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INTRODUCTION: WHAT IS TRANSLATIONAL SYSTEMS BIOLOGY?

The following are the Principles of Translational Systems Biology condensed from the definition
stated in the book: “Translational Systems Biology: Concepts and Practice for the Future of
Biomedical Research” (1), page 6-7:

“Primary Goal: Facilitate the translation of basic biomedical research to the implementation of
effective clinical therapeutics.

Primary Design Strategies:

1. Utilize dynamic computational modeling to capture mechanism.
2. Develop a framework that allows “useful failure” à la [Karl] Popper.
3. Ensure that the framework is firmly grounded with respect to the history and philosophy of

science.

Primary Methodological Strategies:

1. Use dynamic computational modeling to accelerate the pre-clinical Scientific Cycle by
enhancing hypothesis testing, which will improve efficiency in developing better drug
candidates. . .

2. Use simulations of clinical implementation via in silico clinical trials and personalized simulations
to increase the efficiency of the terminal phase of the therapy development pipeline. . .

3. Use the power of abstraction provided by dynamic computational models to identify core,
conserved functions and behaviors to bind together and bridge between different biological
models and individual patients. . .

What Translational Systems Biology is not (which is not to say that the following are not laudable,
or even necessary goals):

1. Translational Systems Biology is not using computational modeling to gain increasingly detailed
information about biological systems.

Edited and reviewed by:
Yoram Vodovotz,

University of Pittsburgh, United States

*Correspondence:
Gary An

gan@med.uvm.edu
docgca@gmail.com

Specialty section:
This article was submitted to

Translational Systems Biology and In
Silico Trials,

a section of the journal
Frontiers in Systems Biology

Received: 21 March 2022
Accepted: 24 March 2022
Published: 28 April 2022

Citation:
An G (2022) Specialty Grand

Challenge: What it Will Take to Cross
the Valley of Death: Translational

Systems Biology, “True” Precision
Medicine, Medical Digital Twins,
Artificial Intelligence and In Silico

Clinical Trials.
Front. Syst. Biol. 2:901159.

doi: 10.3389/fsysb.2022.901159

Frontiers in Systems Biology | www.frontiersin.org April 2022 | Volume 2 | Article 9011591

SPECIALTY GRAND CHALLENGE
published: 28 April 2022

doi: 10.3389/fsysb.2022.901159

http://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.901159&domain=pdf&date_stamp=2022-04-28
https://www.frontiersin.org/articles/10.3389/fsysb.2022.901159/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.901159/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.901159/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.901159/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.901159/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.901159/full
http://creativecommons.org/licenses/by/4.0/
mailto:gan@med.uvm.edu
mailto:docgca@gmail.com
https://doi.org/10.3389/fsysb.2022.901159
https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.901159


2. Translational Systems Biology is not aiming to reproduce
detail as the primary goal of modeling; level of detail
included needs to be justified from a translational standpoint.

3. Translational Systems Biology is not aiming to develop the
most quantitatively precise computational model of a pre-
clinical, or sub-patient level system.

4. Translational Systems Biology is not just the collection and
computational analysis of extensive data sets in order to provide
merely a broad and deep description of a system, even if those
data sets span a wide range of scales of organization spanning
the gene to socio-environmental factors.”

This editorial is part of the Grand Challenge series for
“Frontiers in Systems Biology”, specifically regarding the
subsection “Translational Systems Biology and In silico
Clinical Trials.” It represents my impressions, based on my
own research experiences, on the challenges that face
biomedical research moving forward. It is intended to be
provocative and disruptive. With this in mind, this editorial
will address what I consider the grandest of challenges facing
biomedical research: crossing the Valley of Death in drug
development. I assert that meeting this challenge is subject to
a failure of imagination by a large sector of the biomedical
research community, due in great degree to a lack of
recognition of fundamental aspects of why the problem is so
hard. I will address these aspects within the context of what is
needed to cross the Valley of Death.

THE PRIMARY GOAL OF BIOMEDICAL
RESEARCH: “TRUE” PRECISION
MEDICINE
My research career is grounded in the fact that I am first and
foremost a clinician (I am a practicing trauma surgeon and surgical
intensivist). As someone who treats critically-ill patients on a
regular basis, no day goes by that I don’t wish that I had better
drugs to treat my patients; where “better”means: more efficacious,
fewer and less side effects, there are clear indications on who gets
what drug and when, and that there is such a drug for every patient.
I have formally defined this goal in the following Axioms of “True”
Precision Medicine (An and Day et al., 2021):

Axiom 1. Patient A is not the same as Patient B (Personalization).

Axiom 2. Patient A at Time X is not the same as Patient A at Time
Y (Precision).

Axiom 3. The goal of medicine is to treat, prognosis is not enough
(Treatment).

