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Deep learning is a powerful tool for capturing complex structures within the data. It holds
great promise for genomic research due to its capacity of learning complex features in
genomic data. In this paper, we provide a brief review on deep learning techniques and
various applications of deep learning to genomic studies. We also briefly mention current
challenges and future perspectives on using emerging deep learning techniques for
ongoing and future genomic research.
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1 INTRODUCTION

Deep learning has achieved great success in many areas such as computer vision and natural
language processing. It leads the data-driven science into a new era due to its ability of learning
complex structure from data without human intervention. With its success in many areas, there are
increasing interests in using deep learning in genomic research. Genomic data are sophisticated in
nature, and have complex relationship with responses (e.g., disease outcomes). While classical
methods (e.g., linear regression) have commonly used in genomic data analysis to detect simple
linear effects, deep learning can learn complex features from the genomic data, making it a powerful
method for considering nonlinear and interaction effects. In this review paper, we provide a brief
review on a variety of applications of deep learning to genomic research. Deep learning, as a class of
machine learning approaches, can also be categorized into supervised learning and unsupervised
learning. We start by introducing key concepts in supervised learning, unsupervised learningand
semi-supervised learning, and then reviewing popular deep learning methods and their applications
in genomic research. Due to a large number of available deep learning methods and limited space, the
review mainly focused on classic deep learning methods, especially those having the potential to be
applied to genomic data analysis.

2 2 SUPERVISED, UNSUPERVISED AND SEMI-SUPERVISED
LEARNING

2.1 Supervised Learning
Statistically speaking, there are three key elements in supervised learning: 1) a generator of random
vectors X from a fixed unknown distribution P(x), 2) a supervisor (or a teacher) that returns Y for
every X according to a conditional distribution P(y|x), and 3) a class of learning machines
{f(x, θ): θ ∈ Θ}. This concept was introduced by Vapnik, (1998). The question is given
independent and identically distributed (i.i.d.) pairs of data (X1, Y1), . . . , (Xn, Yn) , often known
as the training data, from the joint distribution P(x, y) � P(y|x)P(x), how to choose from
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FIGURE 1 | Structures of popular machine learning and deep learning models. (A) A perceptron where a nonlinear activation function (e.g., a hard-threshold
function) is applied to the linear combination of inputs and weights to predict the output. (B) A neural network with one hidden layer, which consists of multiple
perceptrons. The blue computation units are the hidden units, which are generated by applying a nonlinear activation function (e.g., a ReLU function) to the linear
combination of inputs and weights. The output layer with computation units shown in orange, which uses an activation (e.g., a sigmoid or softmax function) to
produce predicted values. (C) A deep neural network with two hidden layers, where computation units in each hidden layer apply a nonlinear activation function to the
linear combination of weights and outputs from the previous layer. (D) A convolutional neural network (CNN), where the input is an image with three channels
representing red, green and blue. The hidden layers of a CNN comprise two types of layers: convolutional layers and pooling layers. A convolutional layer consists of
several filters, which have the same number of channels as the input data. Each filter acts as a sliding window and applies a nonlinear activation to the linear combination
of filter entries and the outputs from the previous layer. Such an operation is known as convolution. A pooling layer is used to reduce the size of the representation to
accelerate computations, as well as to make detected features more robust. A commonly used pooling layer is called max pooling, where a filter acts as a sliding window
and produce the maximum elements from that part. After several convolutional layers and pooling layers, the output is vectorized as the input of a fully connected neural
network. (E) A recurrent neural network, where both the input and the output are sequences with the same length. Each input xt (e.g., a word in a sentence) and the
output at−1 from the previous neural network are used to predict ŷt and produce an output at, which then serves as the input for the next neural network. Typical
structures of the neural network used in RNN are RNN cell or long short-term memory (LSTM) cell shown in (F,G), respectively.
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{f(x, θ): θ ∈ Θ} an f that predicts the supervisor’s response Y in
the “best” possible way. When Y is continuous, the learning
problem is often known as a regression problem. In a regression,
we seek the best parameter θ that minimizes the quadratic loss
function:

θ̂1 � argmin
θ∈Θ

1
n
∑n
i�1
(Yi − f(X i, θ))2.

When Y is dichotomous, the learning problem is known as a
classification or pattern recognition problem. In a classification
problem, a commonly used loss function is the cross-entropy
function,

θ̂2 � argmin
θ∈Θ

1
n
∑n
i�1
[−Yi logf(Xi,θ)−(1−Yi)log(1−f(X i,θ))].

When f(x, θ) � xTθ, θ̂1 becomes the classical least squares
estimator in a linear regression. Similarly, θ̂2 is the estimator
for coefficients in a logistic regression if f(x, θ) � (1 + e−xTθ )−1.

2.2 Neural Networks
Neural networks are algorithms that try to mimic the function of
a human brain. A neural network is a collection of perceptrons.
Therefore, another commonly used name for neural networks is
multi-layer perceptrons. The basic structure of a perceptron is
shown in Figure 1A. In a perceptron (Rosenblatt, 1958), a
nonlinear activation function is applied to the linear
combination of weights and input features to produce an
output. Commonly used nonlinear activation functions in
neural networks and in deep learning include:

• Hard-threshold (Heaviside) function: σ(u) � { 1 if u≥ 0
0 if u< 0 ;

• Soft-threshold (Logistic) function: σ(u) � (1 + e−u)−1;
• Hyperbolic tangent function: σ(u) � tanh u � eu−e−u

eu+e−u;

• Normal cumulative distribution

function: σ(u) � ∫u

−∞
1		
2π

√ e− t2
2 dt; and

• Rectified linear unit (ReLU) function: σ(u) � max(0, u)
(Jarrett et al., 2009; Nair and Hinton, 2010; Glorot et al.,
2011).

While linear activation functions can be used in the output
layer for regression types of problems, it is important to use
nonlinear activation functions in hidden layers. The use of
nonlinear activation functions makes it possible for neural
networks to capture nonlinear relationships between input
data and output data. If linear activation functions are used in
hidden layers instead, a neural network then collapses to a
linear regression or a logistic regression. Figure 1B shows a
general structure of a neural network with one hidden layer.
As we can see from the figure, the difference between a
perceptron and a neural network with one hidden layer is
an additional layer, known as the hidden layer, lies between
the input layer and the output layer. Each hidden unit in the
hidden layer is formed in the same way as the processor in a

perceptron, which is generated by applying a nonlinear
activation function to a linear combination of weights and
inputs.

