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Tuberculosis is a worldwide persistent infectious disease. It is caused by bacteria from the
Mycobacterium tuberculosis complex that mainly affects the lungs and can be fatal. Using an
integrative systems biology approach, we study the immunopathological progression of this
disease, analyzing the key interactions between the cells involved in the different phases of the
infectious process. We integrated multiple in vivo and in vitro data from immunohistochemical,
serological, molecular biology, and cell count assays into a mechanistic mathematical model.
The ordinary differential equation (ODE) model captures the regulatory interplay between the
phenotypic variation of themain cells involved in the disease progression and the inflammatory
microenvironment. Themodel reproduces in vivo time course data of an experimentalmodel of
progressive pulmonary TB in mouse, accurately reflecting the functional adaptations of the
host–pathogen interactions as the disease progresses through three phenotypically different
phases. We used the model to assess the effect of genotypic variations (encoded as changes
in parameters) on disease outcomes. For all genotypes, we found an all-or-nothing response,
where the virtual mouse either completely clears the infection or suffers uncontrolled Tb
growth. Results show that it is 84% probable that a mouse submitted to a progressive
pulmonary TB assay will end up with an uncontrolled infection. The simulations also showed
how the genotypic variations shape the transitions across phases, showing that 100% of the
genotypes evaluated eventually progress to phase two of the disease, suggesting that
adaptive immune response activation was unavoidable. All the genotypes of the network
that avoided progressing to phase 3 cleared the infection. Later, by analyzing the three different
phases separately, we saw that the anti-inflammatory genotype of phase 3 was the one with
the highest probability of leading to uncontrolled bacterial growth, and the proinflammatory
genotype associatedwith phase 2 had the highest probability of bacterial clearance. Forty-two
percent of the genotypes evaluated showed a bistable response, with one stable steady state
corresponding to infection clearance and the other one to bacteria reaching its carrying
capacity. Our mechanistic model can be used to predict the outcomes of different
experimental conditions through in silico assays.

Keywords: tuberculosis (TB), systems biology, multi-level data integration, systems medicine, immune system
modeling, modeling disease dynamics, disease outcome prediction, disease-transition map

Edited by:
Maria Rodriguez Martinez,

IBM Research—Zurich, Switzerland

Reviewed by:
Awanti Sambarey,

University of Michigan, United States
Marissa Renardy,

Applied BioMath, United States

*Correspondence:
Rogelio Hernández-Pando

rogelio.hernandezp@incmnsz.mx
Elisa Domínguez-Hüttinger

elisa.dominguez@
iibiomedicas.unam.mx

Specialty section:
This article was submitted to
Data and Model Integration,

a section of the journal
Frontiers in Systems Biology

Received: 05 April 2022
Accepted: 23 May 2022

Published: 08 August 2022

Citation:
Flores-Garza E, Zetter MA,
Hernández-Pando R and

Domínguez-Hüttinger E (2022)
Mathematical Model of the

Immunopathological Progression
of Tuberculosis.

Front. Syst. Biol. 2:912974.
doi: 10.3389/fsysb.2022.912974

Frontiers in Systems Biology | www.frontiersin.org August 2022 | Volume 2 | Article 9129741

ORIGINAL RESEARCH
published: 08 August 2022

doi: 10.3389/fsysb.2022.912974

http://crossmark.crossref.org/dialog/?doi=10.3389/fsysb.2022.912974&domain=pdf&date_stamp=2022-08-08
https://www.frontiersin.org/articles/10.3389/fsysb.2022.912974/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.912974/full
https://www.frontiersin.org/articles/10.3389/fsysb.2022.912974/full
http://creativecommons.org/licenses/by/4.0/
mailto:rogelio.hernandezp@incmnsz.mx
mailto:elisa.dominguez@iibiomedicas.unam.mx
mailto:elisa.dominguez@iibiomedicas.unam.mx
https://doi.org/10.3389/fsysb.2022.912974
https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org/journals/systems-biology#editorial-board
https://doi.org/10.3389/fsysb.2022.912974


1 INTRODUCTION

Tuberculosis (TB) is a worldwide persistent infectious disease
caused by bacteria from theMycobacterium tuberculosis complex
that mainly affects the lungs and can be fatal (Pai et al., 2016). It is
one of the top 10 causes of death worldwide and approximately a
quarter of the world’s population is latently infected (WHO,
2019). Its high prevalence is, among other factors, a result of the
ineffectiveness of treatments for the prevention and reversal of
the infectious process. Such ineffectiveness is attributed to the
heterogeneous constitution of the bacterial genotypes, antibiotic-
resistant strains, and expensive treatments (Smith, 2003).
Efficient treatments are difficult to establish as some stages of
TB progression are clinically subtle and there is a lack of
understanding of the molecular mechanisms behind them
(Salvatore and Zhang, 2017). Using an integrative systems
biology approach, we can study the immunopathological
progression of this disease, describing the dynamics of the
host–pathogen interactions in a qualitative and quantitative
way that goes beyond the current capacity of experimental
studies (Reynolds, 2014).

The holistic approach of systems biology in medicine offers a
unique way to develop personalized treatment strategies, taking
full advantage of clinical and experimental data sets (Loscalzo
and Barabasi, 2011). From mathematical models that predict
and explain the molecular mechanisms behind skin diseases
such as atopic dermatitis (Dominguez-Hüttinger et al., 2017)
and upper airway infection by Streptococcus pneumoniae
(Domínguez-Hüttinger et al., 2017a) to modeling the
dynamics of signaling networks behind the development and
progression of cancer (Du and Elemento, 2015), there is a wide
range of pathologies that have already been addressed by the
discipline (Barber et al., 2021; Reynolds et al., 2006).
Mathematical TB models have been proposed to represent
the transmission of the disease at the epidemiological level
(Trauer et al., 2014) and to assess the impact of risk factors
and treatments on the population (Dowdy et al., 2008). Agent-
based models that describe the progression of TB infection at a
tissue level have been formulated (Wigginton and Kirschner,
2001; Segovia-Juarez et al., 2004). At the cellular level, ODE
models that describe the host–pathogen interactions have been
formulated (Wigginton & Kirschner, 2001; Magombedze et al.,
2006). However, a minimal ODE model that describes how the
host–pathogen interactions are dynamically regulated through
the different phases of TB progression has not been formulated
until now.

In the present work, we propose an ODE model that describes
the interactions that occur at cellular level throughout the
immunopathological progression of active pulmonary TB in
an in vivo mouse model. Specifically, we model the
interactions between bacteria and macrophages, which are the
main effectors of the TB progression, and how these interactions
are shaped by adaptive immune responses that dynamically
change as TB progresses. The model is built, calibrated, and
validated by integrating a vast number of in vivo and in vitro
published experimental assays (Supplementary Table S1). The
model mechanisms replicate the qualitative behaviors of the

macrophage and bacterial population dynamics observed in in
vivo studies, with an initial slow bacterial growth accompanied by
gradual macrophage recruitment (phase 1), followed by a sharp
rise in both macrophages and bacterial population (phase 2) and
finally macrophage population decreasing their protection
efficiency and bacteria reaching its maximum values (phase 3).
Furthermore, our model captures how these phases are shaped by
the key adaptive immune response players, namely Th1, Th2, and
dendritic cells and protective cytokines such as TNFα.

