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Rheumatoid Arthritis (RA) is an autoimmune disease of unknown aetiology involving
complex interactions between environmental and genetic factors. Its pathogenesis is
suspected to arise from intricate interplays between signalling, gene regulation and
metabolism, leading to synovial inflammation, bone erosion and cartilage destruction in
the patients’ joints. In addition, the resident synoviocytes of macrophage and fibroblast
types can interact with innate and adaptive immune cells and contribute to the disease’s
debilitating symptoms. Therefore, a detailed, mechanistic mapping of the molecular
pathways and cellular crosstalks is essential to understand the complex biological
processes and different disease manifestations. In this regard, we present the RA-
Atlas, an SBGN-standardized, interactive, manually curated representation of existing
knowledge related to the onset and progression of RA. This state-of-the-art RA-Atlas
includes an updated version of the global RA-map covering relevant metabolic pathways
and cell-specific molecular interaction maps for CD4+ Th1 cells, fibroblasts, and M1 and
M2 macrophages. The molecular interaction maps were built using information extracted
from published literature and pathway databases and enriched using omic data. The RA-
Atlas is freely accessible on the webserver MINERVA (https://ramap.uni.lu/minerva/),
allowing easy navigation using semantic zoom, cell-specific or experimental data
overlay, gene set enrichment analysis, pathway export or drug query.
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1 INTRODUCTION

RA is an autoimmune, systemic disease affecting approximately 1% of the world population. It is the
most common type of autoimmune arthritis and causes pain, swelling, and stiffness in the joints
(McInnes and Schett, 2011; Smolen, Aletaha andMcInnes, 2016). RA is considered a complex disease
and is suspected to arise from several factors (Glocker et al., 2006), including genetic (Korczowska,
2014), environmental (Deane et al., 2017; Sigaux et al., 2019), epigenetic (Frank-Bertoncelj, Klein and
Gay, 2017), but also infectious (Balandraud, Roudier and Roudier, 2004) or hormonal factors
(Talsania and Scofield, 2017). RA’s pathogenesis is governed by complex interactions between
components at different scales of the immune system, affecting signalling, metabolic and regulatory
networks. Summarizing this scattered and fragmented knowledge in a formal and standardized
representation can significantly facilitate understanding the underlying disease mechanisms.

In this direction, some efforts have already been made to assemble the available knowledge in
molecular interaction maps. In 2010, a comprehensive RA-specific map (Wu et al., 2010) was
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published based on high throughput experiments (mRNA,
miRNA), literature, publicly available datasets and the pathway
database KEGG (Ogata et al., 1999) to establish the connections
between different components of the map. A decade later, in
2020, a second effort to formalize RA knowledge was published
using Wu et al., (2010) map as a basis, the RA-map (Singh et al.,
2020). For this map, the researchers used the Systems Biology
Graphical Notation (SBGN) standard and, more precisely, the
Process Description (PD) language (Le Novère, 2015) to
represent the molecular pathways implicated in the disease.
The map was built as a global map using information from
human-specific studies related to RA, focusing on small-scale
experiments in various cell and tissue types (e.g., fibroblasts,
macrophages, synovial tissue, and peripheral blood mononuclear
cells (PBMC)). The RA-map was manually curated for each
component and reaction, with defined cellular pathways and
molecular signatures under expert validation. In addition to
manual curation of the scientific literature, other sources such
as the Ingenuity Pathway Analysis (IPA) (Krämer et al., 2014),
DISNOR (Lo Surdo et al., 2018), or KEGG databases were used to
obtain RA related information regarding molecular pathways and
phenotypic signatures.

While the previously published RA-map offers a formalized
representation of the major pathways implicated in the disease, it
does not cover metabolic pathways. It has been shown
experimentally that unbalanced metabolic pathways
accumulate metabolic intermediates, driving immune response
to aggravate chronic inflammation (Pucino et al., 2020).
Targeting specific metabolic pathways has been seen to reduce
inflammation in both in vitro and in vivo studies of arthritis
(Fearon et al., 2019). Recent studies have also highlighted
metabolic reprogramming as a possible mechanism involved in
disease pathogenesis (Aghakhani, Zerrouk and Niarakis, 2020).
Considering these advances, adding metabolic information to the
RA-map becomes necessary. In this perspective, we identified
four metabolic pathways to include in the RA-map for their
involvement in the disease (Fearon et al., 2019), namely
glycolysis, pentose phosphate pathway, citric acid cycle and
oxidative phosphorylation.