An important characteristic of a neural network is the
universal approximation theorem (Hornik et al., 1989). The
theorem says that a neural network with one hidden layer can
approximate a continuous function defined on a compact set in
Rd arbitrarily well as long as the number of hidden units is large
enough. Nevertheless, Györfi et al. (2006) and Shen et al. (2019)
found that the number of hidden units cannot grow as fast as the
sample size in order to make the neural network estimators reach
statistical consistency. Therefore, there is a gap between theory
and applications on this topic, which might worth further
investigation.

2.3 Deep Neural Networks
A deep neural network is a neural network with more than one
hidden layers. Figure 1C gives an example of a deep neural
network with two hidden layers. One advantage of deep learning
is that it requires much less number of hidden units to learn
complex features, while a much larger number of hidden units
may be needed for a shallow neural network. An example is to
learn the XOR (i.e., exclusive OR) function. As shown in Figure 2,
if we use a tree-structured deep neural network to learn the
function, the number of hidden units required is O(log n). The
number of hidden units increases exponentially in a neural
network with one hidden layer as we need to enumerate all 2n

possible configurations of the input bits to learn the XOR
function.

Among all the nonlinear activation functions mentioned
above, the ReLU activation function is one of the most
popularly used functions in deep neural networks. For most of
other nonlinear activation functions, the function value is almost
unchanged when the input value is too large or too small.
Therefore, when applying the back propagation algorithm, the
gradient is close to zero which slows down the update of
parameters (Rumelhart et al., 1988). ReLU avoids this
vanishing gradient problem and is computationally efficient,
which makes it ideal for training deep neural networks with
many layers.

Besides the well-known fully connected feed-forward neural
network, there are two other types of neural networks that have
been widely used. One is known as the convolutional neural
network (CNN) (LeCun, 1989) and the other is the recurrent
neural network (RNN) (Rumelhart et al., 1988). CNN is
commonly used for grid-like data structure such as images,
while RNN is often used for sequence data such as a DNA
sequence. The main feature of CNN is that convolution
operations are used in place of matrix multiplications
(Goodfellow et al., 2016) and the convolution operation
captures spatial information in the data. Figure 1D provides a
typical structure of CNN. Hidden layers in CNN usually consist
of two parts. One type of hidden layer is the convolutional layer,
where several filters having the same number of channels are
applied to the output of previous layer. Each filter acts as a sliding
window and a nonlinear activation function is applied to the
linear combination of weights in the filter and elements in the
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“window” that come from the output of previous layer. The other
type of hidden layer in CNN is called the pooling layer. A
commonly used pooling layer is known as the max pooling
layer, where a filter is served as a sliding window and the
maximum element from that window is extracted. There are
no parameters that need to be learned in a pooling layer. A
Pooling layer is used to reduce the size of the representation,
which speeds up the computation and makes detected features
more robust.

While CNN can be used to capture spatial information in the
data, RNN is used to capture the temporal dynamic behavior in
the data. Figure 1E provides an example of RNN. In RNN, an
input (e.g., a word in a sentence) is combined with the output
from the last hidden layer of the previous neural network, to serve
as inputs for the next successive neural network. The structure of
commonly used RNN cells is shown in Figure 1F. Two unique
features of RNNs are:

1) The input length and the output length can be different. Since
the input of RNN is usually a sequence and the output can be a
different sequence or a class label, it is likely that the length of
the input is different from the length of the output. The
structure of RNN is quite flexible, making it feasible to
accommodate such scenarios.

2) Parameters are shared across neural networks. In an RNN, the
weight matrices are shared across all neural networks, which
greatly reduces the number of parameters to be estimated.

One issue of a classical RNN shown in Figure 1E is that it only
uses the information earlier in the sequence, which can be addressed
by using a bidirectional RNN (Schuster and Paliwal, 1997). Another
drawback for a classical RNN is that it can run into a vanishing
gradient problem, which makes it difficult to capture long range
dependencies. To address this issue, twomodifications of the classical
RNNcells were proposed, one is the gated recurrent unit (GRU) (Cho

et al., 2014) and the other one is the long short-termmemory (LSTM)
unit (Sak et al., 2014). Figure 1G shows the basic structure of an
LSTM unit. The blue computation unit is known as the forget gate,
which is used to get rid of previously stored memory value. The
orange computation unit is known as the update gate. The updated
value of the cell is given by ct � Γtfct−1 + Γtu~ct, which is determined
by the value from the update gate and the forget gate. Therefore, both
the update gate and the forget gate control the update of the cell value.

With the increasing number of inputs, most learning
algorithms need to deal with the over-fitting issue. One can
build a sophisticated model on a training dataset with small
training error but such a model may not have good
generalizability. When applying this model to a different testing
dataset, the model could be subject to high generalization error or
testing error. Complex models usually have low bias but high
variance. Therefore, the over-fitting issue is the same as the bias-
variance tradeoff in statistics. Commonly used approaches for
addressing the over-fitting issue in deep learning include
regularization and dropout (Srivastava et al., 2014). For
regularization approaches, a penalty term is often added to the
loss function to solve the over-fitting issue. While the model
increases its complexity to reduce the discrepancy between the
estimated value and the true value, it can also increase the penalty.
Therefore, minimizing the loss function with the penalty term
helps to keep the balance between bias and variance. Dropout is
another popularly used approach in neural networks. Figure 3
provides an illustration of the dropout approach. In dropout, we
randomly delete hidden units with certain probability and remove
all the in-and-out edges associated with those hidden units. The
intuition behind the dropout is that since the “input” hidden units
can be randomly dropout, the “output” hidden units cannot rely
on any one of the features. Therefore, the weights have to be
shrunk towards zero. As pointed out inWager (Wager et al., 2013),
when applied to linear regression, dropout is equivalent to the
classical L2-regularization.

FIGURE 2 | A tree structured deep neural network representing the XOR (i.e., exclusive or) function on the input data, where each input unit can only take two
values, 0 and 1. By using a deep neural network, the depth of the network is (log n) , therefore we don’t need a large number of nodes to approximate the XOR function.
However, if we approximate this function using only one hidden layer, then the number of units in this hidden layer can be exponentially large as we need to enumerate all
2n possible configurations of the input bits.
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FIGURE 3 | An illustration of dropout regularization. Each hidden unit is randomly deleted with some probability, marked by X in the figure, and the in-and-out edges
associated with those hidden units are also removed.

