
corn oil by oral gavage 1 day _vs._ vehicle

100 72
(5.2E-13)

69
(0.0015)

Ifosfamide Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

Rhabdomyosarcoma xenografts F2 generation
treated with ICE-T _vs._ original patient tumor
untreated

100 451
(6E-20)

1733
(1.5E-7)

Irinotecan Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 breast cancer cells treated 6 h with 5 ×
IC50 of topo I inhibitor SN38 _vs._ untreated

100 1,153
(4.9E-47)

500
(0.0017)

Isoniazid PBMC from patients with SARS_vs._healthy
subjects

Blood of TB patients infected with M.
tuberculosis—post 2HRZE/4HR therapy _vs._
before therapy

100 334
(6E-46)

450
(4.5E-13)

Isradipine Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

HL60 cells + isradipine, 10.8 uM _vs._ DMSO
vehicle

100 40
(5.7E-9)

61
(0.0229)

Nitric Oxide Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

HCT116 colon cancer cells + NO 24 h _vs._
untreated control

100 420
(7.3E-44)

231
(8.2E-9)

Paclitaxel Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

Mammary adenocarcinoma did not respond to
3 weeks carboplatin/paclitaxel treatment _vs._
untreated

100 561
(1.5E-29)

269
(1.4E-7)

Phenethyl
isothiocyanate

Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

Primary human hepatocytes +25 uM phenethyl
isothiocyanate for 48 h _vs._ vehicle

100 401
(2.8E-12)

389
(0.0062)

Riluzole Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

PC3 cells + riluzole, 14.8 uM _vs._ DMSO vehicle 100 166
(6.5E-5)

258
(2.4E-6)

Sorafenib Calu-3 lung cells_SARS Cov urbani infected
72 h_vs.

Hodgkins lymphoma HD-MYZ cell line - 10 uM
perifosine 5 uM sorafenib treated 24 h _vs._
vehicle control

100 309
(7.5E-14)

378
(5.7E-16)

Terazosin PBMC from patients with SARS_vs._healthy
subjects

Heart of rats + TERAZOSIN at 657 mg-kg-d in
water by oral gavage 5 days _vs_ vehicle

100 39
(0.0228)

29 (0.031)

Tetracycline PBMC from patients with SARS_vs._healthy
subjects

Hepatocytes of female donors treated 24 h with
1 uM tetracycline _vs._ 0uM

100 50
(0.0017)

98
(8.5E-14)

Adalimumab Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

Psoriasis lesional skin of adalimumab regimen
responders—wk2 _vs._ wk0

100 90
(4.6E-40)

67
(2.1E-5)

Cyclosporine Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

Lesional skins of atopic dermatitis 5 mg/kg/d CsA
responders - treated 12 weeks _vs._ baseline

100 386
(2.6E-61)

1,165
(6E-19)

Infliximab Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

Ulcerative colitis colon 10 mg/kg infliximab
regimen—8 w _vs._ baseline

100 170
(2.6E-54)

693
(5.7E-54)

Prednisone Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

Blood of dengue patients 2 mg/kg prednisolone
treated 3 days - 1month follow up _vs._ pre-
treatment

100 370
(1.4E-90)

571
(2.1E-7)

Interferon alfacon-1 Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

A549 lung adenocarcinoma cells treated 24 h
with 500IU infergen _vs._ untreated

100 150
(6.4E-5)

68
(2.3E-10)

(Continued on following page)
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TABLE 2 | (Continued) 51 drugs with expression profiles negatively correlated with SARS-associated profiles: The correlation score is based on the strength of the overlap or
enrichment between the two biosets.

Drug Bioset 1 Bioset 2 Score (scaled
negative

correlations)

# Up
in bioset
1 (p-val),
down in
bioset 2
(p-val)

# Down
in bioset
1 (p-val),
up in

bioset 2
(p-val)

Interferon alfa-2b PBMC from patients with SARS_vs._healthy
subjects

Healthy whole blood - treated with IFNa-2b _vs._
not treated

100 148
(5E-12)

187
(0.012)

Dacarbazine Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

HL60 cells + dacarbazine, 22 uM _vs._ DMSO
vehicle

100 127
(6.5e-16)

69
(0.0162)

Tamoxifen Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

Mammary epithelial cells 48 h with 10 uM
tamoxifen _vs._ DMSO

94 343
(1.5E-26)