Axiom 4. Precision medicine should find effective therapies for
every patient and not only identify groups of patients that
respond to a particular regimen (Inclusiveness)

At some level these Axioms would seem to be self-evident,
until one looks at the divergence present in the current practice of

biomedical research (hence the quotes around “True”). For
example:

1. The need to generate sufficient statistical power in clinical
trials is necessarily in tension with the concept that individual
patients can be (and often are) different (see Evidence Based
Medicine*).

2. Emphasis on being able to prognose and forecast future
disease progression is fine, but without the ability to change
that potential future such information is much less useful (see
emphasis on prediction in sepsis*).

3. While it is important to identify what existing therapies might
be best suited for a particular subset of patients, there is no
substantive improvement in the process of finding what can be
done for those for whom no existing therapies are effective (see
Precision Oncology*).

*Note: these refer to an entire corpus of literature that
interested readers can readily survey.

This is where the failure of imagination manifests: All too
often the focus is on using tools currently employed and being
limited by their existing capabilities instead of identifying the
limitations of these tools and thinking about what new
approaches are necessary to overcome them. We will return to
these Axioms throughout this paper as they highlight key
methodological limitations present in current biomedical
research that inhibit our ability to achieve the goal of “True”
Precision Medicine.

THE BARRIER: THE VALLEY OF DEATH

Why do I not have better drugs to treat my patients, regardless
of when I see them and how sick they are? I contend that the
biggest hurdle to getting better drugs and therapies to treat
each and every patient (Axiom 4) is the “Valley of Death”: The
inability to efficiently translate basic science knowledge
obtained from preclinical studies into effective therapies
(Butler, 2008) (see Figure 1). The location of the Valley of
Death (i.e., between pre-clinical suggestions of efficacy and
clinical evaluation) is evidence that the main problem is not
finding new drug candidates, e.g., identifying molecular
compounds that effectively chemically interact with
targeted biological components, but rather the inability to
reliably determine: 1) If those targeted biological components
should actually be targeted within the context of the entire
human (which requires recontextualizing the putative action
of a drug at a system level), and 2) if they should be targeted,
how and when should such targeting be applied to have the
desired effect (Axiom 1 and Axiom 2). It is worth noting that
every compound that has failed in clinical trials started as a
“promising” candidate, and successfully passed through all
the phases of preclinical testing only to crash into the Valley of
Death. My assertion is that technological advances in
identifying potential drug candidate compounds (Jumper
et al., 2021), while impressive and necessary, do not
address the primary bottleneck in achieving our goal of
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getting better drugs that can treat all patients. To make an
analogy: Even if you build a 6-lane superhighway that leads up
to a cliff, if your bridge-building technology is limited to a
wooden slat-rope bridge there will not be increased traffic
across the chasm.

So why does the Valley of Death exist? I assert that the Valley
of Death exists for two main distinct but interrelated reasons:

1. Biological heterogeneity, namely the biological property that
leads to intrinsic variability in how an organism responds to its
environment (and changes thereof) (An, 2018). This is notably
evident in virtually every experimental and clinical data set
(e.g., “error” bars). The inability of currently employed
statistical tools to account for the actual implications of
such variability, i.e., the fact that the biological object was
able to produce that particular measurement, is central to
existence of the Valley of Death.

2. Current means of determining what is similar or conserved
between one biological object and another are primarily
descriptive and do not account for how the dynamics/
behavior of a system arise (An, 2018).

Underlying these two properties are the following sequence of
facts:

1. There is no formal unifying representation of how a biological
organism behaves to produce the data that is collected
(mechanistic dynamics).

2. Thus, there is no formal representation of what is similar and
what is different between the behavior of biological organisms.

3. Therefore, there is an inability to rigorously and formally assess
the effect of a perturbation or intervention on the behavior of
that organism.

These features translate into the principal failings seen in the
“Valley of Death”:

1. There is too much variation in the study population such that
the signal-to-noise ratio regarding the efficacy of a particular
compound cannot be statistically surmounted.

2. Attempts to narrow the definition of a study population
intrinsically reduces the power of a planned clinical trial,
which in turn makes it less likely that there will be
statistically significant results and lessens the applicability
of the potential drug.

3. The current means of narrowing the definition of a study
population is ill-posed because there lacks a formal means of
determining and characterizing what actually causes one
patient to behave differently from another patient.

4. There is no process for “useful failure” in clinical trials. Since
the reason an intervention did not work in a particular patient
can only be indirectly inferred (since no formal representation
of how that patient’s physiology behaved in response to the
drug), that failure provides no meaningful insight into how it
can be corrected in the future.

In short, the Valley of Death is a manifestation of the inability
of the current biomedical research pipeline to achieve the goals of
“True” Precision Medicine. It deals poorly with heterogeneity
across individuals (Axiom 1), infrequently deals with dynamic
heterogeneity of an individual over time (Axiom 2) and lacks an
approach to correct these failings and better design effective
therapies for every patient (Axiom 4).

