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Humans are supra-organisms co-evolved with microbial communities

(Prokaryotic and Eukaryotic), named the microbiome. These microbiomes

supply essential ecosystem services that play critical roles in human health.

A loss of indigenous microbes through modern lifestyles leads to microbial

extinctions, associated with many diseases and epidemics. This narrative review

conforms a complete guide to the human holobiont—comprising the host and

all its symbiont populations- summarizes the latest and most significant

research findings in human microbiome. It pretends to be a comprehensive

resource in the field, describing all human body niches and their dominant

microbial taxa while discussing common perturbations on microbial

homeostasis, impacts of urbanization and restoration and humanitarian

efforts to preserve good microbes from extinction.
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Introduction

Metagenomics and its applications have revolutionized microbiology, medicine, and

our contemporary lifestyles. The capacity to sequence microbes from all sample types and

the multiple advantageous public computational pipelines and tools, have made

microbiome studies accessible to most scientific fields. The study of communities of

microbiological organisms directly in their natural settings is a branch of genomics that

sprang out of the Human Genome Project, and is continuously revealing fascinating

frontiers of knowledge to better understand health and disease (Turnbaugh et al., 2007).

All body niches are colonized by a microbiome which is composed by the components

of the tree of life from all domains, Eukarya, Bacteria, Archaea, and viruses. They all make
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up the human body, and this collective domain results in

different phenotypes. Animals are not simply individuals by

the physiology criterion, but given the variety of symbionts in

direct contact with the hosts, there are additional and unique

metabolic pathways providing other important physiological

functions.

For many, the host and its associated microbiome is

considered a human organ (Baquero and Nombela, 2012) or a

biological individual altogether (Gilbert et al., 2012), to others it

constitutes an ecosystem (Foster et al., 2017), or even a unit of

selection, upgrading and expanding fundamentally unshaken

theories such as Darwin’s evolution principles—with the

inclusion of the Hologenome Concept (Zilber-Rosenberg and

Rosenberg, 2008). This term, still raises discussion on the

individuality of the holobiont (multicellular host and its

associated microbiome) (Bordenstein and Theis, 2015; Suárez

and Stencel, 2020). Eukaryotes, in their complexity, are not

independent individuals, but rather natural units with

associated symbionts and their metagenomes.

The microbiota, like other organs, is inherited through the

dynamics of birth, with different dependent outcomes. It evolves

with the host throughout his life, and we now know that lifestyle

choices have great impact to its homeostasis. This new revelation

has changed how we view Biology and has greatly broadened our

knowledge of biodiversity and the multi-kingdom interactions

responsible for health and disease. Thus, the goal of this narrative

review is to summarize what is known of the humanmicrobiome,

including recent and detailed literature on all body niches, with a

special emphasis in studies of the gastrointestinal tract, microbial

transmission, and ongoing restoration efforts that could provide

relief to many diseases.

Evolution, transmission, and
development of human microbiomes

Humans depend on their microbes for health. As we live in a

microbial world, human life must be framed in the context of

microbial evolution (McFall-Ngai et al., 2013). The microbiome

indeed performs a critical role in maintaining human health

(Godoy-Vitorino, 2019). The holobiont concept -a term initially

coined by Margulis—theorized an interaction between host cells

and their associated microbial communities, and such unit

undergoes natural selection, which drives the features of these

host-symbiont associations (Margulis, 1990; Margulis and Fester,

1991) and even preceding work from the 19th century by

German botanist Karl Brandt, already theorized that self-

formed chlorophyll was supposedly absent in animals and

likely due to “invading plants” which kept “physiological

independence” (Brandt, 1881), as described and discussed

recently by others (Suárez, 2018; Baedke et al., 2020). The

Developmental Origin of Health and Disease (DOHaD)

theory is based on the concept that the origins of the lifestyle-

related disease occur pre-birth, at the embryonic, fetal, and

neonatal stages due to the interrelation between genes

environment and lifestyle (nutrition, stress, or chemical cues)

(Mandy and Nyirenda, 2018). Indeed, the first contact humans

have with microbes is at birth, and since these early beginnings,

microbes sustain life and development (Funkhouser and

Bordenstein, 2013; Chiu and Gilbert, 2015; Dominguez-Bello

et al., 2019). Bacterial transfer frommother to infant occurs when

babies go through the vaginal canal, or via skin contact by C-

section at birth, and by skin-to-skin contact during breastfeeding

(Dominguez-Bello et al., 2010). Only a group of the microbes to

which the newborn is initially exposed at birth will permanently

colonize various body niches (Figure 1). Vaginal Lactobacilli have

long been the keystone species of genital communities in

reproductive-age women and are passed down to newborns

born vaginally, contributing to milk digestion. In turn, babies

who are delivered by Cesarean section (C-section) are often

colonized by bacteria that are more commonly found on the

skin, including Staphylococcus, Propionibacterium or

Corynebacterium, often coming from the hands of medical

workers (Dominguez-Bello and Godoy-Vitorino, 2013;