95
(1.9E-8)

Sumatriptan Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

Brain of rats + SUMATRIPTAN at 1100 mg-kg-d
in water by oral gavage 3 days _vs._ vehicle

93 117
(4.1E-7)

87
(4.7E-6)

Nortriptyline Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + nortriptyline, 13.4 uM _vs._ DMSO
vehicle

91 216
(1.2E-5)

107
(1.2E-6)

Quercetin Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + quercetin, 11.8 uM _vs._ DMSO
vehicle

91 520
(1.4E-32)

104
(0.0018)

Resveratrol Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + resveratrol, 17.6 uM _vs._ DMSO
vehicle

91 237
(3.9E-15)

159
(2.3E-5)

Cerivastatin PBMC from patients with SARS_vs._healthy
subjects

Kidney of rats + cerivastatin at 7 mg-kg-d in corn
oil by oral gavage 3 days _vs._ vehicle

90 46
(2.5E-5)

63
(0.0121)

Thioridazine Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

PC3 cells + thioridazine, 9.8 uM _vs._ DMSO
vehicle

89 323
(1.7E-9)

105
(1.4E-5)

Mycophenolic acid Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + mycophenolic acid, 12.4 uM _vs._
DMSO vehicle

87 329
(2.4E-6)

142
(0.0142)

Granisetron PBMC from patients with SARS_vs._healthy
subjects

Liver of rats + GRANISETRON at 175 mg-kg-d in
water by oral gavage 3 days _vs._ vehicle

86 60
(0.0021)

47
(0.3425)

Ticlopidine Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

PC3 cells + ticlopidine, 13.4 uM _vs._ DMSO
vehicle

85 306
(7.8E-6)

83
(0.0001)

Dobutamine Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

PC3 cells + dobutamine, 11.8 uM _vs._ DMSO
vehicle

84 69
(0.0023)

42
(9.4E-9)

Permethrin Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

Neural 3D tissue constructs 16 days - treated on
d14 with 2.5 uM permethrin for 2 days _vs._
untreated

81 277
(5.7E-20)

168
(1.3E-10)

Sirolimus Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

SKBR3 line (mammary adenocarcinoma
overexpressing HER2) + rapamycin 24 h _vs._
vehicle

71 54 (0.46) 517
(5.7E-54)

Epirubicin Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

Breast tumors post epirubicin cyclophosphamide
paclitaxel gemcitabine herceptin_vs._baseline

68 80
(1.8E-23)

452
(1.4E-6)

Timolol Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

Heart of rats + timolol at 900 mg-kg-d in water by
oral gavage 5 days _vs._ vehicle

65 108
(1.7E-12)

227
(2.2E-5)

Miconazole Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

HL60 cells + miconazole, 9.6 uM _vs._ DMSO
vehicle

64 102
(0.0003)

108
(0.0248)

Metyrapone Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

MCF7 cells + metyrapone, 17.6 uM _vs._ DMSO
vehicle

62 162
(0.0004)

88
(0.0096)

Nitrazepam Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

Liver 310 mg per kg nitrazepam treated 3 days
_vs._ vehicle control

56 117
(1.1E-8)

84 (0.033)

Perhexiline Calu-3 lung cells_SARS Cov urbani infected
72 h_vs_mock-infected

liver of male rat + PERHEXILINE 320 mg per kg
for 5 days _vs._ vehicle

52 103
(0.0073)

223
(8E-7)

Staurosporine PBMC from patients with SARS_vs._healthy
subjects

Primary rat hepatocytes + STAUROSPORINE at
1.3 uM in DMSO 1 day _vs._ vehicle

41 143
(0.0004)

232
(0.0285)

(Continued on following page)
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interactome, but also induced gene expression profiles which are
negatively correlated with that induced by SARS-CoV (Table 2)
and SARS-CoV-2 (Table 3). 13 drugs showed negative
correlation with both expression profiles. 24 of these have
supporting evidence for biological relevance (see Appendix)
through clinical trial data and published literature (Figure 10).