FIGURE 4 | Structures of popular unsupervised learning methods. (A) Basic structure of an autoencoder. The three layers on the left represent encoding process,
which extract important features from the input data and the two layers on the right represent decoding process, which tries to reproduce the original data. An
autoencoder is usually learned by minimizing the discrepancy between the original data and the respective reproduced data. (B) A deep belief network (DBN) with two
hidden layers. A main characteristic of a DBN is that the edges between the top two layers are undirected and the edges between all other layers are directed
pointing towards the layer that is closest to the data. (C) A deep Boltzmann machine (DBM) is a generative model having similar structures with a DBN except that all the
connections between layers are undirected. (D) A variational autoencoder (VAE) learns two conditional distributions, one is the conditional distribution of latent features
given the input data qφ(z|x) and the conditional distribution of outputs given the latent features pθ(x|z), which is the target distribution used to generate new samples. (E)
General structure of a generative adversarial network (GAN). A GAN starts with samples from a simple distribution such as random noises and uses a neural network (the
generator network) to learn the complex transformation of the samples to create fake outputs and use a discriminator network to see if the generated outputs are close
enough to the real data.
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2.4 Unsupervised Learning
In supervised learning, there is a teacher (i.e., labeled responses)
supervising the performance of the learning machine through
some metric quantifying the discrepancy. In unsupervised
learning, however, there are no labeled responses. Instead, we
are more interested in data compression by extracting useful
information from the input data. The dimension of extracted
features is usually much smaller than the dimension of the
original input data. By doing so, we can not only reduce the
cost of data storage, but also make the downstream analyses more
efficient.

A commonly used unsupervised learning algorithm is the
Principle Component Analysis (PCA). There is a counterpart
of PCA in deep neural network, known as autoencoder (LeCun,
1987; Bourlard and Kamp, 1988; Hinton and Zemel, 1994).
Figure 4A provides an illustration of an autoencoder. In an
autoencoder, important features are extracted from the original
data. To determine whether the extracted features represent the
original input, we reconstruct the “original data” from the
extracted features and use the difference between the
reconstructed data and the original data as a guideline to train
the network.

One of the most active research topics in unsupervised
learning is generative models. The goal of these models is to
learn the model distribution from the data so that we can generate
new data from the distribution. Here are some most commonly
used generative models:

• Boltzmann machines (BM) (Fahlman et al., 1983; Hinton
et al., 1984) provide a way to model the joint distribution of
a large number of binary random variables.

• Restricted Boltzmann machines (RBM) (Smolensky, 1986)
is a bipartite undirected graph containing one visible layer
and one hidden layer. Both layers contain nodes taking
binary values, and the model is used to approximate any
joint distribution of binary random variables. Therefore,
RBM is often known as a stochastic neural network.

• Deep Belief Networks (DBN) (Hinton, 2009) are generative
models that have multiple layers of latent binary variables.
As we can see from Figure 4B, the connections between the
top two hidden layers are undirected, while the connections
between other layers are directed and point towards the
layers closer to the visible data.

• Deep Boltzmann machines (DBMs) (Salakhutdinov and
Hinton, 2009) are similar to deep belief networks except
that all the edges in a DBM are undirected, as shown in
Figure 4C.

• Variational autoencoders (VAE) (Kingma and Welling,
2014) is a probabilistic version of autoencoders, which
allows us to sample data from the model. The structure
of a VAE is shown in Figure 4D. In VAE, the hidden layers
represent some latent factors, denoted by z in Figure 4D,
which are used to generate the input data. The goal of VAE
is to learn parameters in two conditional distributions. The
first one [i.e., qφ(z|x) in Figure 4D] is the conditional
distribution of the latent factors given the input data, and
the other one [i.e., pθ(x|z) in Figure 4D] is the conditional

distribution of the output given the latent factors, which is
used to generate new samples.

• Generative adversarial networks (GAN) (Goodfellow et al.,
2014) are popular methods that enable us sample data from
complex, and high-dimensional training distributions even
there is no direct way to do it. The basic structure of a GAN
is shown in Figure 4E. A generator network is used to learn
the complex transformation of the samples from a simple
distribution such as random noise and to produce fake
outputs. A discriminator network is then applied to the fake
outputs and real data. The goal is to train the network so
that the discriminator network cannot distinguish the fake
data and the real data.

2.5 Semi-Supervised Learning
As suggested by its name, semi-supervised learning sits between
supervised learning and unsupervised learning. In supervised
learning, each data point in the training data has a label,
which serves as a “teacher” to guide the performance of
prediction (Chapelle et al., 2006; Zhu 2008). In many real-
world problems, additional data points without labels may also
be available. The goal of semi-supervised learning is to construct a
learner by using both the labeled training data and the unlabeled
data for improved performance. Although there is no guarantee
that prediction performances will be improved by incorporating
additional unlabeled data, empirical studies have shown
consistent performance gain, compared with their supervised
counterparts, by using semi-supervised learning methods based
on neural networks. Therefore, semi-supervised learning
methods using deep neural networks have been widely applied
to genomic studies, especially for cell-type classification using
single-cell RNA-seq data. We provide a detailed survey on this
topic in Section 5.

Van Engelen and Hoos, (2020) provide a comprehensive
survey on semi-supervised learning, where they taxonomize
semi-supervised learning methods into two main categories:
inductive methods and transductive methods. The goals of
inductive methods are similar to those of supervised learning.
A weak learner, mapping from the input space to the output
space, is produced. In supervised learning, only labeled data is
used, while in semi-supervised learning, both the labeled data and
unlabeled data are used. On the other hand, the goal of
transductive methods is to solely predict labels for the
unlabeled data points.

As inductive methods share the same goals as supervised
learning methods, these methods can be used for any
supervised learners. Different inductive methods use
different methods to incorporate unlabeled data. For
example, one can use an autoencoder to extract important
features from the unlabeled data and use these features to train
the labeled data. This is known as unsupervised preprocessing
in van Engelen and Hoos, (2020). One can also train a classifier
using the labeled data and create pseudo-labels for unlabeled
data. The classifier is then retrained on the labeled dataset and
pseudo-labeled dataset. Such a method is called a wrapper
method according to van Engelen and Hoos, (2020). Unlabeled
data can also be incorporated by adding additional terms into
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the loss function, and such inductive methods are called
intrinsically semi-supervised methods.

Since transductive methods only focus on predicting labels for
unlabeled data without training a classifier, almost all
transductive methods are graph-based, which mainly consist of
three steps: 1) constructing a graph based on some similarity
measures, 2) weighing the edges, and 3) drawing inference on
the graph.

Figure 5 provides a block diagram showing some major
deep learning methods to be discussed in the following
sections.