Moreover, the RA-map, a global map constructed as a generic
blueprint of a cell, contains information from multiple cellular
types. In RA, immune cells such as T cells and B cells invade the
synovial tissue and produce high amounts of cytokines such as
tumour necrosis factor α (TNFα), interferon γ (IFNγ), interleukin
(IL)-1β, IL-6, IL-17, and cause inflammation (Guo et al., 2018).
Immune cells also interact with tissue-resident cells (e.g.,
fibroblasts and macrophages), leading to osteoclasts’
proliferation, bone erosion, and cartilage damage (Guo et al.,
2018). In addition, dendritic cells produce vascular endothelial
growth factors and promote extensive angiogenesis in RA
(Bosisio et al., 2018). The representation of cell-specific
molecular interactions helps understand the complex interplay
between various cells and factors in the inflamed joint. In this
direction, we selected three cell types of interest: fibroblast,
macrophage (including the pro-inflammatory M1 and the
anti-inflammatory M2), and CD4+ T helper cell 1 (Th1).
These cell types are abundant in RA patients’ joints (Huber

et al., 2006; Kinne et al., 2000; Li et al., 2017), and produce
high amounts of cytokines (Schulze-Koops and Kalden, 2001;
Bartok and Firestein, 2010), resist apoptosis and proliferate at
high rates (Krämer et al., 2014; Yang, Chang andWei, 2020). The
cell type selection was also based on literature availability,
including already existing cell-specific maps, specific signalling
pathways, and gene expression datasets.

This paper introduces an attempt to create a multicellular atlas
of the rheumatic joint to recapitulate existing knowledge related
to the disease’s onset, progression, and pathogenesis. The RA-
Atlas includes an updated version of the RA-map: the RA-map
V2 (with metabolic pathways’ addition), a fibroblast-specific
map, two maps for the M1 and M2 macrophages, and a CD4+
Th1 map (Figure 1). Our ambition is to expand the RA-Atlas in
the future by including other relevant cell types like B cells, CD4+
regulatory T cells, dendritic cells, chondrocytes, osteoblasts, and
osteoclasts.

The maps can be used to provide high-quality curated
information for disease-related pathways, a template for omic
data analysis, and a starting point for dynamic computational
models. The following sections outline our efforts to integrate low
and high throughput experiments, combining prior knowledge,
manual curation of scientific literature, omic data analysis, and
systems biology standards to create state-of-the-art mechanistic
representations of disease-related pathways.

2 METHODOLOGY AND DATA

2.1 A Common Strategy for Global and
Cell-specific Maps
2.1.1 Map Construction
The original RA-map paper thoroughly describes the general
methodology for constructing the different RA-Atlas maps
(Singh et al., 2020). Briefly, we used the CellDesigner software
(Funahashi et al., 2003) to construct the molecular interaction
maps in the PD format, one of the three standard languages of
SBGN (Le Novère, 2015). The various components of the maps
(i.e., phenotype, protein, gene, RNA, simple molecule, ion, and
complex) were distinguished in the form of specific glyphs and
notations according to the said standards. Cellular compartments
featured in each map differ according to their specificities. They
are designed to reflect the molecular architecture of each map
(e.g., extracellular space, plasma membrane, cytoplasm, nucleus,
mitochondrion, endoplasmic reticulum, phenotypes, secreted
compartment, and transmembrane domain). In addition,
HUGO Gene Nomenclature Committee identifiers (HGNC)
(Tweedie et al., 2021) were used for signalling and gene
regulatory pathways components. The CellDesigner maps are
available in Systems Biology Markup Language (SBML) format
(Hucka et al., 2003).We provide a schematic representation of the
major steps in Figure 2.

2.1.2 Curation Criteria
All the RA-Atlas maps underwent the first step of manual
curation based on a broad study of literature and pathway
databases to search for components and interactions involved
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in RA’s pathogenesis. We focused on small-scale experimental
studies and added animal-based studies where the human-related
information was not adequate to validate the role of components
or interactions. However, the information based on animal
studies remains limited and completely traceable (four
molecules are involved in the Th1 map, four in macrophage
maps and two in the fibroblast map). Including a component or a
reaction in a map followed precise curation criteria: first, we
included all components experimentally proven to be expressed
in RA’s pathogenesis (and in a cell-specific manner for the cell-
specific maps). Then, we included all reactions experimentally
proven to occur in RA’s pathogenesis (and cell-specifically for the
cell-specific maps). General pathway interactions were then
added to complete specific pathways where disease-specific
information was unavailable.

2.1.3 Annotations
Annotations were added to provide references for all species,
reactions, and compartments present in the maps using MIRIAM
(Minimal Information Requested In the Annotation of Models)
(Novère et al., 2005), a standard for annotating and curating
computational models and maps. MIRIAM annotations are
added through the dedicated section of CellDesigner with the
relation “bqbiol: is describedby”, which is used to link a
component or a reaction to the literature or data that
describes it (e.g., PubMed references (PMIDs), DOI, GEO,
KEGG identifier). Annotated maps provide information about
the various sources of information and help assess the maps’
specificity.

2.1.4 Visualization and Accessibility
All RA-Atlas maps presented in this work are available as online
interactive maps on the standalone web server MINERVA
(Molecular Interaction NEtwoRks VisuAlization) (Gawron
et al., 2016). MINERVA platform allows for visual exploration,
analysis and management of molecular networks encoded in
systems biology formats, including CellDesigner, SBML and
SBGN. MINERVA also provides automated content
annotation and verification and overlaying experimental data.
Our maps integrate data from various sources. We provide cell-
specific overlays (cf. the overlay section) extracted from the
literature and publicly available datasets to visualize cellular
signatures on the different RA-Atlas maps.