Furthermore, biological heterogeneity presents challenges to
data-centric approaches that use probabilistic/statistical models
that attempt to correlate data to some underlying biological
process. This is because of the sparsity of biological data
relative to the number of features/variables present at each
time point (e.g., the number of genes/proteins assayed for in a
single -omics or biomarker sample). This data sparsity means that
biological systems are almost invariably subject to the Curse of
Dimensionality (Bellman, 2015), which refers to the
combinatorial and exponential explosion when the number of

FIGURE 1 | Schematic depicting the drug development pipeline and the location of the Valley of Death. Note that the steps to the left of the Valley of Death can be
augmented with existing technological advances: Improved candidate identification via tools like AlphaFold (Jumper et al., 2021), high-throughput candidate screening
using systems biology platforms, and improved, more clinically relevant pre-clinical models. However, none of these advances improve the actual step of translation to
clinical populations: Clinical trials will still need to be done, and this remains the primary bottleneck in being able to provide clinicians with better drugs, optimal
combinations of drugs and effective and efficient repurposing of drugs. *Note: I acknowledge that there have been developments inmaking clinical trials more productive,
such as adaptive trials. But these approaches do not address the fundamental issue of how to better predict what drug, or combination of drugs, could prove to be
effective.
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samples needed to estimate an arbitrary function
(i.e., mechanism) with a given level of accuracy grows with
respect to the number of input variables (i.e., dimensionality)
of the function (Chen et al., 2009). The Curse of Dimensionality
suggests there is a hard limit to the ability of statistical, and by
extension, most machine learning (ML) methods, which are
correlative statistical tools at their core, to provide insight into
how a biological system works (Jonas and Kording, 2017). I
contend that knowing how a system works in integral to
developing a rational approach to determining how to control
(e.g., treat) that system. In fact, there is a term that describes this
process, and that term is engineering.

ENGINEERING A WAY ACROSS THE
VALLEY OF DEATH: MORE COMPLICATED
THAN YOU THINK
The preceding text emphasized the lack of formal representation
of biological systems as a recurrent insufficiency in most current
approaches to biomedical research; what does this mean and why
is it important? Essentially, formal representations equate to
mathematics, providing access to all the tools available for
using math to solve problems. The power of mathematics
arises from its generalizability: The ability to cast a system
into a particular mathematical framework allows any system
so represented to be operated on/analyzed/reasoned over with
the correspondingly appropriate mathematical tools. The
combination of mathematical representation and identification
of system constraints applied to that mathematical representation
underlies the practice of engineering: problem solving and design
using a set of formal tools. However, the engineering approach is
predicated upon there being sufficient trust in the formal
representation of the targeted system, and this leads to a
significant challenge in the application of engineering
principles to biology in cases where the biological system
cannot be effectively represented as a physical system.
Mathematical representations of physical systems are
trustworthy because there are natural laws that provide
grounding those representations. There are laws that govern
the physics of mechanics, fluid flow, electrical properties;
simulations of physical objects can be grounded by these laws
and this provides trust in those simulations. This, however, is not
true in much of biology, where the exceptions prove the rule.
Mechanical implants (artificial joints and heart valves) can be
engineered with respect to material properties (i.e., fatiguability
and strength, etc.), but not in terms of the effect of their interfaces
with biological tissue. Fluid dynamics models can provide
information in planning cardiovascular procedures that alter
the anatomic piping to correct abnormal flow, but they cannot
represent the progression of the biological processes that result
from, and subsequently influence, abnormalities in that flow. The
vast majority of biomedical research focuses on generating
knowledge in areas that cannot be effectively represented
merely as a physical system: The behavior of cells and cellular
populations. I contend that dealing with the uncertainties of what
makes biology biological, namely the behavior of cells, represents

a qualitatively different task (and set of solutions) compared with
dealing with physical systems. This distinction is of critical
importance because there is a tendency to equate discovering
new drugs as an engineering problem, with attendant misleading
transfer of methods and terms from the engineering field to
biomedicine. One of the most current of these is the interest in
“Medical” digital twins.

MEDICAL “DIGITAL TWINS”: WHY IT
DOESN’T MEAN WHAT PEOPLE THINK IT
MEANS
The appeal of a “digital twin” of an individual is obvious; what is
less obvious is whether that appeal is grounded in facts about what
a digital twin is, whether such a thing can be applied in a medical
context, and if so, what are the limits of the capabilities of such an
object. The term “digital twin” comes from the world of industrial
applications. A digital twin is defined as (Grieves, 2019):

1. A data structure for the real-world system
2. Some process that links data together to form dynamics
3. Some link to the real world that feeds back data into the data-

propagation/generation process

The advent and utility of Digital Twins for engineered objects
relies on the fact that there exists a formal specification for the
“twinned” real world object because those objects have been
engineered/designed/constructed using some version of that
specification (formal representation). Industrial Digital Twins
are simulations of a particular individual example object
drawn from a class of objects for which a common formal
specification exists. There are several key points here:

1. There exists a common formal specification that is shared by
and links different individual examples within a type/class of
objects.