3 APPLICATIONS OF SUPERVISED DEEP
LEARNING TO GENOMIC STUDIES

In recent years, deep learning techniques have been successfully
applied to various areas such as computer vision, natural
language processing, autonomous driving, etc. Starting from
the seminal studies in 2015, which established the applicability
of deep learning to DNA sequence data (Alipanahi et al., 2015;
Zhou and Troyanskaya, 2015; Eraslan et al., 2019), there is an
increasing interest in using deep learning in genomic studies. As
mentioned in Park and Kellis, (2015), deep learning holds great

FIGURE 5 | The block diagram of some main deep learning methods to be discussed in the rest of the review.

FIGURE 6 | The structure of DanQ. One-hot encoding is applied to the original DNA sequence. A convolutional neural network is used, followed by a bidirectional
recurrent neural network with long short-term memory units. The outputs from the bidirectional recurrent neural network are fed into a neural network to make final
predictions.
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promise for genomic research since various levels of information
and abstraction can be captured by different layers in deep
learning.

Fully connected deep neural networks have been used in
various genomic studies. For instance, Quang et al. (2014)
proposed DANN, a method that makes predictions on the
deleteriousness of genetic variants using deep neural networks.
Compared with a commonly used algorithm known as combined
annotation—dependent depletion (CADD) (Kircher et al., 2014),
DANN reduces the relative error rate by 19%. The reason is that
CADD uses a linear kernel support vector machine and only
linear representation can be learned from the data. Another area
of deep learning application is in gene expression inference.
D-GEX (Chen et al., 2016), used a deep neural network to
predict the expression of target genes from the expression of
landmark genes. The relative performance of D-GEX, in terms of
the overall error rate, improves 15.33% over linear regression and
D-GEX also achieves lower error than linear regression through a
gene-wise comparative analysis.

CNNs are great tools for analyzing data with spatial
dependencies. It holds great promise for DNA sequence data
as it can take linkage disequilibrium into account. Primary works
on applying CNNs to genomic studies include DeepBind
(Alipanahi et al., 2015), DeepSEA (Zhou and Troyanskaya,
2015) and Basset (Kelley et al., 2016). Since DNA sequence is
a one-dimensional data, when applying CNNs, one-hot encoding
is usually used to deal with the four DNA bases. For example, we
can code each DNA base as A = [1,0,0,0], G = [0,1,0,0], C =
[0,0,1,0], T = [0,0,0,1] so that a DNA sequence now becomes a
matrix with four columns and a classical CNN can be applied. If
there are any missing values in the DNA coding, one possible
solution is to add an additional column, which corresponds to the
missing value, to the DNA one-hot encoding matrix. For the
purpose of classifying transcription factors, the filters in the first
convolutional layers are actually the motif detectors, which are
similar to position weight matrices without requiring the entries
to be probabilities or log-odds ratios.

Besides CNNs, RNNs have also been applied to genomic
studies. Pouladi et al. (2015) used matrix factorization and
RNNs to construct a genotype imputation and phenotype
sequences prediction system, which attained better
performance than long short-term memory and spatial partial
least squares models. Boža et al. (2017) proposed DeepNano, an
RNN-based approach, which substantially improves the base
calling accuracy for MinION sequencing data (Mikheyev and
Tin, 2014). A combination of RNN and particle swarm
optimization was proposed by Xu et al. (2007) to infer genetic
regulatory networks and produce meaningful insights on the
nonlinear dynamics of the gene expression time series. Recently,
ProLanGo (Cao et al., 2017), a RNN-based model, was proposed
for prediction of protein function.

As mentioned by Eraslan et al. (2019), an important area of
applying deep learning to genomics is predicting the effect of
non-coding regions. 98% of the human-genome is non-coding
and 93% identified disease-associated variants from over
1,200 genome-wide association studies are located in the non-
coding regions (Pennisi, 2011). DeepSEA (Zhou and

Troyanskaya, 2015) and DanQ (Quang and Xie, 2016) are two
important works in this area. DeepSEA is a CNN approach with
three convolutional layers and two max pooling layers. The
network structure of DanQ, as shown in Figure 6, is similar
to that of DeepSEA. However, instead of applying two more
convolutional layers and a max pooling layer, DanQ uses a bi-
directional long short-term memory RNN after the first
convolutional and max pooling layer. The outputs from the
LSTM units are then flattened in DanQ and a dense layer of
rectified linear units is applied followed by a multi-task sigmoid
unit. Both methods attain great performances in terms of
prediction accuracy, while DanQ outperforms DeepSEA and
other methods (e.g., logistic regression) across several other
metrics.

Another area of using deep learning is in genetic association
studies. In the past decade, genome-wide association studies
(GWAS) have uncovered numerous genetic variants
predisposing to human traits and diseases (Consortium, 2007;
Scott et al., 2007; Sladek et al., 2007). Nevertheless, most of the
identified variants are associated with small effects and account
for only a small fraction of heritability (Maher, 2008). Part of the
missing heritability can be explained by gene-gene interactions or
epistatis (Manolio et al., 2009). While each genetic variant is
associated with a small effect, it can interact with other variants to
play an important role on diseases. This leads to many multi-
locus interaction studies in order to understand the joint effects of
multiple loci on complex diseases (Cordell, 2009; Gusareva et al.,
2014).

Due to the large number of genetic markers in association
studies, inference on gene-gene interactions is computational
challenging for most classical statistical methods. Neural
networks, on the other hand, can be used to model complex
relations between traits and genetic markers without having to
enumerate all the possible interactions between genetic
markers. Researchers have used neural networks in genetic
data analyses, but the results are inconsistent (Lucek and Ott,
1997; Lucek et al., 1998; Saccone et al., 1999; Curtis et al., 2001;
Marinov and Weeks, 2001; North et al., 2003). One possible
explanation is the existence of multiple local minima in the
optimization and the selection of suboptimal neural network
structures. Machine learning approaches, such as genetic
programming neural networks (Motsinger et al., 2006) and
grammatical evolution neural networks (GENN) (Motsinger-
Reif et al., 2008) have been developed to address these issues by
choosing the best neural network architectures based on a
given data set. Motsinger et al. (2006) have demonstrated that
GENN have higher power than the classical neural network
using back-propagation. Furthermore, Motsinger-Reif et al.
(2008) showed that the performance of GENN is better than
that of GPNN when there exist high order gene-gene
interactions. Besides classical neural networks, Bayesian
neural networks (Beam et al., 2014) have also been used to
detect gene-gene interactions. Studies showed that Bayesian
neural networks are more powerful than other popularly used
methods, such as χ2 test and Bayesian Epistasis Association
Mapping (Zhang and Liu, 2007). Recently, Uppu et al. (2016a)
and Uppu et al. (2016b) have applied deep neural network to
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detect gene-gene interactions in association studies and
achieved promising results.