2.2 RA-Map V2
2.2.1 Evaluation of the Prior RA-Map
The components and reactions present in the previous version of
the RA-map were assessed, and bibliographical references were
added wherever required to increase the overall confidence level
of the map and limit false positives.

2.2.2 Metabolic Pathways Addition
Metabolic pathways of interest (i.e., glycolysis, pentose phosphate
pathway, citric acid cycle and oxidative phosphorylation) were
extracted from the PANTHER pathway database (Mi and
Thomas, 2009), adapted to SBGN PD standards when
required and added to the original RA-map. Metabolites and
metabolic enzymes were named following BiGG IDs (King et al.,
2016). In addition, considerable bibliographical work was
conducted to find evidence linking the newly added metabolic

FIGURE 1 | Schematic representation of the RA joint depicting the variety of actors implicated in RA’s pathogenesis. Blue frames indicate the different maps
included in the RA-Atlas.
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pathways to the already present signalling and gene regulatory
pathways.

2.2.3 Annotation Score
Thorough annotations throughout the manual curation process
allowed us to calculate an annotation score for each compound
present in the RA-map V2 based on the number of bibliographic
references describing it.

2.3 Cell-specific Maps
To build cell-specificmaps forM1 andM2macrophages, fibroblasts,
andTh1, we screened literature (small scale experiments, GWAS) for

signalling pathways, genes or transcription factors associated with
RA. If available, we also integrated pre-existing maps. We used cell/
disease-specific markers or gene expression datasets to retrieve
signalling pathways involved in RA pathogenesis. To define gene
signatures and primary RA cellular outcomes, we used databases
such as the MSig database (Liberzon et al., 2015), KEGG and
biocuration. The retrieved gene signatures were used to connect
secreted molecules to the cellular phenotypes included in the map.
The cellular phenotypes include angiogenesis, apoptosis, bone
erosion, cell chemotaxis, recruitment and infiltration, cell growth,
survival and proliferation, hypoxia, inflammation, matrix
degradation and osteoclastogenesis.

FIGURE 2 | Stepwise construction of the RA-Atlas
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Two proprietary software were used to enrich the maps: IPA
and MetaCore (Clarivate, 2022) version 22.1 build 70800, both
displaying vast map databases. In MetaCore, we mapped the list
of DEG to the internal map database using the “Pathway maps”
option through the “One-click analysis” tab. The number of
overlapping DEGs is displayed next to each identified map.
The same analysis was done using IPA’s “canonical pathways”
analysis. Highlighted DEG and their associated pathways were
identified, added to the corresponding RA-Atlas map and further
annotated with PMIDs or GEO accession numbers.

2.3.1 Datasets
Regarding the datasets, for the RA macrophage map, we used
GSE97779, a publicly available microarray dataset from the GEO
database (Edgar, 2002). The dataset contains nine RA synovial
macrophages sample from nine patients and five peripheral blood
monocyte-derived macrophages samples from five healthy
donors. Gene expression was quantile normalized using the
preprocessCore package (Bostald, 2021). GSE164498, a RNA-
seq single-cell dataset from the GEO database, was used to
provide M1 and M2 macrophage signatures. It contains 1766
M1 macrophage cells and 2063 M2 macrophage cells. M1
macrophages were polarized using LPS, and IFN-Gamma and
M2 macrophage cells were polarized using IL-4 and IL-13. We
used GSE109449, a RNA-seq single cell dataset available in the
GEO database for the RA fibroblast map. It contains 384 freshly
isolated fibroblasts in two RA and two osteoarthritis patients. For
the RA Th1 map, we used SDY998, a single-cell RNA-seq dataset
from the Immport database (Bhattacharya et al., 2018) containing
19 samples from RA patients and two synovial samples from
osteoarthritis patients with three cell types: 1142 B cells, 1844
fibroblasts, 750 monocytes, and 1529 T cells. The gene expression
was normalized using log2 (CPM). For the GSE analysis, we used
four datasets: SDY998, GSE32901, GSE107011 and GSE135390.
The first dataset is the same one used for DEA. The second is a
microarray gene expression dataset containing PBMC samples
from 5 healthy donors. It includes four CD4+ T cells subtypes:
naive CD4+ T cells, Th1, Th17 rich, and Th17 poor memory
CD4+ T cells. Gene expression was normalized using the log2
RMA method. The third dataset is bulk RNA-seq transcriptome
profiling of 29 immune cell types, including Th1 and extracted
from PBMC sorted from 4 healthy individuals. The counts were
normalized using the Transcripts Per Million (TPM) method.
The last dataset is RNA-seq gene expression profiling. It contains
PBMC samples coming from 3 healthy donors. Several subtypes
of CD4+ T cells are in the samples: Th1, TH2, TH22, Treg, naive
CD4+ and Th17. Count data were normalized using TMM. In
addition, we used GSE172188, a microarray gene expression
dataset of synovial samples from ten patients with active RA
treated with abatacept. For each patient, synovial biopsies were
obtained from the same affected joint before (W0) and 16 weeks
after (W16) starting treatment with abatacept.