• 4 drugs showed activity against SARS-CoV-2 in vitro
(cyclosporine, sorafenib, tamoxifen, anisomycin)

• 1 chemical compound (nitric oxide) found here is already
being tested against SARS-CoV-2 in clinical trials

• 1 drug (ramipril) belongs to the class of receptors targeted
by SARS-CoV-2

• 5 drugs display clinical activity against SARS or MERS
(resveratrol, sirolimus, mycophenolic acid, interferon
alpha-2b, interferon alfacon-1)

• 3 drugs (quercetin, verapamil, progesterone) are active
against influenza viruses

• 2 drugs are active against DNA viruses (leflunomide,
daunorubicin), and

• 8 drugs show activity against other RNA viruses (clotrimazole,
didanosine, paclitaxel, fenofibrate, cerivastatin, thioridazine,
pioglitazone, miglitol)

Eight drugs from our shortlist were independently identified
or prioritized by other groups, namely: leflunomide [Chen et al.
(Chen et al., 2021)], sirolimus [Zhou et al. (Zhou et al., 2020a)],
leflunomide, quercetin and verapamil [Gysi et al. (Gysi et al.,
2020)], interferon alfa-2b, resveratrol, cyclosporine and
mycophenolic acid [Li et al. (Li and De Clercq, 2020)].
Additionally, 8 out of the 24 shortlisted drugs were also found
among 127 broad-spectrum antiviral drugs active against 80

viruses (https://drugvirus.info/). These are cyclosporine,
leflunomide, mycophenolic acid, sirolimus, sorafenib,
tamoxifen, anisomycin and verapamil. Fourteen drugs were
found to induce expression profiles negatively correlated with
the profiles of ICU-admitted COVID-19 patients with ARDS
versus non-critical patients on oxygen [GSE172114 (Carapito et al.,
2021)], namely, cerivastatin, cyclosporine, didanosine, leflunomide,
miglitol, mycophenolic acid, paclitaxel, quercetin, resveratrol,
sirolimus, sorafenib, tamoxifen, thioridazine and verapamil. Three
drugs—didanosine, miglitol and resveratrol—induced profiles
negatively correlated with that of COVID-19 patients in ICU
versus healthy subjects [GSE152418 (Arunachalam et al., 2020)].
Additionally 4 drugs (sorafenib, quercetin, verapamil and
cerivastatin) induced profiles negatively correlated with the
profiles of ICU-admitted COVID-19 patients with ARDS versus
those receiving non-intensive care [GSE157103 (Overmyer et al.,
2021)] and 2 drugs (resveratrol and didanosine) with profiles of
COVID-19 patients critical in ICU with ARDS versus non-critical
patients on oxygen [GSE172114 (Carapito et al., 2021)]. These drugs
could be examined for their differential clinical activity in critical
versus non-critical cases.

3 DISCUSSION

In this study, to gain insight into the biological processes and
pathways that may be involved in host response upon SARS-
CoV-2 infection, we assembled the interactome of the host
proteins targeted by the virus. The host protein (HoP)
interactome has ~4,000 previously known PPIs in addition to
~2,000 PPIs that we computationally predicted. The interactome
and its annotations are made available on the website that is freely

TABLE 2 | (Continued) 51 drugs with expression profiles negatively correlated with SARS-associated profiles: The correlation score is based on the strength of the overlap or
enrichment between the two biosets.

Drug Bioset 1 Bioset 2 Score (scaled
negative

correlations)

# Up
in bioset
1 (p-val),
down in
bioset 2
(p-val)

# Down
in bioset
1 (p-val),
up in

bioset 2
(p-val)

Leflunomide Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + leflunomide, 14.8 uM _vs._ DMSO
vehicle

40 70
(0.0007)

30
(0.0968)

Verapamil PBMC from patients with SARS_vs._healthy
subjects

HL60 cells + verapamil, 8.2 uM _vs._ DMSO
vehicle

39 38
(0.0001)

43
(0.0299)

Hydrocortisone Calu-3 epithelial cells infected for 48 h with SARS
corona virus_vs._mock-infected

HUVECS 1uM hydrocortisone 500U/ml IL1B
2500 U/ml TNFα +1250 U/ml IFNγ
4 h_vs._vehicle

36 71
(0.1487)

324
(0.0692)

Progesterone Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + progesterone, 12.8 uM _vs._
DMSO vehicle

31 270
(2.6E-10)

116
(0.0386)

Ramipril Lung fibroblast MRC5 cells 24 h post SARS
corona virus infection high MOI Zhou et al. (2020a)
_vs._mock infection