The model can predict possible disease outcomes for different
genotypes of mice by simulating the interaction between a range
of host genotypes with greater or lesser immune response
capacity and a range of pathogen genotypes with different
degrees of virulence through parameter modulation. Two
disease outcomes emerged, bacterial clearance and
uncontrolled bacterial growth, and this all-or-nothing
behavior persisted through all the phenotype space. The
probability of ending up with an uncontrolled TB infection
showed up to be very high (84%). This is in accordance with
the progressive pulmonary TB experimental model that our
model aims to replicate, which is designed so that a successful
progressive TB infection is established on the mouse, resembling
the active pulmonary TB of humans. The transitions across
phases of disease progression show that in all cases, adaptive
immune response (phase 2) needs to be recruited and that an
intense anti-inflammatory response (phase 3) might be
detrimental to the organisms in terms of bacterial clearance.
Additionally, we sampled host and pathogen genotypes from the
three different phases and studied their long-term behavior in
absence of disease progression. Almost half of these genotypes
showed a bistable behavior, one being the stable behavior,
bacterial clearance, and the other one is the uncontrolled
bacterial growth. Genotypes sampled from phase 3 (anti-
inflammatory) showed only a 7% chance of bacterial
clearance; meanwhile, phase 1 (preparation) and phase 2
(proinflammatory) showed a 32% and 53% chance,
respectively. Thus, genotypes sampled from phase 2 have the
highest probability of mapping to an infection clearance
phenotype across the three phases.

This model provides a powerful tool to test the effect of specific
alterations of the host–pathogen interactions over the outcome of
the infection. These in silico experiments can lead to future
experimentation and help reduce the number of in vivo
experiments.

2 RESULTS

2.1 Mathematical Model of the
Immunopathological Progression of
Tuberculosis
Our mathematical model of the progression of a TB infection
(Figures 1A, B) is a systems-level representation of the key
interactions between the effector cells of the immune
response—namely, macrophages—and the pathogen observed
in vivo on mouse models.
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FIGURE 1 | Mathematical model of the immunopathological progression of tuberculosis. (A) Stages of the immunopathological progression of tuberculosis
infection in mice. (B) Graphical representation of the network of interactions of the population dynamics in granulomas. (C) Three phases of disease progression. We
integrated counts of TH1 (orange) and TH2 (red) cells in granuloma (Hernández-Pando et al., 1996), dendritic cells in lung (yellow) (Pedroza-González et al., 2004), and
concentration of iNOS mRNA expression that represents M1 macrophages (orange) (Hernández-Pando et al., 2001). In all cases, the BALB/c mouse was
inoculated with 106 M. tuberculosis H37Rv bacteria. The data were normalized to their maximum percentage to allow comparison. (D) Example of how an adaptable
parameter can change through the different phases of the infectious process.
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The first stage of the infectious process is the primary infection
(Figure 1Aa). After natural bacterial infection in humans or
inoculation of the mouse, generally through the aerial route
(intratracheal instillation or aerosol infection) (Hernandez-
Pando et al., 1995; Hernández-Pando et al., 1996), the
pathogen reaches the pulmonary alveoli where it is recognized
by non-activated macrophages (Wolf et al., 2007). Macrophages
then phagocyte bacteria, and because of their non-activated state,
bacilli are not efficiently eliminated. Thus, the macrophages
generally serve as a reservoir for the bacteria, which proliferate
there, eventually causing apoptosis of these host cells (Cohen
et al., 2018). During this early stage, bacteria stimulate the
phagocytic cells, triggering secretion of cytokines such as
tumor necrosis factor alpha (TNFα) which permeabilizes the
vascular endothelium and attracts circulating monocytes to the
site of infection, which then differentiate into non-activated
macrophages upon entering the infected tissue (Figure 1Ab)
(Shi & Pamer, 2011). Together with small populations of
dendritic cells and polymorphonuclear leukocytes, this
regulatory network formed between Tb and non-activated
macrophages forms the early granuloma that characterizes
phase 1 of TB (Figure 1Ac) (García-Romo et al., 2004). In
cases of very severe and virulent infections, this can lead to
uncontrolled bacterial growth, macrophage necrosis, and, in
humans, signs and symptoms due to tissue damage such as
coughing up blood, chest pain, difficulty in breathing, fever,
fatigue, and cachexia, which is called primary active TB
(Figure 1Ad) (Mayo Clinic, no date). On the other hand,
infection can be mild and/or the immune system can be fit,
ending up in the clearance of the bacterial population
(Figure 1Ae). These two outcomes are possible through all the
disease progression.

After there is a sufficient quantity of bacteria available in the
area of infection, some will be phagocytosed by dendritic cells,
which will migrate to the closest lymph nodes, where they present
M. tuberculosis antigens through major histocompatibility
complex type II (MHC-II) molecules to immature CD4+ T
lymphocytes; this interaction is co-stimulated by the link
between the dendritic cell membrane receptor B7 and the T
cell-stimulating molecule CD28 that in the presence of
interleukin (IL)-12 in the microenvironment, triggers the
maturation of CD4+ T cells into “proinflammatory” TH1 cells
(Figure 1Af) (Alberts et al., 2002). The TH1 cells then migrate
from the lymph nodes to the lung infection sites and secrete IFNγ,
which, together with co-stimulation by interactions between
CD40 molecules on the surface of macrophages and CD40L
on the surface of TH1 cells, activates the macrophages,
differentiating them into M1 macrophages (Hernández-Pando
et al., 1996), which are characterized by high production of
reactive oxygen species (ROS, oxidative burst), maturation of
their phagolysosomes, and production of antimicrobial molecules
(RNI, NO, NOS2, defensins, etc.) (Ley, 2017). As a result of the
effects of the recruited adaptive immune response, the early
granuloma will become a mature granuloma, which is more
efficient in eliminating bacteria thanks to its activated M1
macrophages (Figure 1Ag) (Hernández-Pando et al., 2001).
Due to the high burden of bacteria that is necessary to induce

experimental models of progressive pulmonary TB (> 1 × 105) as
mice are naturally resistant to Mycobacterium tuberculosis
infection (Rook et al., 2009), the early and mature granuloma
are typically unable to contain the bacterial growth and the
infection, which therefore progresses to a phase called primary
progressive TB infection in which an uncontrolled infection and
tissue damage are developed, resembling human active
pulmonary TB. As a result, a late granuloma is formed
(Figure 1Ah), in which the phenotype of lymphocytes
changes, with a predominant number of TH2 cells over TH1
cells, as a response to the tissue damage. Through the production
of TH2 cytokines by T cells, macrophages differentiate into the
M2 phenotype that performs anti-inflammatory,
immunoregulatory, and tissue preservation activities (Ley,
2017). The late granuloma turns out again to be less efficient
than the mature granuloma in eliminating bacteria as a result of
the phenotype change in macrophages from M1 to M2.