2.3.2 Macrophage Maps
2.3.2.1 Macrophage Map Integration
The macrophage map was constructed as a PD graph on
CellDesigner by integrating three maps as a base. The initial

map was the RA-specific macrophage map from IPA including 44
molecules and 47 interactions associated with PMIDs. The
second and third macrophage-specific maps (but not RA
specific) were retrieved from the published literature (Oda
et al., 2004; Wentker et al., 2017).

As the second and third macrophage maps were not RA-
specific, we used the RA-specific marker gene lists from IPA as an
overlay in MINERVA to identify disease-specific molecules and
submodules. The Stream export plugin (Hoksza et al., 2019) in
MINERVA allowed us to export these submodules of interest
from the macrophages maps. We identified corresponding
signalling pathways in the extracted submodules and
completed them by adding molecules from the literature and
pathway databases like KEGG.

2.3.2.2 RA Macrophage Map Splitting Into M1 and M2
Macrophage Maps
We split the RAmacrophage map into two maps according to the
M1 or M2 phenotype. We included Msig gene signatures for M1
and M2 macrophages and information available in the literature
for each signalling pathway in the map. However, it was
impossible to assign a phenotype for some pathways due to
both phenotypes’ lack of information or expression. These
pathways were kept in both M1 and M2 maps.

2.3.2.3 M1 and M2 Macrophages Map Enrichment
Differential Expression Analysis (DEA) was performed using the
preprocessCore and Limma packages (Ritchie et al., 2015) in R on
the GSE97779 dataset (cf. dataset section). The list of DEG was
used for enrichment with IPA andMetaCore. To assign the newly
identified pathways to the M1 or the M2 phenotype, DEA was
performed on GSE164498 (cf. dataset section) using Bioturing
software (Le et al., 2020) with the Venice method (Vuong et al.,
2020) and M1 versus M2 macrophage cells to identify signature
genes for both M1 and M2 phenotypes. The percentage of shared
genes between each newly identified signalling pathway and M1
and M2 signatures was calculated. Based on these criteria, new
pathways were assigned to the M1, M2 maps, or both.

2.3.3 Fibroblast Map
To build the RA fibroblast-specific map, we filtered non-
fibroblast-specific components from the initial RA-map using
the up-to-date RA fibroblast overlay available in MINERVA (cf.
overlay section). Non-fibroblast-specific components were only
kept if necessary to transduce the signal. We used the BioTuring
software and the Venice method to perform DEA on GSE109449
(cf. dataset section). The filtered DEG list was used as an overlay
inMINERVA to retrieve more RA fibroblast-specific components
from the RA global map.

2.3.3.1 Fibroblast Map Enrichment
The same DEG list was used to enrich the fibroblast map with
new signalling pathways using IPA and MetaCore software.

2.3.4 Th1 Map
Regarding the Th1 map, we did not integrate any pre-existing
cell-specific map. Alternatively, we first searched the literature for
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the main signalling pathways expressed in the Th1 subtype and
involved in RA’s pathogenesis (using queries like “Th1” and
“rheumatoid arthritis”). In addition, we used the multicellular
map of inflammation (Serhan et al., 2020) and its not-RA-specific
Th1 submap to identify transcription factors and cell-specific
receptors involved in RA pathogenesis. We integrated the
SDY998 gene expression dataset (cf. dataset section) to enrich
the map with new pathways. Clustering was performed on the
T cells using the Seurat package (Hao et al., 2021) in R

(Find_neighbors and Find_clusters functions). Based on the
expression of the marker genes CXCR3, CCR7 and CCR6, the
Th1 cluster was identified. We performed DEA using CXCR3+
CCR7- CCR6- Th1 cluster versus CCR7+ naive cells from RA
samples using Seurat and Find_marker_genes function. The
filtered DEG list was used to identify new pathways using IPA
andMetaCore tools described above. To expand the Th1 map, we
also performed Gene Set Enrichment Analysis (GSEA) using
GSEA software (Subramanian et al., 2005), IPA gene sets and the

FIGURE 3 | Annotation score of the RA-map V2. (A) Pie-chart of the annotation score’s distribution among the map’s components. (B) Overlay of the annotation
scores on the RA-map V2. Each component is colored according to its annotation score.

FIGURE 4 | Cell-specificity of the RA-map V2 components. (A) Distribution of the RA-map V2 cell-specificity. (B) Visualization of the fibroblast-specific overlay on
the RA-map V2.
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SDY998 gene expression dataset. The list of enriched gene sets
was filtered with a False Discovery Rate (FDR) less or equal to 5%
to keep only the statistically significant ones. To ensure that the
results are Th1 specific, we performed GSEA on three other
datasets: GSE32901, GSE107011 and GSE135390 (cf. dataset
section), and filtered the enriched gene sets with FDR less or
equal to 5%. Only gene sets identified with the SDY998 dataset
shared at least by one of the GSE32901, GSE107011 or
GSE135390 datasets were kept. Only gene sets sharing less
than 80% of their core enrichment genes were kept to avoid
redundancy.