Deep learning-based survival prediction with gene expression
profiles has recently emerged as a new research area. Primary works
include SurvivalNet (Yousefi et al., 2017), Cox-nnet (Ching et al.,
2018) and SALMON (Huang et al., 2019). These methods all adopt
feedforward neural networks with an output of hazard ratio in the
Cox proportional hazards model, and they use negative log partial
likelihood as cost function for network training. The three methods
differ in network design, regularization, and pre-training of gene
expression data. Cox-nnet and SALMON are both single hidden
layer neural networks, whereas SurvivalNet uses a Bayesian
optimization technique to determine the network design.
SurvivalNet and Cox-nnet adopt dropout (Srivastava et al., 2014)
to prevent the neural networks from overfitting, whereas SALMON
applies the LASSO penalty (Tibshirani, 1996) to the network weights
in the cost function. Rather than using raw gene expression values as
network inputs, as SurvivalNet and Cox-nnet do, SALMON
performs a gene co-expression module analysis and uses the
resulting eigengene matrices of gene co-expression modules as
the inputs, which greatly reduces the number of parameters in
the neural network. Through an empirical study based on real data,
Huang et al. (2019) found that Cox-nnet and SALMON had
comparable discriminative abilities and outperformed the elastic-
net Cox regression (Simon et al., 2011) and the random survival
forest (Ishwaran et al., 2008). No prediction performance
comparison has been made between these two methods and
SurvivalNet, though. Surprisingly, all these survival learning
machines just output a prognostic index, namely the hazard ratio
relative to the baseline, for each subject, not a predicted survival
curve, although this drawback can be easily fixed by using Breslow’s
estimator (Breslow, 1974) to generate a baseline hazard function.
Also, it is worthwhile to extend deep neural networks to other
popular survival models such as the accelerated failure time model.

Bellot et al. (2018) provides a comprehensive comparison on
the predictive accuracy between deep learningmethods (e.g., deep
neural networks and CNNs) and classical methods (e.g., linear
regression and Bayesian ridge regression). They applied both
types of methods to the UKBiobank (www.ukbiobank.ac.uk) with
80,000 training samples and 20,221 testing samples. Using
genotype data, they use different methods to predict five
phenotypes: human height, bone heel mineral density
(BHMD), body mass index (BMI), systolic blood pressure
(SBP), and waist-hip ratio (WHR). They found that the
performances of deep learning methods rely on the network
architecture of deep learning. Depending on the trait, deep
learning and classical methods may have different
performances. For example, for human height, a highly
polygenetic trait with a predominant additive genetic basis,
there is not much performance differences among all methods.
One reason is that in such scenario, linear models work pretty
well. Through this empirical study, they also demonstrated that
CNNs have comparable and slightly better performance than
linear methods, except for human height. Since CNNs can
capture spatial correlation of SNPs due to linkage
disequilibrium, they suggest future research is needed on
studying the performance of CNN in genetic predictions.

For convenience, we summarize the methods discussed in the
section in Table 1.

4 APPLICATIONS OF UNSUPERVISED
DEEP LEARNING TO GENOMIC STUDIES

Besides the use of supervised deep learning methods in genomic
studies, there are also many applications of using unsupervised
deep learning methods in genomics. For instance, Scholz et al.
(2005) used autoencoder to estimate missing values for
metabolite data and gene expression data. Their results
showed that autoencoders can better estimate missing values
for nonlinear structured data as compared with linear methods.
Similarly, Tan et al. (2016); Tan et al. (2017a); Tan et al. (2017b)
proposed a method called ADAGE, which uses autoencoders to
build gene expression signatures consistent with biological
pathways. Through analysis of KEGG pathways, ADAGE and
the popular gene set enrichment analysis (GSEA) (Subramanian
et al., 2005) both detected five pathways. Moreover, ADAGE
detected nine pathways that were not significantly enriched
in GSEA.

There are also some applications of using generative models in
genomics. A deep variational autoencoder for single-cell RNA
sequencing data (VASC) (Wang and Gu, 2018) was developed to
model the dropout events and to find the nonlinear hierarchical
feature representations of the data. By comparing the results on
20 datasets with different numbers of cells included and
sequencing protocols used, VASC outperformed other
dimension reduction methods such as PCA, t-SNE, ZIFA
(Pierson and Yau, 2015) and SIMLR (Wang and Gu, 2018).
DeepSequence (Riesselman et al., 2018) used VAE to predict
mutation effects and the results are significantly better than the
existing method.

The first application of GAN to genomic studies is due to
Ghahramani et al. (2018). They applied GAN to simulate single
cell RNA-seq data. Not only can they provide biologically
meaningful interpretation of their model parameters, the effect
of cell state perturbation can be predicted as well. Recently, Gupta
and Zou, (2019) proposed a generative model known as the
feedback GAN (FBGAN) to produce synthetic gene sequences for
desired properties. In FBGAN, a function analyzer is used to
produce a score for the synthetic gene sequences generated from
the generator in GAN and gradually replace the real data by the
synthetic gene sequence with the highest score from the function
analyzer. FBGAN has been applied to generate genes coding for
antimicrobial peptides as well as to optimize synthetic genes for
the secondary structure of the resulting peptides. The results
demonstrated that proteins generated from FBGAN have good
biophysical properties. Despite its good properties, applying
GAN architectures to produce long and complex sequences is
still challenging and worth further investigations. DBNs have also
been used in genomic studies. For example, Ghasemi et al. (2018)
proposed using DBNs to initialize parameters in a deep neural
network for Quantitative Structure Activity Relationship (QSAR)
studies. The results of their study showed that the prediction
performance has been improved by using DBNs.
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TABLE 1 | Summary of reviewed supervised learning methods for genetic and genomic studies.

Method Taxonomy Software and
language

Reference Advantages Disadvantages

DANN DNN https://cbcl.ics.uci.edu/
public_data/DANN/

DANN: a deep learning approach
for annotating the pathogenicity
of genetic variants

Can be applied on non-coding
human variation. Can capture
nonlinear relationships among
features.

Only has better performance
compared to shallow structure
models like CADD and LR.

Support large numbers of samples
and features.

No performance advantage in a
coding-biased dataset compared
to CADD and LR method.

D-GEX DNN https://github.com/uci-cbcl/
D-GEX

Gene expression inference with
deep learning

Can capture intrinsic nonlinear
features. Outperform linear
regression and KNN.

Require using GPUs with large
memory or multi-GPU techniques
to jointly train all target genes when
a large number of target genes are
included in the model.

Python Can handle a large number of target
genes.

To avoid overfitting, the process of
tuning hyper parameters is
necessary.Have good performance even on

dataset obtained from different
platforms.