Although there are multiple host cells that participate in the
onset and progression of TB (Davis & Ramakrishnan, 2009),
macrophages are the direct effectors of the immune response
(Hernández-Pando et al., 2001). Therefore, the interplay between
these cells and M. tuberculosis is the key host–pathogen
interactions that occur in TB at the cellular level.

Our mathematical model is a formal representation of the
dynamical interplay between alveolar macrophages and M.
tuberculosis that occurs in granulomas (Figure 1B). The ODE
model consists of four state variables: free macrophages (M), free
bacteria (T), macrophages that have phagocytosed (Mf), and
phagocytosed bacteria (Tf). While we aimed to keep themodel as
simple as possible, we carefully represented the mechanisms of
macrophage deaths and phagocytosis. The model distinguishes
between many types of macrophage deaths, the natural death of
M and that of Mf, both of which occur independently of the
presence of bacteria but can also be enhanced by them. The
deaths are caused by free or phagocytosed bacteria. Death by
apoptosis, which is an “ordered” form of death, also contributes
to the elimination of Tf. Finally, during death by necrosis, Mf
discharges its cellular content to the extracellular medium,
releasing Tf that becomes T and also stimulating
phagocytosis due to damage-associated molecular patterns
(DAMPs) released in the process (Roh & Sohn, 2018).
Phagocytosis of T by M for the creation of Tf and Mf
occurs irreversibly although necrosis allows the release of Tf
back to the extracellular space. Both free and phagocytized
bacteria can die naturally, and Tf can also die by the
antimicrobial activity of Mf. Bacteria can proliferate up to a
carrying capacity at the site of infection; since Tf needs aMf to
exist, its carrying capacity and proliferation is Mf dependent.
Macrophages are recruited from the bloodstream and do not
proliferate de novo; this recruitment depends on the presence of T
since only Mf produces the necessary cytokines for it. Further
details of the reactions considered in our model given in
Figure 1B can be found in the Methods section. The resulting
system of equations is given in Eq. 1; the model parameters are in
Tables 1 and 2.

Tuberculosis is a progressive disease, with immune responses
changing their phenotype over time. Our in vivo data set reflects
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these changes, with the three clearly distinguishable phases shown
in Figure 1C. As the main role of the dendritic cells is to sense
bacteria, the pathogen levels are represented through these cells.
Initially, in phase 1, no adaptive immune cells are present in the
system. Phase 2 shows a clear peak in TH1 cells, which play a
proinflammatory and antimicrobial role. TH1 cells then decrease
while the anti-inflammatory Th2 cells increase in phase 3. These
three phases correspond, thus, to a preparation phase on days
0–6, an inflammatory phase on days 7–27, and an anti-
inflammatory phase on days 28–120. Phase 1 corresponds to
the early granuloma, where the non-active macrophages interact
with the pathogen and prepare the recruitment of the adaptive
immune response. Phase 2 corresponds to the mature granuloma
and a large number of M1 macrophages that have been recruited
and activated by the TH1 cells. Phase 3 corresponds to a late
granuloma, with a higher number of TH2 cells at the site of
infection, leading to a sharp decrease in the number of M1

macrophages accompanied by a dramatic increase in M2 types
of macrophages.

The model represents these three phases by dynamically
changing kinetic rates that are affected by macrophage
differentiation in response to the accumulating bacterial
population. These rates, denoted by dotted arrows in
Figure 1B, are the levels of recruitment, phagocytosis, and
antimicrobial capacity which change dramatically between M1,
M2, and not activated macrophages. Additionally, their apoptosis
and necrosis rates are modulated since both cell deaths appear in
different proportions at different stages of infection. Since
bacteria adapt to the challenge imposed by the immune
system (Montoya-Rosales et al., 2017), their killing capacity is
modulated throughout the phases. Parameters change
dramatically between each phase of disease progression
(Figure 1D) to emulate the abrupt changes in phenotypes that
occur in in vivo studies (Figure 1C).

TABLE 1 | Fixed nominal model parameters.

Description Parameter Nominal
value

Unit Estimation
method

Reference

Death of M β1 0.0019 1
d

Estimated from
Eq. 7

Janssen et al. (2011)

Death of Mf β2 0.0019 1
d

Estimated from
Eq. 7

Janssen et al. (2011)

Death and proliferation of T α2 0.3423 1
d

Estimated from
Eq. 5

Yokobori et al. (2018)

Death and proliferation of Tf α3 0.3423 1
d

Estimated from
Eq. 5

Yokobori et al. (2018)

Average T phagocytosed by M PTf 7 CFU
Mac

Extracted from
literature

Montoya-Rosales et al. (2017)

Carrying capacity K ~K 2.4 × 107 CFU
lung

Extracted from
literature

Bini et al. (2014)

Capacity of the cellular interior ofMf shed into the extracellular medium
to induce phagocytosis

σ 5.6957 1
d

Parametric
optimization

Garcia-Romo et al. (2013); Bini et al.
(2014)

Scaling factor for Mf- dependent Tf carrying capacity ξ 1 lung
CFU

Parametric
optimization

Garcia-Romo et al. (2013); Bini et al.
(2014)

TABLE 2 | Modulable model parameters.

Reaction Parameter Value (phase 1, 2, 3) Unit Estimation method Reference

Phagocytosis Fδ 3.14 × 10−10 5, 8 × 10−8 2.176 × 10−10 1
(Mac ·d) Phase 1 value estimated from eq. 12

and phases 2 and 3 through
parametric optimization

Janssen et al. (2011); Sharma &
Singh (2011); Bongiovanni et al.
(2015)

Death of Tf
by Mf

Fγ 255.0102 80,000 40 1
(Mac ·d) Parametric optimization Garcia-Romo et al. (2013); Bini

et al. (2014)
Apoptosis Fβ3 816.8206 290.8121 1.4857 1

d
Parametric optimization Garcia-Romo et al. (2013); Bini

et al. (2014)
Recruitment
of M

Fα1 1,080,728 7,141,000 1,000 1
d

Parametric optimization Garcia-Romo et al. (2013); Bini
et al. (2014)

Death of M
by T

Fβ4 6.7929 × 10−11 4.8916 × 10−10 7.1981 × 10−11 1
d ·CFU Parametric optimization Garcia-Romo et al. (2013); Bini

et al. (2014)
Death of Mf
by T

Fβ5 0.01 0.2638 0.05 1
CFU ·d Parametric optimization Garcia-Romo et al. (2013); Bini

et al. (2014)
Necrosis Fβ6 3.8989 × 10−5 3.8989 × 10−2 4 1

d
Parametric optimization Garcia-Romo et al. (2013); Bini

et al. (2014)
Death of Mf
by Tf

Fβ7 50.822 444.427 134.57 1
CFU ·d Parametric optimization Garcia-Romo et al. (2013); Bini

et al. (2014)
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The optimal values of the 16 parameters of the model were
obtained using experimental data, either from direct
measurements, estimated from quantitative in vitro studies by
implementing simplified versions of our in vivo model or by
parameter optimization of the full model from in vivo studies, as
detailed inMethods section. Most of the data come from our own
wet lab, minimizing the batch effects and therefore the margin of
error in the estimation since, despite being different studies, the
experimental conditions such as mouse strain, bacterial strain,
number of bacteria used for inoculation, and frequency of
sampling, among others, remain constant. Tables 1 and 2
describe the parameters for each reaction.