2.4 Overlays
We provide nine different sample-specific overlays, namely
fibroblasts, synovial fluid, synovial tissue, PBMC, blood
components, serum, chondrocytes, macrophages, and Th1 to
calculate the cell-specificity of the RA-Atlas maps or visualize
the cell-specific pathways in MINERVA.

Most overlays (i.e. synovial fluid, synovial tissue, PBMC, blood
components, and chondrocytes) are updated versions of the
overlays provided in the initial RA-map with the addition of

new bibliographical references. The fibroblast overlay is also an
updated version of the overlay provided in the initial paper with
the addition of bibliographical references and the list of DEG
obtained from DEA (see RA fibroblast map enrichment section).
The overlay file now consists of 2,409 fibroblast-specific
components. The macrophage overlay includes the RA
macrophage-specific components identified in the literature,
the DEG list obtained from DEA (cf. M1/M2 macrophages
map enrichment with gene expression datasets section), and
the 44 molecules present in the IPA RA-specific macrophage
map (cf. Macrophage maps integration). It consists of 648 RA
macrophage-specific molecules. The Th1 overlay consists of 523
molecules, including the list of DEG obtained previously, the core
enrichment genes from the GSEA (cf. Th1 map section), and
information found in the literature. Finally, the serum overlay
was created to account for a new source of information used in
the maps.

3 RESULTS

3.1 RA-Map V2
The RA-map V2 illustrates signalling pathways, gene regulation,
metabolic pathways, molecular mechanisms and phenotypes
involved in RA’s pathogenesis. The map is compartmentalized
in a way to represent the flow of information from the
extracellular space (ligands) to the plasma membrane (ligands-
receptors or metabolic transporters complexes) through the
cytoplasm (signalling and metabolism), the nucleus (gene
regulation) and the secreted compartments (phenotype
activation).

The map is fully compliant with SBGN PD standards. It
includes 720 species (329 proteins, 135 genes, 136 RNAs, 54
simple molecules, 1 ion and 65 molecular complexes), 9
phenotypes (angiogenesis, apoptosis, bone erosion, cell
chemotaxis/recruitment/infiltration, cell growth/survival/
proliferation, hypoxia, inflammation, matrix degradation and
osteoclastogenesis) and 602 reactions. This new version of the
map represents an update regarding the number of components.
We have added 158 species, primarily involved in metabolic
pathways, 156 reactions, primary interconnecting metabolic
pathways with signalling and gene regulation pathways, and
the hypoxic phenotype. We have included 225 additional
references that make a total of 575 PMIDs for the whole map.
The high number of references enhances confidence in the

TABLE 1 | Top 5 of IPA and MetaCore maps using the RA fibroblast DEG list.

IPA map Overlap
(%)

MetaCore map Overlap
(%)

Antigen presentation 48.7 Immune response _Induction of the antigen presentation machinery by IFN-gamma 45.2
Inhibition of matrix metalloproteinases 39 Cell adhesion_ECM remodeling 41.8
Hepatic fibrosis/Hepatic stellate cell
activation

22.7 IL-1 beta- and Endothelin-1-induced fibroblast/myofibroblast migration and extracellular matrix
production in asthmatic airways

47.5

GP6 signaling pathway 20.5 TGFbeta-induced fibroblast/myofibroblast migration and extracellular matrix production in
asthmatic airways

36.6

Axonal guidance signaling 15 Glucocorticoid-induced elevation of intraocular pressure as a glaucoma risk factor 32.2

FIGURE 5 | Percentage of cell-specific components per cell-
specific maps.

Frontiers in Systems Biology | www.frontiersin.org July 2022 | Volume 2 | Article 9257917

Zerrouk et al. The RA-Atlas

https://www.frontiersin.org/journals/systems-biology
www.frontiersin.org
https://www.frontiersin.org/journals/systems-biology#articles


presented mechanisms. Indeed, 87% of the components included
are supported with more than one experimental evidence and
65% more than 2 (Figure 3).

In several cases, the map includes compounds with no
bibliographic reference. For example, many simple molecules
act as products or reactants of well-known biological reactions
whose expressions are rarely highlighted in disease-specific
experimental studies (e.g., ATP, ADP, NADH, NADPH, H2O,
O2, CoA, and FADH). Also, molecules that act as pathway
intermediates do not present bibliographical references. In this
case, we have evidence that a pathway is expressed in a disease-
specific manner, but not all intermediates have been studied
experimentally. For instance, specific metabolic pathways are
found to be expressed, however, experimental evidence is not
available for every component.

Beyond the considerable effort of the initial RA-map to
include the disease hallmarks (e.g., cytokines, chemokines,
growth factors, toll-like receptors) and molecular pathways
(e.g., JAK-STAT pathway, NF-KB pathway, and MAPK
pathway), we aimed to expand the coverage in disease-specific
metabolic dysregulated pathways. In particular, we focused on
adding glycolysis, citric acid cycle, pentose phosphate pathway,
and oxidative phosphorylation pathways as their interplay with
inflammation and immunity mechanisms, among others, have
been proven in RA (Weyand and Goronzy, 2017; Pucino et al.,
2020). In addition, non-metabolic functions of metabolites and
metabolic enzymes were illustrated, such as their transcription
regulation function (e.g., Hexokinase 2 or Phosphoglycerate
Kinase 1 (Kim and Dang, 2005)) or their involvement in
disease-specific signalling pathways or phenotypes (e.g.,
Lactate (Yi et al., 2022), Glucose-6-Phosphate Isomerase (Zong
et al., 2015) or Pyruvate (Chang and Wei, 2011)).