DeepBind CNN https://github.com/
kundajelab/deepbind

predicting the sequence
specificities of DNA-and RNA-
binding proteins by deep learning

The first method to accurately
represent and visualize protein target
binding motifs.

Does not capture long distance
dependency or detect structure
binding motifs.

C Can discover new patterns in
sequence without knowing the
locations of them.

Computationally heavy and GPU
required due to the automatically
tuning process.

Training model fully automatically
without hand-tuning.

DeepSEA CNN https://hb.flatironinstitute.
org/deepsea; online

predicting effects of noncoding
variants with deep learning-
based sequence model

The first method to identify functional
effects of noncoding variants from
only genomic sequences with single-
nucleotide sensitivity.

Can only handle sequence context
with size up to 1 kbp. The
predictive ability of the model could
be affected by lack of flexibility in
reading heterogeneous input.

The first method to accurately
predict transcription factor (TF)
binding, DNA accessibility and
histone marks of sequences from
genomic sequences.

There are developed improved
techniques for motif discovery and
assigning importance scores to
nucleotides (DeepLIFT).

Basset CNN https://github.com/
davek44/Basset

Basset: learning the regulatory
code of the accessible genome
with deep convolutional neural
networks

Same units (traits) are shared in fully
connected layers across different
cells. As a result, the model can be
easily applied to new data sets.

Cannot directly extend the model to
predict other functional activity
other than DNase-seq peak. To
predict other functional activity,
model training is still required for
tuning and full multi-task
computation.

Python With computational efficiency, a
single-task new data set can be
trained on common computer
hardware (CPU) in a few hours.

DeepNano RNN https://github.com/
jeammimi/deepnano

DeepNano: Deep recurrent
neural networks for base calling
in MinION nanopore reads

Model training and base calling a
read are much faster than Nanonet.
DeepNano obtains the
computational advantage by
introducing a smaller output layer
and GRU instead of LSTM with a
price of worse accuracy.

Only about 2% improvement of 2D
base calling error rate compared to
traditional HMM (hidden Markov
model). The reason is that the
performance of DeepNano is
sensitive to falsely split or missing of
input sequences in 2D base calling
tasks.

Python

ProLanGo RNN ProLanGO: Protein Function
Prediction Using Neural Machine
Translation Based on a
Recurrent Neural Network

Convert protein function prediction
problem to language translation
problem. It is feasible to apply novel
techniques and the latter
architecture of NMT in ProLanGo
method.

Does not outperform DeepGO,
FANN-GO, PANNZER model.
With a three layer RNN structure in
the encoding part, capturing the
long-term dependencies is
challenging for long protein
sequence data. That is, the
relationship between protein
sequence at the beginning and
function prediction in the decoding
part is too weak to obtain good
performance on training.

(Continued on following page)
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In terms of using unsupervised learning methods in genetic
studies, Montañez et al. (2018) used both stacked autoencoders
(SAE) and a deep neural network to classify extremely obese and
non-obese individuals. In SAE, the output from a single layer
autoencoder is used to train a second autoencoder and the process
is repeated multiple times. The output of the final autoencoder is
used to pre-trained the weights in a deep neural network. Based
on a study of feature selection from a set of 2,465 SNPs (p-values
<1e-2) and using extracted features to classify obese samples from
normal control samples through a deep neural network, it is
found that although the performance on validation set and testing
set deteriorate according to classification accuracy when 50
features were extracted, the AUC was still over 85% and
relatively low overfitting occurred in the study.

Directly applying a DBM is not a good option as in genetic
studies, the number of SNPs often exceeds the number of
individuals. To overcome this issue, Hess et al. (2017) first
estimated the relation between SNPs using stagewise
regression, where each SNP is regressed on all the other SNPs,

and then apply a DBM to the small clusters of correlated SNPs.
Such method is called partitioned DBM. The result demonstrated
that the partitioned DBM can identify almost twice number of
significant SNPs compared with univariate testing, while the type
I error can also be controlled.

Recently, Yelmen et al. (2021) demonstrated that GANs
and RBMs can be used to generate high quality artificial
genomes and the outcomes are promising and the
generated artificial genome can inherit genotype-phenotype
associations. Since GWAS usually requires a huge number of
samples and most research data are not publicly available due
to privacy issues. The success of generating high quality
artificial genomes provides a great substitute for those
private databases.

The advances in spatially resolved transcriptomics (SRT) have
enabled gene expression profiling with spatial location
information in tissues (Asp et al., 2020). One important step
before further analysis in SRT studies is to cluster the spots and
this is accomplished in many recent studies with the help of deep

TABLE 1 | (Continued) Summary of reviewed supervised learning methods for genetic and genomic studies.

Method Taxonomy Software and
language

Reference Advantages Disadvantages

DanQ CNN, RNN https://github.com/uci-cbcl/
DanQ

DanQ: a hybrid convolutional and
recurrent deep neural network for
quantifying the function of DNA
sequences

First application of hybrid
convolution and recurrent network
predicting function de novo from
DNA sequence.

The current structure only works for
input sizes of 1 kbp. An arbitrary
input length of sequence and
additional BLSTM layers could be
the extension of DanQ, so that the
model could flexibly incorporate
contextual information on two sides
of the target bin.

Python Simple structure with only one
convolutional layer and a BLSTM
layer, still has a better performance
capturing long-term dependencies
than pure CNN model.
Outperform DeepSEA model (pure
CNN model) while using the same
data set, comparable architectural
structure and less free weight.

GENN DNN, GE http://grammatical-
evolution.org/software.html

Comparison of Approaches for
Machine-Learning Optimization
of Neural Networks for Detecting
Gene-Gene Interactions in
Genetic Epidemiology

Can optimize inputs, architecture
and weights of a NN and detect
disease-risk loci in high-order
epistatic models.

Lack of comparison with other gene
association methods.

Capable for genome-wide studies
using parallel computing.

Heavy computationally burden
even running on multiple
processors.

SurvivalNet DNN https://github.com/
PathologyDataScience/
SurvivalNet

Predicting clinical outcomes from
large scale cancer genomic
profiles with deep survival
models

flexible architecture designed and
easy to apply.

Does not outperform Cox elastic
net in predicting survival using
lower-dimensional features.

Python Hyperparameters are automatically
tuned without technical expertise.

Only drop-out regularization
technique is applied to reduce
overfitting, resulting in a much
longer training time.

Cox-nnet DNN https://github.com/
lanagarmire/cox-nnet

Cox-nnet: An artificial neural
network method for prognosis
prediction of high-throughput
omics data

Compared with Cox-PH, more
significantly enriched pathways are
identified by using GSEA under the
same significant threshold.