In Figure 2A we see the result of simulating our model with
optimal parameters. We plot the trajectories of the compound
variables of the modelMtot (M +Mf) andTtot (T +Tf) against
the data set used to perform the optimization. Themodel recovers
the qualitative behavior of the cells throughout the progression of
the disease. We were unable to replicate these behaviors without
modulating the parameters between phases (Supplementary
Figure S1).

We plot the changes in the modulable parameters’ values over
time (Figure 2B). Depending on their function, the parameters
will decrease or increase between each phase. In phase 1,
macrophage recruitment (α1) and macrophage deaths caused
by bacteria (β4, β5, and β7) are low while the antimicrobial
activity of macrophages (δ and γ) is null. Apoptosis of Mf
(β3) is the only parameter that reaches its peak in this phase since
macrophages are not activated and opt for apoptosis to deal with
bacteria (Bocchino et al., 2005). Necrosis (β6) is a mechanism of
uncontrolled death (Golstein & Kroemer, 2007), so when

macrophages go for apoptosis, it will be null. In phase 2, we
see peaks in antimicrobial activity (δ and γ) and recruitment of
macrophages (α1). Apoptosis decreases as M1 macrophages are
more efficient at killing bacteria. We also see a peak in the activity
of bacteria (β4, β5, and β7) that corresponds to the ability of the
pathogen to respond to a more aggressive immune system
(Montoya-Rosales et al., 2017). In phase 3, there is a massive
drop in macrophage parameters associated with their
antimicrobial (δ and γ) and inflammatory (α1) activity,
distinctive characteristics of M2 macrophages. It is worth
noting that other macrophage populations different from the
alveolar macrophages that we are modeling, like vacuolated
macrophages, may be recruited to the infection site at late
tuberculosis stages (Ríos-Barrera et al., 2006; Garcia-Romo
et al., 2013). The only macrophage parameter that peaks in
this phase is necrosis. This is probably due to extreme stress
conditions caused by the uncontrolled growth of bacteria (Poon
et al., 2010). Bacteria reduce all their reaction strengths in this
final phase, and this decrease responds to a weaker immune
system that presents a minor challenge. The biological accuracy
observed through all parameter value changes supports the
validity of our model.

2.2 Construction of a Disease-Transition
Map for Predicting the Most Likely
Outcomes of the Immunopathological
Progression of Tuberculosis
To explore possible disease outcomes resulting from variations in
the host and pathogen genotypes, we performed simulations of

FIGURE 2 | Parametric optimization and validation of the model. (A) Model replicates in vivo behavior. The model (solid line) was plotted together with the in vivo
experimental data set (points) used for optimization. On the vertical axis, we seemacrophages and total bacteria, and on the horizontal axis, we have time. (B)Behavior of
the modulable parameters throughout the phases is biologically accurate. Normalized parameter values are on the vertical axis and time on the horizontal. The dotted
lines indicate the phase change threshold, depending on the case, the parameter will increase or decrease its value when passing this threshold.
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the in vivo model under parameter variations. We produced a
cohort of 500 virtual mice by varying the 16 parameters around
the nominal values corresponding to the optimal set of phase 1
and performed numerical integrations for each randomly
generated set. As before, we allowed the modulable parameters
to adapt in response to the accumulating bacterial population,
which resulted in virtual disease trajectories going through a
variable number of phase transitions. Figure 3A shows
simulations whose last phase was phase 2 or 3. All sampled
genotypes progressed from phase 1 without clearing the infection,
which indicates that there is no sampled genotype capable of
eliminating the bacterial population without recruiting the
adaptive immune response. Since phase progression
dynamically depends on bacterial numbers, simulations
stationed in phase 2 represent those genotypes with an
adaptive immune system capable of eradicating the infection.
Additionally, we see that Mtot slowly decreases upon having
eradicated the bacteria, implying that the model is capable to
return to macrophage population homeostasis numbers after
eradicating the infection. Simulations stationed at phase 3
represent a mature granuloma that recruited an anti-

inflammatory response and became a late granuloma. The
model with the optimal parameter set (Figure 2A) is grouped
here, however, not all the simulations in this group show the
uncontrolled bacterial growth observed for the nominal
parameter set. We can see this in the levels of Mtot, where
some simulations grow above their initial condition and then
begin to decrease (like our optimal set) while others decrease from
the beginning and never exceed their initial condition. The
trajectories of Mtot that more rapidly decrease to zero
correspond to simulations in which the bacteria established a
hyper-aggressive infection (Supplementary Figure S2). The fact
that some Ttot trajectories reach K before others correspond to
variations in the virulence of the bacteria in combination with an
immune system with varying degrees of efficacy.

In Figure 3B, we analyzed how the critical times in which a
phase transition occurs are distributed for the sampled genotypes.
Recall that these critical times correspond to the times at which
bacteria reach a population threshold and thereby activate a
response from the host. While in the original dataset, the
model enters phase 2 on day 7, in general, this critical time 1
is more densely distributed between days 1 and 2. As for the

FIGURE 3 | Disease-transition of the immunopathological progression of tuberculosis. (A) Compound variablesMtot and Ttot plotted against time, the continuous
line represents the mean of the total simulations performed, and the light grey area represents the standard deviation. The simulations are grouped by the final phase they
reached. Ttot was normalized by its carrying capacity K. (B) Transition times from phase 1 to 2 (critical time 1) plotted against the transition times from phase 2 to 3
(critical time 2), the red point represents the values obtained with the nominal parameters, and the blue points represent the random genotype samples. (C)Disease
progression map with outcome probabilities and estimated transition times.
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critical time 2, our simulations show that late granulomas can
already form within a week post-bacterial challenge. These
accelerated immunopathological transitions are consistent with
the rapidly progressing disease dynamics observed for more
aggressive bacterial strains, such as the Beijing strain (Aguilar
L et al., 2010). Critical times that are higher than the nominal ones
correspond to organisms that opposed greater resistance to the
progression of the disease.