The RA-map V2 integrates information from several sources
and cell types (Figure 4). The user can take advantage of its
extensive annotation and assess the map’s coverage by opting for
a specific representation of a particular cell type in MINERVA. The
map is mainly composed of fibroblast specific information (73%)
but other cell types, tissues and fluids involved in RA’s pathogenesis
(Fang, Zhou and Nandakumar, 2020) are also represented, such as
synovial tissue, synovial fluid, blood components, serum
components, PBMC, chondrocytes and macrophages. Therefore,
when interpreting those results, one must consider that a specific
component can be common to several cell types or that this
component is present only in one cell type.

3.2 RA Fibroblast Map
The RA fibroblast map results from an extensive effort to make
the RA-map fibroblast-specific. It is based on manual curation of
the RA-map, using literature and gene expression integration.
Using the list of DEG, 23 components were identified as
fibroblast-specific from the RA-map V2. In addition, new
pathways were identified using IPA and MetaCore. The top 5
identified signalling pathways are shown in Table 1.

The enriched fibroblast-specific map comprises ten
compartments from the extracellular space where the
biological signal is induced to the secreted components’ and
transmembrane proteins’ compartments. As the RA-map V2,
it is SBGN PD compliant. It contains 853 species, including 411
proteins, 115 genes, 115 RNAs, 96 molecular complexes, 2 simple
molecules and 9 phenotypes (8 of them coming from the initial
RA-map, the 9th one being T cells activation). The components
interact together via 509 reactions.

77% of the map’s components are RA fibroblast-specific
(Figure 5). Some of the molecules that are not fibroblast-

TABLE 2 | Top 5 of IPA and MetaCore maps using RA macrophage DEG list.

IPA map Overlap
(%)

MetaCore map Overlap
(%)

DNA methylation and transcriptional repression
signaling

32.3 Development_Role of proteases in hematopoietic stem cell mobilization 22.2

transcriptional regulatory network in embryonic
stem cells

19.6 Colorectal cancer (general schema) 20

NER (nucleotide excision repair, enhanced
pathway)

10.1 Cigarette smoke components TCDD and Benzo [a]pyrene and receptor AHR signaling in
lung epithelial cells

13.8

Xenobiotic metabolism AHR signaling pathway 6.6 Cigarette smoke-mediated regulation of NRF2-antioxidant pathway in airway epithelial
cells

13.7

LPS/IL1 mediated inhibition of RXR function 4.1 Inhibition of Ephrin receptors in colorectal cancer 13.3

TABLE 3 | Top 5 of IPA and MetaCore maps using RA Th1 DEG list.

IPA map Overlap (%) MetaCore map Overlap (%)

Antigen presentation
pathway

30.8 Generation of cytotoxic CD8+ T cells in COPD 24

B cell development 22.7 Maturation and migration of dendritic cells in skin sensitization 19.5
Th1 pathway 10.7 Immune response_Induction of the antigen presentation machinery by IFN-gamma 18.8
TH2 pathway 10.2 COVID-19: immune dysregulation 17
Th1 and TH2 pathway 9.3 Chemokines in inflammation in adipose tissue and liver in obesity, type 2 diabetes and metabolic syndrome X 14.5
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specific were added to the map to keep the signal transduction
going from the extracellular part to the nucleus. Indeed, in some
RA fibroblast-specific pathways, these molecules are needed to
activate or inhibit intermediate proteins. Other molecules that are
not RA fibroblast-specific are found in the extracellular space.
These molecules can come from the synovial fluid and be secreted
by other cell types to activate specific signalling pathways in the RA
fibroblast. In this case, the secreted molecules do not have to be RA
fibroblast-specific. Supporting literature was not always available
for small molecules or adaptor proteins.

3.3 RA Macrophage Maps
We obtained the global macrophage map by converting the IPA
cell and disease-specific map into an SBGN PD compliant map in
CellDesigner. New pathways were added from the RA-specific
submodules exported from the previously published maps (Oda
et al., 2004; Wentker et al., 2017) like TLRs pathway, NFKB
pathway, PI3K-AKT pathway, MAPK signalling pathway, and IL-
18. Other pathways were identified from the literature, such as the
IFN pathway, Notch pathway, IL10 and IL23 pathways.

KEGG, MSig database and literature screening allowed to add
8 phenotypes to the map. The phenotypes include inflammation,
apoptosis, angiogenesis, extracellular matrix degradation, cell
chemotaxis/migration, T cells activation, proliferation/survival
and osteoclastogenesis.