2. The goal of the Digital Twin is to examine the future state of
the targeted specific physical object, meaning that accounting
for dynamics and trajectories of behavior are necessary.

3. The common specification leads to the ability to simulate the
behavior of the object, meaning that dynamics and behavior
are intrinsic to the specification. This means that the
specification includes information about how the system/
object works. Because of this, the specification is not just a
list of the components of the system/object, but rather a
combination of the components and how they interact with
each other to generate behavior.

To use the example of an aircraft engine: A digital twin of an
aircraft engine is based on a specification of the engine that
includes the needed components to make an engine and how they
function together, and can be “personalized” to a specific instance
of the object in the real world by populating the corresponding
variables within its specification/simulation with real-world data
extracted from the real-world object (i.e., “twinned”). Thus, a
digital twin of a particular engine used to determine its failure
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points might have variables that account for the alterations in the
material properties of the engine over time as measured by some
set of metrics. Then simulations of this “twinned” version of the
engine can project/forecast specific behavior under certain sets of
potential future conditions and suggest interventions
(i.e., maintenance or replacement) to forestall a projected
failure point. The key here is that the representational capacity
of the digital twin is specified at the time of development of the
specification; there is a limit to the expressiveness of the
specification that is determined by its use. For instance, a
digital twin of an aircraft engine will tell you how the engine
will wear and perform, but it will not tell you how fast the plane it
is attached to will fly, unless the specification includes the
properties of the entire airplane. The analogy in the medical
field is to “limited” biomedical digital twins, i.e., those based on
high level physiological models (fluid resus/pressors) or systems
represented as mechanical objects (fluid dynamics or joints);
these digital objects only reflect a limited and constrained
aspect of the real-world/physical system but are able, despite
that limited perspective, to generate information potentially
useful for the specified use.

Conversely, the primary difference between a more general
“medical” digital twin (i.e., general in the sense that it purports to
capture underlying biological mechanisms, as would be needed to
assess the effect of or design new drugs) and the traditional
industrial digital twin goes back to the issue of heterogeneity and
the lack of formal representations/natural laws in biology.
Industrial digital twins start with an engineered object, for
which, by definition, there exist specifications of the object
from which the digital twin is constructed. Alternatively, the
specification for a human being does not exist; it needs to be
reverse engineered via basic research, with the attendant
challenges that go with that entire process (e.g., the Valley of
Death). Does this mean that a “medical” digital twin is impossible
given our current state of knowledge? I would say “not exactly.”
As noted above there are several aspects of biomedicine where a
targeted biomedical problem can be effectively described either as
a physical system (i.e., artificial joints) or with a sufficiently
expressive mathematical model [i.e., fluid administration (Jin
et al., 2018) or artificial pancreas (Bekiari et al., 2018)].
However, dealing with the complexity of cellular/multicellular
behavior is a qualitatively different task, which is exactly the
behavior that is targeted with drugs. In this case one must deal
with considerable uncertainty with respect to what is “true”
(again impacted by the dual issues of a lack of fundamental
natural laws and a lack of formal, mathematical representation
suitable for biology). I have previously proposed that sufficiently
complex, mechanism-based simulation models can serve as
translational objects that can serve as unifying specifications of
biological systems (An, 2018); so too here this concept can be
applied to the development and use of “medical” digital twins.
The epistemic uncertainty associated with biological systems, in
conjunction with the acknowledgment that knowledge of how the
system works is necessarily and invariably incomplete, results in
the concept that instead of “a” twin specification (as generally
seen in industrial applications) there is an ensemble of candidate
specifications that need to be refined, modified or discarded

through a continuous process. This leads me to propose the
following basic design principles for human digital twins to be
used for drug development and testing (e.g., crossing the Valley of
Death), principles that are in turn related to the ostensible goal of
medicine reflected in the Axioms of Precision Medicine:

1. In order to create a Medical Digital Twin of a specific person
you need to be able to simulate every possible person. This is a
statement of generalizability with respect to the specification
of the Medical Digital Twin, and an argument for conserved
model structures (= candidate specifications) but with varied
parameters reflecting differences in how individuals function
(An, 2018) (this calls back to Axiom 1, Axiom 2 and Axiom 4).

2. In a related fashion, because the basic premise that a Medical
Digital Twin is “twinned” to an individual, the development
and use of Medical Digital Twins should stand in direct
contrast to methods that attempt to statistically reduce
heterogenous data into a “best fit” regressed line. All too
often an experimental or clinical data set can be seen as a
widely scattered series of points and a statistical analysis
generates a line drawn through the cluster of points; this
approach explicitly ignores differences in the individual
biological objects that produced the data, reflected in
Axiom 1 and Axiom 2. The process of “twinning” should
be development of means of encompassing those varied
trajectories from a common mechanistic specification [a
fundamental property of Digital Twins (Grieves, 2019)].