When analyzing the disease outcomes on all the genotype
network (Figure 3A), only two phenotypes persisted: bacterial
clearance and uncontrolled bacterial growth. This all-or-nothing
behavior is consistent with the experimental model of progressive
pulmonary TB in mice, where there is no coexistence between
mice and bacteria (Garcia-Romo et al., 2013; Bini et al., 2014).
Information about disease outcomes across all the genotype
networks grouped with the critical times allowed us to build a
predictive disease progression map (Figure 3C). We see that all
the simulations transitioned from phase 1 to phase 2. All the
simulations that avoided phase 3 cleared the infection, and those
that transitioned to the final phase developed an uncontrolled
bacterial growth. These results show that when starting from the

initial conditions used in an experimental model of progressive
pulmonary TB in mouse, it is 83% likely that the mice will suffer
an aggressive symptomatic disease under variations of the mice
and the bacteria genotypes (strains). Also, the fact that all the
simulations that transitioned to phase 3 have an uncontrolled
bacterial growth suggests that the anti-inflammatory response is a
key determinant in the host–pathogen interaction. Only those
simulated disease trajectories that effectively cleared the infection
could avoid transitioning to phase 3.

2.3 Long-Term Behavior of the Different
Phases Reveals All-or-Nothing Outcomes
To explore the influence of the immune response phenotype on
the disease outcome, we sampled genotypes from the three
different phases and studied their long-term behavior in a
hypothetical scenario where the organism can start from any
phase and there’s no change of phases. We varied all parameters
from each optimal set and produced 500 random sets from each
(1,500 total), and then equilibrium points for each set were
obtained exactly (for details see Methods section).

FIGURE 4 | The disease outcome shows an all-or-nothing phase-dependent behavior. (A,B) Steady-state distribution of disease outcomes shows the probability
of bacterial clearance and of uncontrolled growth and its associated final macrophage concentrations in a basal (phase 1), inflammatory (phase 2), and anti-inflammatory
(phase 3) environment. A set of 500 genotypes was sampled for each phase. (C) Proportion of mono and bistability found in each phase, the clear part of the pie graph
indicates monostability and the filled bistability. (D,E) Distributions of the differences of bacteria and macrophages between the two stable steady states for the
bistable genotypes.
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In accordance with the dynamical simulations (Figure 3), the
only long-term disease outcomes found was the all-or-nothing
behavior where the system either clears the infection or allows
bacteria to grow out of control; Figures 4A, B show the frequency
in which simulations sampled from each phase end up in either of
these two possible outcomes. Phase 2 showed the highest
probability of bacterial clearance among phases (53%),
suggesting that a recently stimulated immune system that still
has active adaptive immune response cells has a chance of
clearing even an aggressive infection, such as the experimental
model of progressive pulmonary TB. The BCG vaccine, the most
common prevention method for TB infection used worldwide, is
believed to generate protective immunity through this
mechanism (Ritz et al., 2008). Genotypes locked in phase 1
showed a 32% chance of clearing the infection; however, these
genotypes needed between 108 and 1011 macrophages to achieve
the task while phase 2 genotypes needed 105–109 and performed
better. This demonstrates that macrophage activation is crucial
for bacterial clearance and for preventing excessive inflammation,
which can also result in disease (Furman et al., 2019). Finally,
phase 3 phenotypes had a 7% chance of clearing the infection,
and, as expected, this anti-inflammatory phase had the lowest
macrophage load needed to clear the infection (105–107). The low
chance of infection clearance may be a price too high to pay for
the tissue-preserving anti-inflammatory response recruitment.

We also saw the appearance of bistability in the system, which
is present in all phases and is more frequent in phase 2
(Figure 4C). Also herein, we observe a dramatic phenotypic
segregation, with all the bistable cases displaying an all-or-
nothing behavior with one stable steady state corresponding to
uncontrolled bacterial growth (ΔTtot � K) and the other one to
bacterial clearance (Figure 4D,E). This dramatic difference
between the two stable steady states is also reflected in the
total macrophage load, which spans several orders of
magnitude, with the highest difference for phase 1 and the
lowest for phase 3. This indicates that, for genotypes
presenting bistability, it is possible to achieve complete
recovery in a finite period of time through treatment and that
initial conditions are key in determining the disease outcome.

3 DISCUSSION

The mechanisms behind the immunopathological progression of
TB have not been fully understood, and this makes the creation of
more efficient treatments difficult. Based on experimental data
from the literature, we propose a minimal mathematical model
that represents the key regulatory mechanisms that can account
for the pathological progression of TB through the three phases
observed in in vivo mouse models. The model describes not only
the interactions between the main effector of the immune
response and the pathogen but also how these interactions are
modulated by the inflammatory microenvironment. For its
construction, we integrated data from a total of 75
experimental assays from different published manuscripts. The
model coherently replicates the changes that the main molecular
mechanisms undergo through the progression of the infection by

the dynamic modulation of its parameters. With simulation
analysis, we observed how the model is segregated depending
on its initial parameter conditions by qualitatively different
phenotypes. This model is a tool to study the interactions
between the effector cells of the immune response and M.
tuberculosis and allows the proposal of hypotheses related to
current therapeutic problems, offering potential future use in
clinical and experimental strategies for the design and search of
new TB treatments.

Our model also reproduces the abrupt phenotypic changes
shown by the immune system and the bacteria throughout the
progression of an experimental model of progressive pulmonary
TB in mouse (Figure 1C), specifically, from an early phase where
there is relatively low activity in all cells involved, going by an
intermediate phase characterized by the growth of the bacterial
population and the increase in the recruitment of macrophages
due to the initiation of the adaptive immune response, to an
advanced phase where bacteria grow to their carrying capacity
and alveolar macrophages lose their efficiency due to the effect of
anti-inflammatory mechanisms of tissue preservation (i.e., TH2
cytokines). Even though our mathematical model has three
different phases because of the experimental model it
replicates, there are other types of mice models like the latent
TB model (Arriaga et al., 2002) that use a significantly lower dose
of bacteria (4,000 bact.) and a different strain of mice (C57B1).
This produces a slow progression infection that results in an
extended phase 2 and a lack of phase 3.

The phase changes are emulated by the model through the
continuous modulation of eight of its parameters (Table 2). This
type of dynamic adaptation of values of parameters that underlie
the different immunopathological stages of a disease was
proposed for the first time by Tiemann et al. (2011) and van
Riel et al. (2013). Therefore, the ADAPT algorithm is proposed
for adjusting a model to different data sets corresponding to
different phases of a progressive phenomenon and identifying
those parameters that change during the progression. This is,
therefore, a strategy similar to ours. However, by dynamically
modeling the changes with Hill equations that depend on the
variables of our model, we are going one step further by
mathematically representing these mechanisms that underlie
parametric adaptation. The model was validated by analyzing
the qualitative changes of the modulated parameters through the
phases; indeed, we found that all changes were biologically
accurate. Although we modeled the macrophage and bacteria
phenotype transition in a phenomenological way, in the future, it
could be carried out by coupling a Boolean network that models
this phenotypical plasticity like the macrophage differentiation
model proposed by Palma et al. (2018).