MCF7 cells + ramipril, 9.6 uM _vs._ DMSO
vehicle

31 147
(1.7E-7)

53
(0.0052)

Temazepam Calu-3 lung cells_SARS Cov urbani infected
72 h_vs._mock-infected

Cerebrocortical cells from E16.5 mice treated
8 h—0.5 uM temazepam _vs._ DMSO

27 11
(0.0534)

25
(0.0338)

Additional statistical criteria such as correction for multiple hypothesis testing are applied and the correlated biosets are then ranked by statistical significance. A numerical score of 100 is
assigned to the most significant result, and the scores of the other results are normalized with respect to the top-ranked result.
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TABLE 3 | 18 drugs with expression profiles negatively correlated with COVID-associated profile: The correlation score is based on the strength of the overlap or enrichment
between the two biosets.

Drug Bioset 1 Bioset 2 Correlation
score
(scaled
negative

correlations)

# Up
in bioset
1 (p-val),
down in
bioset 2
(p-val)

# Down
in bioset
1 (p-val),
up in

bioset 2
(p-val)

Didanosine Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Primary rat hepatocytes + DIDANOSINE at 500 uM
in DMSO 1 day _vs._ vehicle

76 43
(3.2E-19)

20
(0.1725)

Isoniazid Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Blood of TB patients infected with M. tuberculosis -
post 2HRZE/4HR therapy _vs._ before therapy

75 268
(2.4E-47)

580
(5.9E-9)

Epirubicin Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Liver 2.7 mg per kg Epirubicin treated 3 days _vs._
vehicle control

66 92
(1.4E-21)

100
(0.0001)

Paclitaxel Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Ovarian cancer OVISE cells +10X IC50
concentration of paclitaxel for 24 h _vs._ untreated

66 82
(4.2E-15)

91
(0.0358)

Daunorubicin Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Heart 3.25 mg per kg Daunorubicin treated 1 day
_vs._ vehicle control

65 40
(1.3E-14)

34
(0.0004)

Rifapentine Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Kidney of rats + RIFAPENTINE at 75 mg-kg-d in
corn oil by oral gavage 1 day _vs._ vehicle

64 24
(0.0117)

77
(2.2E-7)

Ticlopidine Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Liver of Crj-CD (SD)IGS rats 24h after 14 days daily
dose of 300 mg-kg ticlopidine _vs_ 0 mg-kg

63 59
(2.9E-15)

59
(0.2386)

Ifosfamide Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Heart of rats + IFOSFAMIDE at 143 mg-kg-d in
saline by oral gavage 5 days _vs._ vehicle

61 34
(2.6E-15)

93
(0.0091)

Quercetin Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Hep G2 hepatocarcinoma cell line cultured for 24 h
with 10 nM quercetin _vs._ 0.5% DMSO

60 25
(0.0016)

233
(1.7E-12)

Resveratrol Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

AML THP-1 cells 24 h Mycobacterium tuberculosis
infected - with 100 uM resveratrol _vs._ without

58 162
(2.8E-23)

293
(3.1E-5)

Tetracycline Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Primary rat hepatocytes + TETRACYCLINE at
520 uM in DMSO 0.67 days _vs._ vehicle

58 19 (0.001) 174
(6.2E-7)

Pioglitazone Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Heart of rats + PIOGLITAZONE at 1500 mg-kg-d in
corn oil by oral gavage 5 days _vs._ vehicle

57 15 (0.343) 91
(7.5E-7)

Chloramphenicol Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Liver of Crj-CD (SD)IGS rats 24 h after 28 days daily
dose of 1000 mg-kg chloramphenicol _vs._
0 mg-kg

55 39 (5E-09) 23
(0.0535)

Permethrin Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Neural 3D tissue constructs 16 days - treated on
d14 with 2.5 uM permethrin for 2 days _vs._
untreated

55 18
(0.4565)

157
(5.5E-5)

Miglitol Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Osteosarcoma U-2 OS cells treated 12 h with
1000 nM miglitol _vs._ DMSO

45 3 (0.0366) 31
(8.4E-6)

Nortriptyline Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Primary rat hepatocytes + NORTRIPTYLINE at
70 uM in DMSO 1 day _vs._ vehicle

42 93
(2.7E-8)

392
(0.0048)

Nitrazepam Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

Liver of rats + nitrazepam at 310 mg-kg-d in CMC
by oral gavage 3 days _vs._ vehicle

41 22
(0.0471)

119
(0.0016)

Anisomycin Bronchial epithelial NHBE and lung cancer A549
cells infected with SARS-CoV-2 strain
United States-WA1/2020

PC3 cells + anisomycin, 15 uM _vs._ DMSO vehicle 41 75
(0.2238)

281
(3.5E-5)

Additional statistical criteria such as correction for multiple hypothesis testing are applied and the correlated biosets are then ranked by statistical significance. A numerical score of 100 is
assigned to the most significant result, and the scores of the other results are normalized with respect to the top-ranked result.