3. People are not merely parts lists; they are composed of cells
that interact and do things. The ostensible goals of a Medical
Digital Twin, i.e., prediction, forecasting and design, reinforce
the importance of dynamics and mechanisms; this calls back
to Axiom 2 of PrecisionMedicine. The limitations and dangers
of “data centric” digital twins are recognized in the industrial
sector (Wright and Davidson, 2020). Therefore, the
requirements of a Medical Digital Twin should place
emphasis on the characterization and representation of
functions, not just the descriptions of states (“snapshots”).
This principle is a reflection of the famous quote from Richard
Feynman: “What I cannot create, I cannot understand.”

4. The “medical” in a Medical Digital Twin should reflect the
ostensible purpose of medicine: making ill people not ill
anymore. This is reflected in Axiom 3 of Precision
Medicine: being able to diagnose/prognose is not enough;
we want to be able to figure out how to intervene to make
people better. The desire to enhance our ability to improve
patient care, by either optimizing existing therapies,
repurposing existing therapies or accelerating development
of new therapies, should be a central and driving feature to the
design of Medical Digital Twins.

5. The intrinsic uncertainties and perpetual incompleteness of
biological knowledge means that the process of developing
Medical Digital Twins needs to mirror and account for those
uncertainties: There is no “one” hypothesis (= model
structure/specification) that is ontologically true (e.g.,
equivalent to a “natural law” in physics or chemistry), but
rather an ensemble of sufficient hypotheses (= model
structures) that need to undergo a constant cycle of testing,
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falsification and refinement. Some similarities can be drawn
from weather forecasting, where an ensemble of models (albeit
physics-based models, and therefore grounded in well-
established physical laws) are all running in parallel,
constantly being evaluated, constantly being improved. This
adopts an evolutionary approach by which models, and the
scientific knowledge associated with them, progresses (An,
2010).

In summary, there is considerable promise in the translation of
the digital twin concept to biomedicine, but also significant
pitfalls if the term, as it is applied to Medical Digital Twins,
diverges from the original meaning and intent of the term (e.g.,
see “Precision” or “Personalized” Medicine). The implicit
promise of a Medical Digital Twin is that it will enhance the
ability of to fulfill the Axioms of Precision Medicine and enhance
crossing the Valley of Death, and meeting that promise will
require being cognizant of rebranding traditional approaches
that do not meet the requirements of the aforementioned
Axioms. This is most important in meeting Axiom 3
(prediction is not enough, the goal is therapy) and Axiom 4
(therapies should be discovered for everyone), and leads into
concepts of control as a goal.

COMPLEX CONTROL DISCOVERY AND
ARTIFICIAL INTELLIGENCE

Complex problems call for complex solutions, and, as noted
above, the Valley of Death demonstrates that dealing with the
complexity of biomedical mechanisms challenges the boundaries
of human intuition. Being able to represent biological complexity
through dynamic, mechanism-based models is the first step
towards understanding (An, 2004; An, 2008; An et al., 2008),
but operating over that complexity requires additional methods.
This is where modern advances in machine learning (ML) and
artificial intelligence (AI) can be beneficial. “Modern”ML/AI, for
all intents and purposes, involves the training of artificial neural
networks (ANNs) to perform various types of pattern recognition
tasks. This monograph is not intended to be a comprehensive
review of biomedical ML/AI (there are many such summaries in
the current literature), but I do want to highlight two
fundamental aspects of ANNs that may be overlooked in those
reviews, yet have significant implications regarding how
biomedical ML/AI is marketed.

The first is the fact that ANNs are governed by the Universal
Approximation Theorem (UAT), which essentially states that an
arbitrarily complex ANN can be trained to approximate any
function in order to replicate a large-enough data set (Minsky and
Papert, 1988; Hornik et al., 1989). This property of ANNs is often
not accounted for or acknowledged in the literature of biomedical
uses of ML/AI, as the UAT virtually guarantees that the result of a
particular ML task will provide an “answer” that meets acceptable
performance based on statistical metrics using a traditional split
of data into training and testing sets. Thus, reporting
performance results of any biomedical ML/AI based on this
type of standard internal validation is, to a great degree,

meaningless; while this fact raises a series of issues about how
biomedical ML should be evaluated, these issues are outside the
scope of this article. However, it is important to note that the
existence (and general lack of awareness of) the UAT is
particularly impactful in biomedical applications with respect
to overfitting and underspecification (D’Amour et al., 2020) due
to the general and nearly ubiquitous sparsity of available training
data [e.g., note how -omics data/biomarker panels manifest the
Curse of Dimensionality (Chen et al., 2009)]. In the general, wider
ML community training data is augmented by the use of synthetic
data, where additional algorithms are used to generate “realistic”
synthetic data points (Nikolenko, 2021). This has proved to be
effective in image recognition tasks, but is challenging regarding
attempts to predict/forecast (which require time series data) due
to the UAT: Because of the UAT an ANN trained on synthetic
time series data merely recapitulates the simulation model/
algorithm used to generate the time series. This property of
the UAT can be seen as a “feature” when applied to
reconstituting known equations governing physical laws
[i.e., deterministic chaos (Pathak et al., 2018), turbulence
(Novati et al., 2021) and cosmology (Villaescusa-Navarro
et al., 2021)], but leads to off-target training if the simulation
model is used to generate synthetic time series data.