We explored the effects of genotypic variations on disease
outcomes and progression by simulating disease trajectories from
1,500 randomly sampled parameter sets. We observed that mice
are not capable of eliminating the infection without recruiting the
adaptive immune response and that its recruitment does not
guarantee bacteria elimination by the immune system since only
for certain combinations of the enhanced immune system and
not-so-virulent bacteria, the organism cleared the infection.
Accordingly, experimental assays have been carried out testing
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a broad spectrum of M. tuberculosis genotypes that demonstrate
variability in virulence and in induced immune response
(Marquina-Castillo et al., 2009; Hernández-Pando et al., 2012).
In particular, the Beijing genotype is of special interest because of
its association with numerous outbreaks worldwide (Glynn et al.,
2002) and the hyper-aggressive infection and non-conventional
immunopathological events that have been shown to evoke
(Aguilar L et al., 2010; López et al., 2003). Our model sets a
work frame for future studies of this and other genotypes of
bacteria.

Using the random parameter sets of the three phases, we
obtained the equilibrium points of the system. The hypothetical
long-term analysis allows us to visualize the space of possible
outcomes of the model. The results indicate that the model can
exist in two mutually exclusive stable states: macrophages
between 104–1011 and bacteria at zero (clearance) and bacteria
in their carrying capacity and macrophages at zero (uncontrolled
growth), which clinically correspond to a severe symptomatic TB
disease and to eradication of the infection, respectively. These
behaviors are consistent with the experimental model of
progressive pulmonary TB in mouse, where coexistence
between bacteria and macrophages is not observed. Our
steady-state analysis also shows that, for a significant
proportion of parametric variations, the model exhibits
bistability, with the stable coexistence of the two mutually
exclusive outcomes of the infection. These results suggest that
not only genetic variations but also the inflammatory
microenvironment (phase 1, 2 vs. 3) and the initial
macrophage and bacterial loads (bistable genotypes) could
have a dramatic effect on the outcome of the infection. The
parametric variations around the nominal values of phase 2 are
the ones that have a higher probability to end up in bacterial
clearance. This suggests that, from a therapeutic intervention
design point of view, it may be important to promote the
conditions that lead to and maintain phase 2, and this could
be achieved by therapeutic interventions that strengthen
macrophage recruitment and activation. On the other hand,
transition to phase 3 could be blocked by preventing the
activation of the anti-inflammatory response promoted by
TH2 cells.

Although our model shows that, in the long term, only two
disease outcomes (clearance and uncontrolled bacterial growth)
are possible, it is important to acknowledge that coexistence
between the host and the pathogen has been widely observed.
Global clinical data shows that for humans, latent TB infection is
the most common form of the disease (WHO, 2019), and this
disease state is characterized by low bacteria levels residing inside
fibrotic old granulomas. As our model reproduces a progressive
pulmonary TB mouse infection, coexistence is never observed.
However, an in silico reproduction of a TB infection could be
achieved by appropriately changing the parameters and initial
conditions of our model to mimic the mouse model of latent TB
(Arriaga et al., 2002) that uses a significantly lower dose of
bacteria (4,000 bact.) and a different strain of mice (C57B1).

Mathematical TB models that study the disease dynamics at
the epidemiological level have been proposed previously, focusing
on how the disease is transmitted and how treatments affect this

transmission (Dowdy et al., 2008; Trauer et al., 2014), but without
providing information on the underlying cellular mechanisms. At
the cellular/tissue level, several agent-based models that describe
granuloma formation have been proposed (Young et al., 2008;
Marino & Kirschner, 2016; Pienaar et al., 2016; Evans et al., 2020).
These models represent the interplay between a large number of
variables compared with our four variable minimal model,
making it more difficult to estimate the resulting large number
of parameters from experimental data and to assess which
mechanisms are the most influential on disease outcome.
Additionally, mathematical analysis for in silico design and
optimization of therapeutic interventions, such as bifurcation
analysis as carried out in Domínguez-Hüttinger et al. (2017a),
cannot easily be performed on agent-based models. At the
cellular/molecular level, ODEs models that describe the
host–pathogen interactions have been formulated before
(Wigginton & Kirschner, 2001; Magombedze et al., 2006), but
these models do not explicitly encompass how the disease
progression through different phases of a TB infection
emerges, how it shapes the phenotypes of both the host and
the pathogen, and it dynamically affects disease outcome.

Here we propose, for the first time, a minimal, mechanistic
ODE model of the immunopathological progression of TB. The
model represents the dynamic modulation of the intra-host
mechanisms that underly the development of TB across
different disease phases. It was constructed, calibrated, and
validated by integrating a wealth of in vivo and in vitro
datasets. The model analysis allowed us to predict the most
probable disease trajectories under host and pathogen
genotypic variations and to pinpoint the key role that the
initial conditions in bacterial and macrophage loads and in the
inflammatory microenvironment play in determining the
outcome of the disease. It is a step forward in understanding
the mechanisms that shape TB progression.

4 METHODS

4.1 Data Integration
Relevant experimental data to explain the immunopathological
progression of TB were collected from different bibliographic
sources, the biggest source being the published work from the
Laboratory of Experimental Pathology at the National Institute of
Medical Sciences and Nutrition Salvador Zubirán, Mexico City,
Mexico. We were interested in collecting the largest amount of
data from in vivo studies that used the same bacteria strain,
H37Rv, and the same mouse strain, BALBc, to ensure the greatest
possible coherence and minimal batch effects when integrating
the data from different assays. When necessary, the raw data were
extracted directly from figures using WebPlotDigitizer 4.4
(Rohatgi, 2020). The resulting database is given in
Supplementary Table S1.