The architecture is simple, only one
and two hidden layers are applied in
the model.

Python Does not outperform Cox-PH in
some of TCGA data sets.

SALMON DNN https://github.com/
huangzhii/SALMON/

SALMON: Survival Analysis
Learning with Multi-Omics Neural
Networks on Breast Cancer

Achieves similar performance to
Cox-nnet while maintaining a simple
architecture of only 500 weights and
much less inputs.

Obtaining Eigengene matrices of
gene co-expression modules is
required before implementing a
neural network.

Python Include different combinations of
multi-omics data as input source.
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learning. For example, one of the workflows of SpaCell (Tan et al.,
2019) is for cell-type clustering using autoencoders by integrating
pixel-intensity values with gene expression measurements from
spots in a tissue. StLearn (Pham et al., 2020) uses a transfer
learning deep neural network to extract features from pixel image
tiles created from the hematoxylin and eosin-stained microscopy
image containing tissue morphology information. A graph
convolutional network is applied in SpaGCN (Li et al., 2020)
to aggregate gene expression information from neighboring spots
and then detects spatially variable genes based on the aggregated
gene expression. We refer interested readers to Hu et al. (2021)
for a review on statistical and machine learning methods for SRT
with histology.

There are various other applications of deep learning in
genomic studies. We refer interested readers to review papers
on this topic (Angermueller et al., 2016; Jones et al., 2017;
Min et al., 2017; Ching et al., 2018; Wainberg et al., 2018; Yue
andWang, 2018; Zou et al., 2018; Eraslan et al., 2019). Table 2
provides a brief summary of the reviewed recent
unsupervised learning methods having applications to
genomic studies.

5 APPLICATIONS OF SEMI-SUPERVISED
LEARNING FOR SINGLE-CELL RNA-SEQ
DATA
The fast-emerging technology has made it possible to collect
global transcriptome profiling on the single cell level. Through
accurate identification of cell types, the formation of complex
organs and various cancers could be better understood (Kim
et al., 2019). However, using single cell RNA-seq data to
accurately identify cell types remains a challenging task (Stegle
et al., 2015). Recently, semi-supervised learning has become a
technique popularly used for single-cell RNA-seq data analysis.
Table 3 provides a list of the semi-supervised learning methods
for single-cell RNA-seq data discussed in this section.

Before fully diving into the semi-supervised learning methods
used for cell type annotations, it is worthwhile to mention single-
cell Variational Inference (scVI) (Lopez et al., 2018) and its
extension to single-cell ANnotation using Variational
Inference (scANVI) (Xu et al., 2021). Both methods use
variational inference and deep generative models to fully
characterize the distribution of single-cell RNA-seq data.

TABLE 2 | Summary of reviewed unsupervised learning methods for genetic and genomic studies.

Methods Learning method Software and
langauge

Reference Advantages Disadvantages

ADAGE Denoising
autoencoder

https://github.com/
greenelab/adage

ADAGE-based integration of
publicly available Pseudomonas
aeruginosa gene expression
data with denoising
autoencoders illuminates
microbe-host interactions

Can integrate diverse gene
expression data

Not robust as different
ADAGE models can perform
equally wellPython Can reveal biologically

meaningful signals within
datasets

OUTRIDER Autoencoder https://bioconductor.org/
packages/OUTRIDER

OUTRIDER: a statistical method
for detecting aberrantly
expressed genes in RNA
sequencing data

Can compute p-values that
can be adjusted to
control FDR

Cannot include known
confounding covariates into
the model

R Model parameters are
automatically fitted through
optimization

VASC Variational
Autoencoder

https://github.com/wang-
research/VASC

VASC: dimension reduction and
visualization of single-cell RNA-
seq data by deep variational
autoencoder

Can re-establish cell
dynamics in the reduced
subspace and associated
marker genes can be idetified

Computationally intensive

Python

DeepSequence Variational
Autoencoder

https://github.com/
debbiemarkslab/
DeepSequence

Deep generative models of
genetic variation capture the
effects of mutations

Can capture higher-order
correlations in biological
sequence families

Sensitivity analysis on the
choices of prior distributions
is not provided

Python
scRNAseq-
WGAN-GP

Generative
Adversarial Networks

https://github.com/luslab/
arshamg-scrnaseq-wgan

Generative adversarial networks
simulate gene expression and
predict perturbations in single
cells

Can interpret internal
parameters in a biologically
meaningful way

Methods only apply to
scRNA-seq data on skin

Python and R

FBGAN Generative
Adversarial Networks

https://github.com/
av1659/fbgan

Feedback GAN for DNA
optimizes protein functions

Robust to the type of
analyzer used and the
analyzer does not need to be
differentiable

Not applicable to produce
long and complex sequences,
such as whole proteinsPython

DBM Deep Boltzmann
Machines

https://github.com/
binderh/
BoltzmannMachines.jl

Partitioned learning of deep
Boltzmann machines for SNP
data

Can handle high-
dimensionality in SNP data
using partitioned learning

Performance can be affected
by the choices of model
parameters

Julia
AG Generative

Adversarial Networks
and Restricted
Boltzmann Machines

https://gitlab.inria.fr/ml_
genetics/public/artificial_
genomes

Creating artificial human
genomes using generative
neural networks

Can replicate characteristics
of the source data such as
allele frequency, LD and
population structure

Can only be used to create a
dense chunk of genomes
rather than the whole genome
sequencePython
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scANVI can also be used to annotate cell types and has been used
as a baseline method for recently proposed methods, such as
scSemiCluster (Chen et al., 2021) and scNym (Kimmel and
Kelley, 2021).

scReClassify proposed by Kim et al. (2019) uses PCA to
perform dimension reduction of the original single cell RNA-
seq data, and then apply a semi-supervised learning method to
reclassify the mislabeled cell types caused by human
inspection. When the initial mislabeling rate is small,
scReClassify can reclassify those mislabeled cell types to the
correct ones. However, there is no gain in performance when
the initial mislabeling rate is high. Moreover, scReClassify does
not consider the sizes of different cell types in a single cell
RNA-seq dataset and the non-randomness in cell type
mislabeling due to the relatedness of the cell types located
in ambiguous regions.