3.3.1 RA Macrophage M1 Map
The RA macrophage M1-specific map includes all the signalling
pathways from the RA macrophage map leading to the
macrophage polarization into the pro-inflammatory M1
phenotype. It was enriched using gene expression dataset
integration to identify new RA M1 macrophage-specific

pathways using IPA and MetaCore. The top 5 identified
signalling pathways are shown in Table 2.

The RA macrophage M1-specific map includes 640 species:
278 proteins, 76 genes, 76 RNAs, 114 molecular complexes, 8
simple molecules and the same phenotypes as the RA
macrophage map. These components interact together via 448
reactions.

61% of the components of this map are RA macrophage-
specific (Figure 5). In addition, all the receptors and secreted
components are RAmacrophage-specific. Although less literature
is available compared to the RA Fibroblast map, gene expression
datasets integration enabled us to keep a high RA macrophage
specificity in the map.

3.3.2 RA Macrophage M2 Map
The M2 macrophage map includes all the signalling pathways
from the RA macrophage map leading to the macrophage
polarization into the anti-inflammatory M2 phenotype. After
the enrichment step with IPA and MetaCore, additional
pathways were added. The top 5 signalling pathways are
shown in Table 2.

The enriched map includes 520 species: 243 proteins, 59
genes, 59 RNAs, 90 molecular complexes, three simple
molecules and 7 of the 8 phenotypes from the RA
macrophage map. Indeed, osteoclastogenesis is not associated
with any of the secreted molecules in the RA M2 macrophage
map. The Macrophage M2 map’s components interact together
via 342 reactions.

55% of the components of this map are RA macrophage-
specific (Figure 5). All the receptors and secreted components are
RA macrophage-specific. We can see that fewer pathways are
specific to the M2 phenotype in RA because RA disease is mainly
associated with the M1 phenotype.

3.4 RA Th1 Map
We built the RA Th1 cell map through literature mining to
identify the main cell-specific signalling pathways involved in
RA’s pathogenesis. However, less information about the Th1
subtype was available in the literature than fibroblasts and
macrophages. Hence, it was essential to expand the map using
new methods. New signalling pathways were identified using
IPA and MetaCore and the enriched gene sets from GSEA
(Tables 3 and 4).

The map consists of 321 species, including 167 proteins, 29 genes,
29RNAs, 64molecular complexes, and 7 phenotypes. The phenotypes
include inflammation, apoptosis, osteoclastogenesis, cell chemotaxis,
angiogenesis, matrix degradation and proliferation. RA Th1 map’s
components are connected through 179 reactions.

58% of the components of this map are RA Th1-specific,
including all the transcription factors, most of the receptors, and
secreted components (Figure 5).

3.5 Applications
Several options are available in MINERVA for the user to
dive into the different RA-Atlas maps. Users can explore the
maps using the search bar and get the locations of their

TABLE 4 | List of enriched gene sets in RA Th1 after filtering.

Gene set FDR

Icos-icosl signalling in t helper cells 0.003
Cdc42 signalling 0.003
Communication between innate and adaptive immune cells 0.004
Th1 activation pathway 0.004
Pkc signalling in t lymphocytes 0.005
Antigen presentation pathway 0.005
Protein ubiquitination pathway 0.007
Altered t cell and b cell signalling in rheumatoid arthritis 0.007
Crosstalk between dendritic cells and natural killer cells 0.009
Interferon signalling 0.01
Oxidative phosphorylation 0.01
Regulation of cellular mechanics by calpain protease 0.013
Remodelling of epithelial adherens junctions 0.014
Granulocyte adhesion and diapedesis 0.016
Polyamine regulation in colon cancer 0.023
Role of IL-17f in allergic inflammatory airway diseases 0.027
Hypoxia signalling in the cardiovascular system 0.031
Pten signalling 0.032
Activation of Irf by cytosolic pattern recognition receptors 0.034
IL-8 signalling 0.038
Tca cycle II (eukaryotic) 0.038
Role of cytokines in mediating communication between immune cells 0.039
PD-1, PD-L1 cancer immunotherapy pathway 0.049
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compounds of interest and their associated references
(Figure 6A) or visualize experimental data and cell-
specific components using the appropriate overlays

(Figure 6B). Users can exploit online queries for drug
targets via DrugBank (Wishart et al., 2008) and CHEMBL
(Gaulton et al., 2017).

FIGURE 6 | Visualization of RA macrophage M2 map in MINERVA. (A) Snapshot of the search for VEGFa. (B) Snapshot of the visualization of the macrophage
overlay.
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Users can also use plugins available in MINERVA, such as the
Stream export, to export parts of the network upstream and
downstream of a node. GSEA plugin can be used to calculate
enrichment for uploaded user-provided data overlays. We
performed GSEA by using a list of DEG from the GSE172188
dataset (cf. dataset section) between the paired post- and pre-
treatment samples as an overlay to identify enriched signalling
pathways from the fibroblast map in RA patients after treatment
with abatacept compared to untreated RA patients. The list of
DEG was downloaded from the supplementary materials of the
associated publication (Triaille et al., 2021). Results of the GSE
analysis for the upregulated genes are shown in Figure 7.