Frontiers in Systems Biology | www.frontiersin.org April 2022 | Volume 2 | Article 81523719

Karunakaran et al. SARS-CoV-2 Host Protein Interactome

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


accessible, Wiki-Corona. The HoP interactome was found to
share large and statistically significant overlaps with gene
expression profiles induced by SARS-CoV and SARS-CoV-2.
Proteins with tissue-specific gene expression in lungs, spleen,
brain and heart were also found in the interactome. Topologically
connected modules in the network showed functional association
to cilium organization, nuclear transport, ribonucleoprotein
complex biogenesis, endosomal transport and epigenetic
regulation of gene expression. The interactome was enriched
for subcellular locations and host cellular processes that may be
targeted by SARS-CoV-2. It also showed significant associations
with several disorders including cancers, metabolic, neurological,
developmental and vascular disorders. For example, the host
proteins were found to directly interact with proteins
associated with two co-morbidities, hypertension and diabetes,
which are commonly found among COVID-19 non-survivors.
Protein biomarkers showing varied expression across the
different stages of COVID-19 were predicted as novel
interactors of the host proteins targeted by SARS-CoV-2. The
SARS-CoV-2 host proteins and ciliary proteins shared several
common interactors. The role of cilia as viral entry points and
modulators of viral infections should be investigated further on
this premise. On further analysis of the shared interactome, we

hypothesized that the novel interaction of NUP98 with CHMP5,
a ciliary (and centrosome and midbody-localizing) protein, may
activate an IFN-stimulated pathway with the potential to interfere
with viral budding. We shortlisted drugs potentially repurposable
for COVID-19 based on the negative correlation of drug-induced
versus disease-associated gene expression profiles. These included
drugs with proven in vitro activity against SARS-CoV-2, those
that were already being tested for their clinical activity against
SARS-CoV-2, those with proven activity against SARS-CoV/
MERS-CoV, broad-spectrum antiviral drugs, and those
identified/prioritized by other computational re-purposing
studies.

Our computational approach has several limitations. Drug-
associated expression profiles analyzed in this study were
induced in several types of cell lines (including cancer cell lines)
that may not be directly relevant to COVID-19 or SARS-CoV-2
infection. The effect of the proposed repurposable drugs should be
studied in human bronchial epithelial cells and/or in human lung
cancer cell lines, both of which were recently used to study host
transcriptional response upon SARS-CoV-2 infection (Blanco-Melo
et al., 2020a). The repurposable drugs discussed in this study can
simply be identified through comparative transcriptomic analysis;
i.e., by comparing drug-induced expression profiles with SARS-CoV/

FIGURE 10 | Repurposable drugs for COVID-19: The network shows the drugs (diamond shaped green colored nodes) that target the proteins in the host protein
interactome. Host proteins targeted by SARS-CoV-2 are shown as dark blue nodes, their known interactors are light blue and novel interactors are red.
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SARS-CoV-2-induced profiles. However, by considering the drugs
targeting the proteins in the HoP interactome, we attempted to
provide starting points for a mechanistic and experimentally
testable basis for the negative correlation observed between the
drugs and the viral infection at the transcriptomic level. These
starting points are typically subnetworks (e.g., Figure 10)
showing interconnections of the drug targets and the host
proteins targeted by the virus in the human interactome. The
sets of host proteins interacting with SARS-CoV and SARS-
CoV-2, which were analyzed in our study to elucidate common
pathways targeted by these viruses, were themselves identified
using different protein interaction mapping techniques (AP–MS
and Y2H) in different studies. These techniques differ from each
other with respect to the nature of the PPIs that they detect:
AP–MS identifies direct and indirect interactions among
members of stable protein complexes, while Y2H may
identify direct and more transient interactions between pairs
of proteins. Therefore, each of these techniques may detect a
different portion of the virus-host interactome. The marginal
overlap observed between the sets of host proteins interacting
with SARS-CoV and SARS-CoV-2 could be attributed to the
differences in the interactome subspaces detected by Y2H and
AP–MS, respectively. In this scenario, one may expect the
neighborhood networks of these host proteins to also exhibit
this discordance. However, we observed extensive
interconnections between these sets of proteins, via direct
and intermediate (known as well as novel) interactors. This
shows that 1) it is the ability of the different techniques to detect
different subspaces of the interactome in a complementary
manner that makes them valuable, 2) machine learning
methods may capture novel PPIs that other techniques fail to
capture, and 3) computational methods may be employed to
piece together an integrated view of the interactome, despite the
limitations of the individual mapping techniques.