Zhang et al. (2019) developed the SCINA algorithm for cell
type classifications in single cell RNA-seq data. The prior

knowledge of signature genes is taken into account in the
unsupervised estimation process. SCINA is the first semi-
supervised “signature-to-category” cell type classification
algorithm for single cell-RNA-seq data. Nonetheless, it only
takes signature genes into consideration, and its performance
depends on the size of the data, the total number of cell types in
the data and the number of signature genes for every cell type.

scSemiCluster (Chen et al., 2021) and CALLR (Wei and
Zhang, 2021) are two new cell type annotation methods based
on semi-supervised learning. scSemiCluster is computationally
faster than scANVI, and its performance will be less affected by
the false alignment between the outlier reference categories and
target data. Nevertheless, since the reference dataset is used in
scSemiCluster to make predictions, its performance depends on
whether the cell types to be annotated are contained in the
reference dataset. CALLR is an optimization-based method
that combines a graph Laplacian matrix constructed from all
the cells with sparse logistic regression. While CALLR is robust to

TABLE 3 | Summary of reviewed semi-supervised learning methods for single-cell RNA-seq data.

Methods Language Software Reference Advantages Disadvantages

scANVI Python https://github.com/
scverse/scvi-tools

Harmonization and annotation of
single-cell transcriptomics data
with deep generative models

Achieves high accuracy when
transferring labels from one dataset
to another

The assumptions that the low-
dimensional latent space follows a
Gaussian mixture model limits the
representation ability
Clustering performance is not robust
due to the Gaussian mixture model
assumption

scReClassify R https://github.com/
SydneyBioX/
scReClassify

scReClassify: post hoc cell type
classification of single-cell RNA-
seq data

When the initial mislabeling rate is
small (<30%), scReClassify has
nearly perfect performance in
reclassifying the mislabeled cell types

Performance depends on the initial
mislabeling rate and the learning
method used as the base classifier.
Does not take into consideration the
sizes of different cell types in a single
cell RNA-seq dataset.
Does not account for a
nonrandomness in cell type
mislabeling caused by the
relatedness of cell types located in
ambiguous regions

SCINA R/Web
Server

https://cran.r-
project.org/web/
packages/SCINA

SCINA: a semi-supervised
subtyping algorithm of single cell
and bulk sample

First semi-supervised “signature-to-
category” cell type classification
algorithm for single cell profiling data

Only takes signature genes into
account Performance influenced by
the size of the data, the total numbers
of the cell types in the data and the
signature gene numbers for every cell
type

https://github.com/
jcao89757/SCINA
https://lce.biohpc.
swmed.edu/scina/

scSemiCluster Python https://github.com/
xuebaliang/
scSemiCluster

Single-cell RNA-seq data semi-
supervised clustering and
annotation via structural
regularized domain adaption

Computationally faster than scANVI Performance depends on whether
the cell types to be annotated appear
in the reference dataset or not

False alignment between the outlier
reference categories and target data
does not affect the performance of
scSemiCluster too much

CALLR R https://github.com/
MathSZhang/
CALLR

CALLR: a semi-supervised cell-
type annotation method for single-
cell RNA sequencing data

Stable performance under changes in
parameter and labeled subset

Cannot determine the number of cell
types automatically
Only Gaussian kernel is used to
create the adjacency matrix

scNym Python https://github.com/
calico/scnym

Semi-supervised adversarial neural
networks for single-cell
classification

Can learn biologically interpretable
features of cell types

Does not have implementation of
multi-task domain adversary to
handle multiple independent
variables.

Can synthesize information from
multiple data sources to improve
accuracy
Robust to hyperparameter selection
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changes in parameters and labeled subset, it cannot determine the
number of cell types automatically.

scNym (Kimmel and Kelley, 2020) is one of the newest semi-
supervised methods for analyzing single cell RNA-seq data.
Instead of relying on a reference dataset to annotate cell types,
scNym uses an adversarial network to improve the classification
performance. Moreover, scNym is robust to hyperparameter
selection and can further improve accuracy by learning
biologically interpretable features and synthesizing information
from multiple data sources. However, the current method does
not consider a multi-task domain, which makes it less useful
when there are multiple independent variables.

6 CONCLUSION AND PERSPECTIVES

With the rapid progress in graphical processing unit (GPU)
technology, complex deep learning algorithms can be
accomplished in rather short time, which leads to wide use of
deep learning in many areas. One of the advantages of deep
learning methods is the convenient and easy access of deep
learning platforms such as Keras (https://keras.io/),
TensorFlow (https://www.tensorflow.org/) and PyTorch
(https://pytorch.org/). Benefiting from these well-developed
platforms, researchers can implement deep learning algorithms
without knowing the mathematical details behind them, which
makes it feasible for researchers to focus more on applying deep
learning to their own research fields.

In this paper, we have reviewed some important deep learning
developments in genomics studies. Despite its great improvement
in prediction performance compared to other classical statistical
methods (LeCun et al., 2015), there are still many challenging
issues in this research field. One challenge of deep learning is lack
of interpretability. In genetic association studies, identifying and
interpreting disease-associated genetic markers is of major
interest. Nevertheless, deep learning has been considered as a
black box, which hinders its application in genetic association
studies. Shen et al. (2019) and Horel and Giesecke, (2020) have
developed theories to address such an issue, but the applicability
of the theories to real data applications remains a challenging
task. To make the results from deep learning interpretable,
DeepLIFT (Shrikumar et al., 2017) assigns importance scores
to the input for a given response to determine the crucial features.
Sundararajan et al. (2017) considered sensitivity and
implementation invariance as two fundamental axioms and
proposed an integrated gradients method for attributing the
prediction of a deep network to its inputs.

On the other hand, root mean square error (RMSE) and the
correlation between prediction and original data are often used as

measurements to compare the performances of different
methods. However, such measurements may become obsolete
due to the discovery of double descent phenomena (Belkin et al.,
2019) for deep neural networks. As long as the networks have
been trained for a sufficiently long period, the training error will
keep decreasing to zero, while the testing error will increase first
and then decrease again to reach an even smaller testing error.
The double descent phenomena suggest that a deep neural
network has the potential to achieve RMSE close to zero and
correlation close to one if it has been trained for a sufficiently long
period. Therefore, new measurements for comparing
performances from different methods need to be proposed in
the future.

Besides the researches on interpreting deep learning models,
transfer learning (Pan and Yang, 2009) is another promising
research area. Generalizing knowledge learned in one setting (e.g.,
variants discovered from Caucasian population) to another
setting (e.g., other minority populations) is the major goal of
transfer learning. Given the knowledge gained from animal
studies, transfer learning can be used to generalize findings
learned from animal studies to human studies. In addition,
natural language processing methods such as BERT (Devlin
et al., 2019) showed that by adding only a few more layer to a
pre-trained network and fine tuning the parameters, better
prediction performance can be achieved. Given the easy
implementation of deep learning algorithms and the flexible
deep learning models, we believe that deep learning will play
an important role in future genomic and genetic research.
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