4 DISCUSSION

Knowledge assembly in the form of networks is an active field in
Systems Biology. Many public repositories such as KEGG (Ogata
et al., 1999), Reactome (Gillespie et al., 2022), WikiPathways
(Martens et al., 2021), Panther (Mi and Thomas, 2009), and
proprietary platforms such as IPA (Krämer et al., 2014) and
MetaCore (Clarivate, 2022) offer mechanistic insights into a
variety of biological processes. However, most of the diagrams

available can be generic, lack cell specificity, and without proper
annotations and access to the literature used for their assembly. A
key aspect of current research is to move beyond generic
characterizations of biological processes toward more specific
pathways considering cell, tissue, organ, and disease states.

International projects such as the Human Cell Atlas (Regev
et al., 2017) and the HapMap (Tanaka, 2003) have significantly
contributed to our understanding of the role of different cells in
the human body and the specificities linked to the anatomical or
functional localization of these cells. Moreover, advancements in
single-cell techniques offer insights into unprecedented
specificity for various cell types and subpopulations in normal
and pathological conditions.

RA is a disease involving several cells and their crosstalks.
Unfortunately, there is no cure, and the proposed therapies can
only alleviate symptoms and increase survival. Hence,
understanding the cellular interplay and intracellular cascades
and their regulation could be advantageous in identifying novel
therapeutic targets that could help relieve the heavy burden of the
disease’s debilitating symptoms.

With this aim, we built the RA-Atlas, an interactive, manually
curated and enriched with extensive omic data analysis
representation of molecular mechanisms involved in RA’s

FIGURE 7 | Gene set enrichment analysis on the RA-Atlas using the GSEA plugin and the dataset GSE172188. The dataset includes gene expression data of
synovial tissue from 10 patients with active RA treated with abatacept. Enriched pathways are presented in the right panel along with their adjusted p-values. Results can
also be visualized in the corresponding maps to illustrate the enriched components. Here, we show a zoom of the RA-map V2 with up-regulated genes highlighted in red
color.
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pathogenesis. It includes an updated version of the global RA-
map (Singh et al., 2020) with the addition of metabolic pathways,
and cell-specific molecular interaction maps for resident
fibroblasts, M1 and M2 resident macrophages and CD4+ Th1
cells. The diagrams depicting the biological mechanisms are
formalized using the SBGN PD language (Le Novère, 2015).
They are primarily based on high-quality manual curation of
the scientific literature, enrichment, and cross-validation using
expression data with either bulk or single-cell resolution.
Furthermore, our group is an active player in the Disease Map
consortium. This initiative aims at fostering collaborations for the
creation of disease-specific maps such as The Parkinson’s map
(Fujita et al., 2014), the AsthmaMap (Mazein and Knowles, 2018),
the Atlas of Cancer Signalling Network (Kuperstein et al., 2015),
The Atlas of Inflammation Resolution (Serhan et al., 2020), the
Cystic Fibrosis Map: CyFi-MAP (Pereira et al., 2021), and more
recently, the COVID19 Disease Map (Ostaszewski et al., 2021). In
addition, the community works on developing best practices for
annotation, curation, the use of systems biology standards, and
the development of platforms and technology for handling
complexity (Ostaszewski et al., 2019).

5 ADOPTING FAIR PRINCIPLES

The RA-Atlas is a project that tries to implement the FAIR
principles (Wilkinson et al., 2016) for findability, accessibility,
interoperability and reproducibility. The Atlas being a part of the
Disease Map community project (Mazein and Ostaszewski, 2018;
Ostaszewski et al., 2019), it makes its dissemination among the
community easier. The RA-Atlas is also freely accessible via a web
browser and the platform MINERVA (Gawron et al., 2016). Its
content is compliant with SBGN PD (Le Novère, 2015) for the
representation, SBML (Hucka et al., 2003) for the construction,
MIRIAM for the annotations (Novère et al., 2005), PMIDs and
stable identifiers for the references. All entities are annotated
using HGNC symbols (Tweedie et al., 2021) for signaling and
gene regulation componenets and BiGG IDs (King et al., 2016)
for metabolic compounds. Lastly, the extensive annotations and
the access to content allow for transparent and facilitated reuse of
the resource.

6 PERSPECTIVES

The long-term objective of this project is to construct a
computational repository to decipher the interplay between cells
of the innate and adaptive immunity in RA, which eventually leads
to bone and cartilage breakdown. We wish to expand the RA-Atlas
withmolecular interactionmaps of B cells, chondrocytes, osteoblasts,

and osteoclasts and enrich existing cell-specific maps with relevant
metabolic pathways. We will also create a top-level view focusing on
mapping how the different cells interact to cope with complexity.
Furthermore, intercellular interactions must be clearly defined,
mapped, and described to provide a comprehensive view of the
cellular interplay in RA. Lastly, our maps can serve as a basis for
constructing executable disease networks (Singh et al., 2018;
Aghamiri et al., 2020; Hall and Niarakis, 2021; Miagoux et al.,
2021; Niarakis and Helikar, 2021), allowing for in-silico simulations,
hypotheses formation and predictions.
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