The novelty of this work stems from several aspects. 1) Despite
an explosive increase in the generation of COVID-19 related data,
knowledge on the mechanistic basis of the host cellular response
to SARS-CoV-2 infection is limited. Therefore, we prioritized
dataset mining and hypothesis generation over data generation by
integrating and analyzing publicly available multi-omics data
within the functional landscape of the protein interactome
using bioinformatic tools. This approach directly contributes
towards COVID-19 research prioritization, namely, selection
of pathways and drugs for experimental dissection and clinical
interventions. 2) Computationally predicted PPIs enhanced
hypothesis generation by linking host genes across various
high throughput studies in as-yet-undiscovered ways. 3) To
facilitate analysis by both computational and biomedical
scientists, all the results are being released in multiple data
formats in open access and via an interactive webserver (see
Data Availability). 4) The HoP interactome will facilitate several
future systems biology studies derived from overlaying the
interactome with data generated for research on coronaviruses,
and specifically on COVID-19. In summary, the interactome will
be useful for carrying out several studies in the future with rapidly
emerging data to generate biologically insightful results that may
be translated to biomedically actionable results.

4 METHODS

4.1 Compilation of Host Proteins and
Prediction of Novel Interactions
The list of 332 host proteins identified to interact with 27
SARS-CoV-2 proteins was compiled from data files in Gordon
et al. (2020a). Novel PPIs of these proteins were predicted
using the HiPPIP model that we developed (Ganapathiraju
et al., 2016b). Each host protein (say N1) was paired with each
of the other human protein say (M1, M2, . . . Mn), and each
pair was evaluated with the HiPPIP model (Ganapathiraju
et al., 2016b). The predicted interactions of each of the host
proteins were extracted (namely, the pairs whose score is >0.5,
a threshold which through computational evaluations and
experimental validations was revealed to indicate interacting
partners with high confidence). This resulted in 1941 newly
discovered PPIs of the host proteins. The interactome figures
were created using Cytoscape (Shannon et al., 2003).

The significance of the overlap of this interactome with two
datasets, namely, with the ciliary protein interactome and the
interactome of 120 genes differentially expressed in SARS-CoV-
2-infected A549 cell line (Blanco-Melo et al., 2020a), was
computed based on hypergeometric distribution.

4.2 Identification of Network Modules
Network modules among the host proteins targeted by SARS-
CoV-2 and their interactors were identified using Netbox
(Cerami et al., 2010). Netbox reports modularity and a scaled
modularity score, as compared with the modularity observed in
1,000 random permutations of the subnetwork. Scaled
modularity refers to the standard deviation difference between
the observed subnetwork and the meanmodularity of the random
networks (Wang and Zhang, 2007).

4.3 Transcriptome and Proteome Analysis
Statistical significance of the overlaps between genes in the HoP
interactome and SARS-CoV/SARS-CoV-2 induced/associated
transcriptomic/proteomic datasets was computed based on
hypergeometric distribution. In this method, p-value is
computed from the probability of k successes in n draws
(without replacement) from a finite population of size N
containing exactly K objects with an interesting feature.

P (X � k) �
(K
k
)(N − K

n − k
)

(N
n
)

N = Total number of genes/proteins assayed.
K = Number of SARS-CoV/SARS-CoV-2-induced/associated

genes/proteins.
n = Number of genes in the HoP interactome.
k = K ∩ n.