The second overlooked fundamental property regarding the
capabilities ofML/AI in nearly all current biomedical applications
(with one notable exception, which will be expanded upon below)
is the fact that an arbitrarily complex ANN, despite being able to
approximate any function, cannot predict the effects of
interventions on that function based on data alone (Xia et al.,
2021) i.e., it cannot be used to discover “new” means of
controlling a system represented by that function based using
data alone [see Causal Hierarchy Theorem (Xia et al., 2021)].
What this means is that while ML/AI can suggest new potential
points/means of intervening on a system through traditional
correlative methods, it is unable to evaluate what the potential
effect of that intervention might actually be; this process still
requires the traditional experimental pipeline that produces the
Translational Dilemma and the Valley of Death, and intrinsically
limits many claims as to howML/AI will accelerate the delivery of
new drugs to market [see AlphaFold (Jumper et al., 2021)].

The exception to this inability of ML/AI to pose and test new
interventions is the use of Deep Reinforcement Learning (DRL), a
form of training ANNs that utilizes time series/outcome data to
identify combinations of actions that can alter/change the
behavior/trajectories of a system (Lillicrap et al., 2015). The
key requirement for DRL to function is the existence of
counterfactuals with respect to any intervention; it is only
when there is an ability to demonstrate the “what if?”
alternative to a particular intervention that the true effect of
that intervention can be evaluated. As such, when there is
sufficient existing data regarding counterfactuals [as has been
seen in DRL applied to the fluid and vasopressor management of
sepsis (Komorowski et al., 2018), though with significant
limitations well-described in (Jeter et al., 2019)], DRL can be
used to train an AI agent to a management policy. But as is the
case in nearly all aspects of drug development and testing, such
information does not exist unless the trial has already been
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performed (in which the potential chasm of the Valley of Death
has not been avoided). The solution to this problem can be seen in
perhaps the most dramatic successes of modern AI: The game-
playing AIs from Deep Mind which have mastered Go and other
games (Silver et al., 2017; Silver et al., 2018; Vinyals et al., 2019).
These systems have demonstrated the ability of DRL to train
ANNs to execute dynamic policies of unfathomable complexity in
order to achieve a specified goal (e.g., “win the game”). However,
all these systems share the same requirement that there is a
simulation of the “game” to be won; such simulations are needed
in order to generate the synthetic data (which includes the
necessary counterfactuals) to sufficiently train the ANN (and
this is why this type of DRL is not bound by the Causal Hierarchy
Theorem). We term this group of applications of DRL as
simulation-based DRL; this describes the use of simulation-
generated training data without a pre-defined structural model
for the DRL agent.

We have demonstrated the feasibility of this approach by
examining the use of simulation-based DRL to discover controls
for a disease process for which no effective control strategy exists:
Sepsis (Chousterman et al., 2017). In this work we demonstrated
that a previously validated agent-based model of systemic
inflammation (An, 2004; Cockrell and An, 2017), which
replicated failed anti-cytokine therapies for sepsis (An, 2004),
could be used to train a DRL AI to develop a complex, adaptive,
multi-modal control policy to effectively steer sepsis simulations
back to a state of health (Petersen et al., 2019; Larie et al., 2022).
However, while these studies provided proof-of-concept for this
approach, there is a critical reliance on the quality of the target
simulations; because of the UAT there need to be approaches that
can deal with the persistent danger of over-fitting to the
simulation-generator of the synthetic training data. This is the
point at which we need to discuss how to design and implement
in silico trials to cross the Valley of Death and achieve True
Precision Medicine.

FROM POPULATIONS TO POPULATIONS
OF INDIVIDUALS: IN SILICO TRIALS

For the foreseeable future the gold-standard for determining the
efficacy of a new drug or a new drug-combination or effective
drug-repurposing will be a clinical trial; success is what lies on the
other side of the Valley of Death. The goal, then, is to increase the
efficiency and likelihood that a particular candidate will be able to
cross the Valley of Death, e.g., a multi-lane bridge instead of a
rope and slate one. This goal would normally call for the
application of “engineering” principles of design to more
rigorously pre-test potentially effective putative interventions,
but we have also recognized that, currently, biomedical
systems (or at least the cellular-molecular biology critical to
drug development) do not meet the requirements needed for
the application of engineering approaches, namely the lack the
formal representations/specifications to robustly describe
aggregated cellular behavior. The solution we have proposed is
the use of multiscale mechanism-based simulation models that
accept epistemic uncertainty as surrogate systems for