4.2 Model Construction
There are multiple cells of the immune response that participate
in the containment of the infection; however, macrophages are
the direct effectors of these responses. Therefore, we decided to
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put the macrophage as the centerpiece of the model. Together with
bacteria, they represent the population dynamics in granulomas
throughout the progression of the disease. The following
mathematical model formally represents these dynamics:

_M � Mf · Fα1

︷���︸︸���︷Recruitment

−M · T

PTf
· Fδ · (1 +Mf · Fβ6 · σ)

︷��������������︸︸��������������︷Phagocytosis

−M · β1
︷��︸︸��︷Death

−M · T · Fβ4

︷����︸︸����︷Death by T

, (1)

_Mf � M · T

PTf
· Fδ · (1 +Mf · Fβ6 · σ)

︷��������������︸︸��������������︷Phagocytosis

−Mf · β2
︷���︸︸���︷Death

−Mf · (T · Fβ5 + Tf · Fβ7)︷����������︸︸����������︷Death by T andTf

−Mf · Fβ3

︷���︸︸���︷Apoptosis

−Mf · Fβ6

︷���︸︸���︷Necrosis

, (2)

_T � α2 · T · (1 − T
K
)︷������︸︸������︷Proliferation

+Mf · Fβ6 · PTf
︷�����︸︸�����︷Necrosis

−M · T
PTf

· Fδ · (1 +Mf · Fβ6 · σ)
︷�������������︸︸�������������︷Phagocytosis

,

(3)

_Tf � α3 · Tf · (1 − Tf(1 + ~K ·Mf · ξ))
︷�������������︸︸�������������︷Proliferation

+M · T
PTf

· Fδ · (1 +Mf · Fβ6 · σ)
︷�������������︸︸�������������︷Phagocytosis

−Mf · Tf · Fγ

︷����︸︸����︷Death byMf

. (4)

Most terms of the system of the equation were built following
the Guldberg and Waage Law of Mass Action, except for the
bacterial growth rates for which we assumed a logistic rate. Terms
with a negative sign decrease and positive terms increase the rate
of change of the affected variable. The system parameters
quantitatively represent the weight of each reaction in the
network of interactions (Figure 1B).

Equation 1 represents the dynamics of macrophages. The
arrival ofM is stimulated byMf, and the phagocytosis of T byM
can be enhanced by the cell interior released by Mf upon
necrosis. The third term corresponds to the natural death of
M and finally, we have the death of M caused by T. Eq. 2
represents the macrophages that have phagocytosed. The
individual terms correspond to M phagocytizing T, the
natural death of Mf, the death of Mf caused by T and Tf,
apoptosis, and necrosis, respectively. Eq. 3 represents the
dynamics of M. tuberculosis. The first term corresponds to the
logistic growth of T, where α2 is a term composed by the
proliferation and death rates and represents the reproduction
rate of T andK is the carrying capacity of the system. The second
term is the release of T to the extracellular medium due to the
necrosis of Mf, and the last one is M phagocytizing T. The
number of T released during necrosis is controlled by the scaling
factor PTf that represents the average bacteria phagocytized by
macrophages in vivo. Finally, Eq. 4 represents the bacteria that
have been phagocytosed. The first term corresponds to the
logistic growth of Tf, where α3 represents the net
reproduction rate of Tf and ~K is the carrying capacity of the
system, which is conditioned by the population of Mf since Tf
cannot proliferate outside of it. The second term isM engulfingT,
and the last one is the death of Tf caused by Mf.

The immune system and the bacteria show different phenotypes
throughout the disease progression. Our model captures these
changes along the phases of progression through themodulation of
the parametersmarked with anF inEq. 1. To reflect the abrupt and
immediate change in macrophage phenotype, this modulation is
modeled in a phenomenological way by two Hill functions (one for
each phenotypic transformation) that depend on the integral or the
history of bacterial load:

fi(X) � (Pi
max − Pi

min) + Pi
min( Xni .ji

Xni .ji +Kni . ji
mi

),
where i � {1, 2} and X � ∫t

0
(T + Tf)dx. The constants Ki

m
represent the threshold values of X where the system changes
phases. We set Km

1~107 and Km
2~ 2 × 108 CFU, corresponding to

the total bacterial loads at times tcrit
1 = 6 and tcrit

2 = 27 days inferred
from the experimental data (Figures 1C,2A; Table 3). The Hill
coefficient, ni, defines the steepness of the Hill function; the higher
it is, the more abrupt its change will be.We chose ni→∞. Pi

min and
Pi
max are the minimal and maximal parameter values, respectively,

between the phase changes. j can be either 1 or -1 depending on if
the Hill function increases or decreases. As shown in Figure 1D,
we can see three behaviors: up-down (j1 = 1, j2 = -1), up-up (j1 =
j2 = 1), and down-down (j1 = j2 = -1). A big assumption of the
model is that in each phase, only one type of macrophage and of
bacteria phenotypes are present, that is, that the phenotypic
conversion occurs for 100% of cell types.

4.3 Model Simulation
The solution of themodel (Eq. 1) was approximated by numerical
integration using ode15s. As the initial condition for T, we used
the first available data, corresponding to day 1 (Table 3). For M,
we used counts from Garcia-Romo et al. (2013) corresponding to
a mouse under control conditions (without undergoing a
bacterial challenge), and we assumed that the average of these
counts is equivalent to the levels of macrophages in homeostasis.
We setMf(0) � 0 and Tf(0) � 0 to reflect that the dynamics for
the phagocytic bacteria and macrophages do not change
significantly within one day after the first bacterial exposure.

4.4 Parameter Optimization
We estimated the 16 model parameters following these three
approaches:

1. Direct extraction of three parameters from the literature.
2. Direct estimation of five parameters using three different sets

of in vitro data while fixing the parameters estimated in the
previous step.

3. Indirect estimation of the remaining eight parameters by fitting
the model results to two in vivo data sets simultaneously, fixing
the previously estimated parameters.

4.4.1 Direct Extraction From Literature
4.4.1.1 Carrying Capacity K
The carrying capacity K of the logistic growth of T was obtained
from Bini et al. (2014), where they measured the pulmonary
bacilli loads (CFU) on different treatments on experimental
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models of progressive pulmonary TB in mice. From the counts
corresponding to the control, we extracted the maximum value
attained, and since it was the highest value of bacilli loads
extracted so far from in vivo data, we decided to use it as K.
For Tf, we assumed that ~K � K.

4.4.1.2 Average Bacteria Phagocytosed by Macrophage PTf
The average number of bacteria phagocytosed by macrophages
PTf was obtained from an in vitro study where monocyte-
derived macrophages were put together with different strains
ofM. tuberculosis for 2 hours and then the phagocytosis index was
counted (Montoya-Rosales et al., 2017). We selected the H37Rv
strain and extracted the number. The number was a rounded
average of six counts.

4.4.2 Direct Estimation Using in Vitro Data
Leaving the previously estimated parameters fixed, we estimate
the nominal values of five other parameters by integrating in vitro
data into three sub-models of our main model. These sub-models
represent in vitro experimental conditions in which not all the
variables of our complete in vivo model are present.

4.4.2.1 Bacterial Growth α2
To estimate the growth of T, α2, we modeled the logistic growth of
isolated bacteria in the absence of macrophages or other host
components as _T � α2 · T · (1 − T

K), which has the solution T(t) �
K·T0·eα2 ·t

K+T0 ·(eα2 ·t−1) . Solving for α2 retrieves α2 � ln(T(t)·T(t0)−K)
t· ln(T(t)·T(t0)−K·T(t0)) . We

extracted and normalized bacteria counts measured from an in vitro
axenic culture ofM. tuberculosisH37Rv from Yokobori et al. (2018)
corresponding to hour 300 for T(t) and hour 200 for t0, and counts
forT(t) were subtracted with a sufficiently small ε to account for the
small distance between T(t) andK at t. By substituting the resulting
K � 100, T(t) � 100 − ε, t0 � 32.6, and t � 4.17, we obtain α2 �
0.3423 1

d . For Tf, we assumed that α3 � α2.