4.4 Tissue-Specificity Analysis
Tissue-specificity of the genes in the HoP interactome were
checked using TissueEnrich (Jain and Tuteja, 2019). The
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analysis was based on genes from the GTEx database (Lonsdale
et al., 2013). This included ‘“tissue-enriched genes” with at
least 5-fold higher mRNA levels in a particular tissue
compared to all the other tissues, “group-enriched genes”
with at least 5-fold higher mRNA levels in a group of 2-7
tissues and “tissue-enhanced genes” with at least 5-fold higher
mRNA levels in a particular tissue compared to average levels
in all tissues.

4.5 Functional Enrichment Analysis
Gene Ontology, Pathway and genetic disorder enrichments
were computed using WebGestalt (Liao et al., 2019).
WebGestalt computes the distribution of genes belonging
to a particular functional category in the input list (i.e., genes
in the HoP interactome/ACE2 and its interactors) and
compares it with the background distribution of genes
belonging to this functional category among all the genes
that belongs to any functional category in the database
selected by the user. Statistical significance of functional
category enrichment is computed using Fisher’s exact test,
and corrected using the Benjamini–Hochberg method for
multiple test adjustment. Annotations with FDR-corrected
p-value < 0.05 were considered significant. ReactomeFIViz, a
Cytoscape plugin, was used to extract known functional
interactions among genes in the HoP interactome that
were involved in viral budding and interferon signaling
pathways (Wu et al., 2014).

4.6 Potentially Repurposable Drugs
The list of chemical compounds whose gene expression
profiles correlated negatively with four SARS datatsets and
one COVID-19 dataset were compiled using the BaseSpace
correlation software (https://www.nextbio.com) (List 1). The
datasets considered were human bronchial epithelial (NHBE)
and lung cancer (A549) cells infected with the SARS-CoV-2
strain USA-WA1/2020 [GSE147507 (Blanco-Melo et al.,
2020a)], Calu-3 epithelial cells infected for 48 h with SARS-
CoV versus mock infected cells (GSE17400), Calu-3 lung cells
infected for 72 h with SARS-CoV Urbani versus mock infected
cells (GSE37827), lung fibroblast MRC5 cells 24 h post SARS-
CoV infection (high MOI) versus mock infection (GSE56189)
and peripheral blood mononuclear cells (PBMCs) from
patients with SARS versus healthy subjects [GSE1739
(Reghunathan et al., 2005)]. Next, we identified drugs that
targeted at least one gene in the HoP interactome using
WebGestalt (Liao et al., 2019). After employing the
“redundancy reduction” feature in WebGestalt to reduce
the search space of drugs, we were left with a fewer
number of drugs (List 2). In this feature, an affinity
propagation algorithm clusters gene sets in the interactome
targeted by specific drugs using Jaccard index as the similarity
metric, and identifies a “representative” for each cluster (one
drug and its targets), having the most significant p-value
among all the gene sets in that cluster. We then compared
list 1 and list 2 to identify the drugs that not only target

proteins in the interactome but are also negatively correlated
with SARS/COVID-19.

List of drugs validated to be effective against SARS-CoV-2 in
cell-based assays were obtained from the COVID-19 Gene and
Drug Set Library (https://amp.pharm.mssm.edu/covid19/)
(Kuleshov et al., 2020).

The drug-protein interactome figure was created using
Cytoscape (Shannon et al., 2003).
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SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fsysb.2022.815237/
full#supplementary-material

Supplementary Figure S1 | Network proximity of cellular entry proteins and
host proteins targeted by SARS-CoV-2: Dark blue nodes are host proteins
targeted by SARS-CoV-2, light blue nodes are known interactors and red nodes
are novel interactors. Brown-colored nodes with bold black italicized labels are

the “cellular entry proteins” that facilitate the entry of SARS-CoV-2 into host
cells.

Supplementary Table S1 | List of proteins and protein-protein interactions
in the host protein interactome, and the integrated interactomewith virus-
host PPIs and PPIs in the neighborhood network of host proteins:
Computationally predicted interactors and interactions are indicated as “novel
interactors” and “novel PPIs” respectively, whereas previously known interactors
and interactions are shown as “known interactors” and “known PPIs”.

Supplementary Table S2 | Complete list of SARS/COVID-related biological
evidences of genes in the host protein interactome: A tick mark indicates the
presence of a particular evidence for a given gene.
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