understanding and control discovery (An, 2008; An, 2010; An
et al., 2017; An, 2018; An and Day, 2021); these models essentially
function as populations of Medical Digital Twins in order to
perform in silico clinical trials (An, 2004; Petersen et al., 2019;
Larie et al., 2022). As noted above, a key reason for the
Translational Dilemma and the existence of the Valley of
Death is intrinsic biological heterogeneity and the issues it
causes in terms of the Curse of Dimensionality and the
resulting perpetual data sparseness in clinical data. Therefore,
overcoming this data sparseness through appropriate execution
of in silico trials to achieve Precision Medicine requires that the
synthetic population be able to capture/replicate the
heterogeneity of the clinical population. This now links to
Medical Digital Twins, where the ability to simulate any
individual requires the ability to simulation every individual,
and thus allows the generation of a synthetic population of
Medical Digital Twins that can mirror the heterogeneity
within a real clinical population. Our approach to
accomplishing this, while in turn dealing with the perpetual
epistemic insufficiency of the knowledge underlying the
mechanism-based simulation models, is through a specific
construction of the simulation models that utilizes the
parameter space of the models to encompass this uncertainty
(Cockrell and An, 2021). This approach involves a formal
mathematical object termed the Model Rule Matrix (Cockrell
and An, 2021). This object relies on a model construction
formalism where the parameters of the model reflect the
potential connectivity (existence and potential strength)
between all the represented components of the targeted
biological system; in this fashion the parameterizations of the
model encompass all the potential factors (be they genetic,
epigenetic or environmentally influenced) that would affect the
responsiveness of the represented functions in the model (which
is assumed to be comprehensive). This approach towards
“parameterization” focuses the functional basis of inter-
individual heterogeneity and can then capture the functional/
response variances known to be present in a clinical population
due to the above listed host of different factors. Then, identifying
the clinically-relevant parameter space of the MRM through the
application of ML methods such as Active Learning (Cockrell
et al., 2021), can allow the generation of a synthetic population
that encompasses the functional heterogeneity seen in a clinical
population and allow the design and performance of a clinically
relevant in silico trial.

Once such a synthetic population is generated, there can be
different goals and uses that affect the design and execution of an
in silico trial. The more traditional approach is to test a putative
intervention derived by the standard method of designing clinical
trials [(An, 2004; Clermont et al., 2004) for early examples of
this]. This use of an in silico trial essentially serves as a plausibility
check to see if a presumed intervention, derived from a sequence
of reductionist experiments, actually behaves as expected in a
clinically-relevant systemic context [this, in fact, is one of the
foundational applications of Translational Systems Biology
(Vodovotz et al., 2008)]. Alternatively, if there are existing
effective therapies but the goal is to optimize them in
combination, these types of in silico trials can guide how such
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multi-modal treatments could be designed (Wang et al., 2019).
Finally, as described above, for diseases where no current effective
therapy exists, ML methods such as DRL can be used to pose how
these diseases can be controlled (Petersen et al., 2019; Larie et al.,
2022). Notably, drug repurposing is particularly well suited to this
approach (Larie et al., 2022).

CONCLUSION: THE GRAND CHALLENGES
FOR TRANSLATIONAL SYSTEMS BIOLOGY
AND IN SILICO TRIALS
“Translational Systems Biology” (or TSB) was the term coined
originally in 2008 (An et al., 2008; Vodovotz et al., 2008) and
subsequently expanded into the book quoted at the beginning of
this paper (Vodovotz and An, 2014). TSB was developed to
describe how this translational challenge could be addressed by
utilizing multi-scale, mechanism-based computational modeling
with an explicit goal of representing clinically relevant phenomena,
including the performance of in silico clinical trials (An, 2004;
Clermont et al., 2004). I believe the durability of this program is
evident in that the insights that led to TSB preceded the advent of
“precision/personalized”medicine, where the “translational” aspect of
TSB essentially describes a roadmap to “true” precision/personalized
medicine (An and Day, 2021). Similarly, the emphasis on clinically
relevant models and the clinically relevant use of those models in TSB
presaged the recent interest in Medical Digital Twins (which are
essentiallymechanism-based TSBmodels). In the years since TSB was
introduced “Big Data” has morphed intoML and AI (at least in terms
of the correlative nature of the bulk of those applications in
biomedicine), and now TSB has adapted to utilize the control
discovery potential of DRL to further its goal of fulfilling the
Axioms of Precision Medicine. I note these facts to emphasize the
persistence of the TSB roadmap in achieving the Grandest Challenge
of getting better drugs to treat every patient (e.g., “True” Precision

Medicine), even as TSB has uncovered issues not identified in its
original conception, i.e., the insufficiency of a direct engineering
paradigm, the need to deal with perpetual epistemic uncertainty in
biology and the critical role of biological heterogeneity, among others.
The evolution of TSB has led to insights that suggest a series of Grand
Challenges that I hope will spur investigations suitable for this journal.
These are:

Grand Challenge #1: How to encompass and embrace the
biological heterogeneity present in clinical populations in the
design of in silico clinical trials? We recognize that biological
heterogeneity is a feature, not a bug, in biology. While such
heterogeneity presents significant challenges during the
discovery phase of basic biological research, which primarily
seeks to mitigate heterogeneity in order to achieve statistically
significant results, it is essential to reconstruct how such
heterogeneity manifests in the real world in order to represent
the functional diversity seen in clinical populations. Accounting for
the mechanistic bases for clinical heterogeneity in the generation of
synthetic populations for in silico trials will be key in using in silico
clinical trials to cross the Valley of Death. We have proposed one
pipeline towards this goal (Cockrell and An, 2021; Cockrell et al.,
2021) and hope this Grand Challenge will encourage the
development of additional and alternative approaches. Being
able to do this is critical if one is to apply ML or AI
approaches to this simulated data (see next Grand Challenge).

Grand Challenge #2: How to generate synthetic data that
“obscures” the generative simulation model from ML and AI
approaches? As noted previously in this paper, the fact that
ANNs are Universal Approximators means that they will extract a
function that underlies a data set. If that data set is a synthetic one
generated by an equation-based model, then the ANN will just
recapitulate that model, with attendant consequences in terms of
applicability and generalizability to the real world. The addition
of stochasticity to these generative models can help, but only if
how that stochasticity is applied matches how biological

FIGURE 2 | The role of Translational Systems Biology in enhancing the efficiency and success of clinical trials. The successful development of methods and
approaches to address the Grand Challenges of: Enhanced development of mechanism-based simulations as specifications for digital twins, replicating clinical
heterogeneity in synthetic populations, utilizing AI for control discovery, can lead to the use of in silico trials within an engineering paradigm of design and pretesting that
can bring to biomedicine the same advances present in other technological fields.
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stochasticity is generated. For instance, a standard stochastic
differential equation will not suffice because the ANN will “see
through” the noise term generally added to make a deterministic
differential equation model into a stochastic one. Our work has
shown that bio-realistic stochasticity is not a constant function
(Cockrell and An, 2017; Larie et al., 2021), a fact that should be
evident by examining the error bars in virtually any sufficiently
large experimental or clinical data set. The ability to generate
effective synthetic time series data is crucial for the overall
application of ML/AI to disease forecasting and control
discovery, as biological data of this type is too invariably
sparse for effective, generalizable learning.

Grand Challenge #3: How to design and use Translational
Systems Biology models/Medical Digital Twins to inform the
next generation of clinical sensors and controllers to achieve
True Precision Medicine? I assert that the mechanism-based
dynamic models utilized in TSB essentially meet the criteria for
the shared specification inherent in the definition of a medical
digital twin. However, what is missing to meet the actual
definition of a digital twin is the linkage/interface of a
simulation based on that specification to a real-world data
stream that allows updating of the “twinned” simulation to a
particular individual. It should be noted that the development of
such sensors and controllers will provide the data that can falsify/
invalidate and improve the underlying simulation models,
resulting in an intrinsically iterative process that will enhance
the trust in these systems.

Grand Challenge #4: How to integrate mechanism-based
Translational Systems Biology simulation models with cutting
edge developments in ML and AI to further control discovery
and achieve the Axioms of Precision Medicine? The utility of
modern ML and AI in furthering biomedical research is
undeniable, but there are hard limits of those tools when it
comes to crossing the Valley of Death, specifically noted in the
Causal Hierarchy Theorem (Xia et al., 2021). We have proposed
one method to integrate mechanism-based simulation with DRL/
AI to foster control discovery (Petersen et al., 2019; Larie et al.,
2022), and hope to see more researcher to develop additional
methods that can leverage the benefits of both methods. As noted
above in Grand Challenges #1 and #2, all of this is predicated
upon being able to generate realistic synthetic data.

The vision and the promise of Translational Systems Biology
can be seen in Figure 2.

As noted at the beginning of this editorial, the content
presented herein is a compilation of my perspectives and
experiences in the pursuit of finding better drugs to treat my
patients; it is a journey that has lasted over 20 years and taken
directions I could never have anticipated. This editorial is not
intended to be a comprehensive review of the literature and is not
exclusionary in intent; rather it is intended to illustrate the (my)
rationale for a particular roadmap to address what I consider to be
the key deficiency inmodern biomedicine: increasing the effective
translation of basic science knowledge into clinically effective
therapeutics. I believe that the Challenges presented in this
editorial represent necessary steps to move towards a goal of
“true” PrecisionMedicine, but I also recognize that there are often
multiple paths to getting to the same goal (much like biology
itself). I look forward to seeing the work of those who take up the
Challenges I offer, and especially those who challenge the tenets I
present in order to expand the Universe of solutions to this
Grandest of Challenges.
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