4.4.2.2 Macrophage Death β1
To estimate the natural death of M, β1, we represent an isolated
macrophage population, with nutrients to survive but without
arrival of new macrophages, as _M � −M · β1 which has the
solution M(t) � M0 · e−β1 ·t from which we can solve for β1 �
log(M(t)

M0
)

t . According to Janssen et al. (2011), the half-life of a
macrophage is approximately 365 days, thus β1 � 0.0019 1

d . For
Mf, we assume that β2 � β1.

4.4.2.3 Phagocytosis Rate δ
To estimate δ, the capacity ofM to phagocytose T, we represent an
in vitro killing assay, which consists in putting bacteria in contact
with macrophages under controlled conditions to determine the
antimicrobial capacity of macrophages. Therefore, in this model, we
have macrophages (M), bacteria (T), macrophages that have

phagocytosed bacteria (Mf), and bacteria that have been
phagocytosed (Tf) as our system variables:

_M � −M · T · Fδ −M · β1 −M · T · Fβ4, (5)
_T � α2 · T · (1 − T

K
) −M · T · Fδ, (6)

_Mf � M · T · Fδ −Mf · β2 −Mf · (T · Fβ5 + Tf · Fβ7), (7)

_Tf � α3 · Tf ·⎛⎝1 − Tf(1 + ~K·Mf)⎞⎠ +M· T· Fδ −Mf· Tf· Fγ.

(8)
To find the value of δ, we make some simplifications to Eq. 2,

and these are justifiable by the following assumptions made from
the conditions in which the killing assays were carried out
(Bongiovanni et al., 2015):

• It is assumed that no parameter adaptations occur, since the
in vitro assay contains no components of the adaptive
immune system.

• It is assumed that there is no natural death of macrophages
(β1 → 0 and β2 → 0) since their half-life is 365 days (Janssen
et al., 2011), and the killing assays were performedwithin 3 h. It
is also assumed that there is not enough time for there to be a
significant number of macrophage deaths caused by bacteria,
so Fβ4 → 0, Fβ5 → 0, and Fβ7 → 0.

• It is assumed that there is no proliferation of bacteria (α2 → 0
and α3 → 0). Bacteria divide every 16–20 h (Sharma & Singh,
2011), which is well above the 3 h that the experiment lasts.

• In Eq. 8.4, we also assume that there is no proliferation of
bacteria (α3 → 0) and that there is no death of bacteria by
macrophages (Fγ → 0).

With these assumptions, Eq. 2 can be reduced to

_M � −T ·M · Fδ, (9)
_T � −T ·M · Fδ , (10)
_Mf � +T ·M · Fδ, (11)
_Tf � +T ·M · Fδ . (12)

where Eq. 9 is uncoupled from Mf and Tf. If we additionally
assume that the variable T≫Tf in this time interval, that is, that
T does not change significantly, then M only depends on itself.

_M � −M · �T · δ, (13)
where �T is a constant that represents the invariable T population.
Eq. 13 has the solution M(t) � M(t0) · e−F̂δ ·�T·t, which can be

solved for F̂δ as F̂δ � log(M(t)
M0

)
�T·t . Substituting the experimental values

TABLE 3 | In vivo data used for indirect parameter estimation.

Time (days) 1 3 7 14 21 28 60 70

CD11c+ alveolar cell (cell/lung) (Garcia-Romo et al., 2013) 111,039 108,117 176,786 43,831 251,299 625,325 NA 471,916
Bacteria (CFU) (Bini et al., 2014) 320,856 481,283 160,428 14,438,503 19,893,048 16,844,920 24,224,599 NA
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for M(texp) � 0.79, M(t0) � 1, �T � 25 × 106, and t exp � 3
reported in (Bongiovanni et al., 2015), we
obtain δ � 3.14 × 10−9 1

bac × h .

4.4.3 Parameter Optimization From In Vivo Data
Leaving the previously estimated parameters fixed, we estimated
the remaining eight parameters using global optimization
algorithms, fitting the model simultaneously to two in vivo
data sets detailed below by minimizing the cost function:

Cost(�P) � ∑ ������������������������������
(log(Mtotpred + 1) − log(Mtotexp))2

√
+∑ �����������������������������

(log(Ttotpred + 1) − log(Ttotpred))2
√

,

which quantifies the distance between the model (Mtotpred and
Ttotpred) and the experimental points (Mtotexp and Ttotexp). We
apply a logarithm since the experimental data ranges over several
orders of magnitude and therefore small errors could otherwise
generate a lot of noise.

Minimization was performed using MATLAB (version R2020a,
SCR: 001622) using the GlobalSearch, a heuristic designed to
find the global optimum for nonlinear problems.

For the system parameters that are modulated, their
optimization was carried out three times, one for each phase
of the disease. The parameter F̂δ , directly estimated from in vitro
data as detailed earlier, is also modulable, so we assume that the
directly estimated value corresponds to phase 1, and we estimated
the optimal values for the rest of the phases with the optimization
algorithm.

The in vivo data sets used were a CD11c+ alveolar cell
(macrophages) count from Garcia-Romo et al. (2013) and a
total bacteria count from Bini et al. (2014) (Table 3); in both
studies, the BALB/c mouse was put through the same bacterial
challenge of 106 M. tuberculosis H37Rv. We assume the same
uncertainties for all the data used.

According to our previous classification (Figure 1C), days 1, 3,
and 7 are considered part of phase 1, days 14, 21, and 28 of phase
2, and days 60 and 70 of phase 3.

For phase 3, there were no readings for CD11c+ alveolar cell day
60 count, so we made an interpolation with days 28 and 70 to obtain
an approximate count. For bacteria, there was no reading for day 70,
but we used day 60 count since this is its carrying capacity (the
maximum value that we assume it can reach).

4.5 Simulation and Analysis of Genotypic
Variants
4.5.1 Parameter Sampling
Using the statistical method Latin hypercube sampling in MATLAB
(version R2020a, SCR: 001622), we varied the 16 nominal
parameters of the model in a multidimensional uniform
distribution from 0.1 to 10. We produced 500 sets of random
parameters from the nominal sets of each phase (1,500 sets in total).

4.5.2 Numerical Simulations
We performed numerical integrations with the 500 sets of
random parameters sampled from phase 1 parameters using
the ode15s function in MATLAB (version R2020a, SCR:
001622), using a t � 100 and initial conditions as previously
described.

4.5.3 Computation of Stable Equilibrium Points
For each parameter set, we obtained all the steady-state
solutions using the vpasolvefunction in MATLAB (version
R2020a, SCR:001622) and collected only those solutions
that had only real and strictly negative eigenvalues in their
Jacobian matrix.
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