Dominguez-Bello et al., 2019). Thus, skin bacteria also play a

crucial role during vertical microbial transmission in the

development and maturation of the future microbiome of

babies born via C-section. The mode of transmission is likely

to be part of a response to protect and promote fetus health

before exposure to other environmental conditions and

microbes. Practices such as C-section, perinatal antibiotics,

and formula feeding have been linked to increased risks of

metabolic and immune diseases related with dysbiosis

(Mueller et al., 2015). The medicalization of birth in many

developed countries has transformed the quality of contact

between mothers and newborns, altering this initial

microbiome transmission (Mueller et al., 2015). More than

30% of all live births in the United States (US) were

performed by C-section, 26.9% in Europe, ~44.3% in Latin

America (55% in Brazil and 58% in the Dominican Republic,

one of the highest rates in the world) and 21.1% globally

(Zakerihamidi et al., 2015). C-section was first introduced to

reduce the risks for the mother and the fetus. Society has accepted

that this medical procedure is painless, safer, and sometimes

healthier than vaginal delivery (Delport, 2019). Increasing

evidence suggests that avoiding exposure to the maternal flora

during natural labor or vaginal birth, adversely affects gut

function and immune system development, increasing the

risks of obesity, asthma, allergies, and autoimmune diseases

(Black et al., 2016). There are also changes in the microbiome

of newborns when delivered in a hospital or home environment.

Those born in the hospital resemble some of the reported effects

of other stressors such as C-section, antibiotics, or formula

feeding, with a reduction of Bacteroides, Bifidobacterium, and

Ruminococcus and an increase in Enterobacteria and Clostridium

species (Black et al., 2016). Hospitalizations related to perinatal
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interventions and mode of delivery also affect microbial

transmission—causing effects that persist in the intestinal

microbiota of infants 1 month after birth (Combellick et al.,

2018). Medical environments are spaces both designed and

managed to minimize negative impacts on patient health.

However, studies have reported bacterial presence in operating

rooms (OR) in which fecal-like bacteria accumulate mostly on

the floor but also on the walls might negatively impact the

newborn (Derilus et al., 2020). Breast milk contains important

developmental and immune-promoting factors such as

oligosaccharides, immunoglobulins (IgA), and lactoferrin

which protect the newborn passively and actively against

excessive intestinal inflammation (Gregory et al., 2016).

Bacteria acquired during lactation include lactic acid

producers, who commonly digest lactose, and other organisms

that utilize the milk glycans known as Human Milk

Oligosaccharides (HMOs). These HMOs, which are

indigestible for neonates, can shape the infant’s gut microbial

composition, selecting for Bifidobacterium spp. and Lactobacillus

spp. (Dominguez-Bello et al., 2019). Such changes to the

microbiota provide colonization resistance against common

opportunistic pathogens like Enterobacteria and Clostridia

(Figure 1). On the contrary, children fed formula have an

increased risk for obesity, higher diversity, and enrichment of

Bacteroidaceae in 1 year of age. Although the microbiota in

neonates is established at birth, it will shape throughout the

next 3 years of life due to environmental factors such as diet,

antibiotics, hygiene, and the built environment (Indiani et al.,

2018). Antibiotics are known to decrease the overall diversity of

the infant’s microbiota and aid in the selection of drug-resistant

organisms (Reyman et al., 2022). Infants treated with antibiotics

tend to have lower bacterial diversity as well as an increase of

Enterobacteriaceae and Enterococcus (Reyman et al., 2022). The

early use of this treatment has been associated with higher risks of

allergic diseases (Zwittink et al., 2018), eczema (Kim et al.,

2019a), and obesity (Schulfer and Blaser, 2015), and type

1 diabetes (Langdon et al., 2016). Another factor that heavily

contributes to the neonatal overall microbial content is

household animals (Kim et al., 2019a). Exposure to pets

increases the abundance of Ruminococcus and Oscillospira

species, which may protect against allergic disorders and

obesity in children (Tun et al., 2017). Exposure to other

modern lifestyle factors, including in-utero exposure to

stresses such as hurricanes, or other extreme weather events,

have been explored and shown to impact the microbiota of

infants (REF: https://www.sciencedirect.com/science/article/pii/

S2772829322000352).

Human body niches: A glance from
the simple to more complex

The vaginal microbiome

The vagina is the microbial organ with the least diversity in

the human body, with a dominance of Lactobacillus, a species

that impedes the colonization of other bacteria that would

otherwise cause infections. The lactic acid produced by the

Lactobacilli provides a protective role by maintaining an

acidic pH (<4.5); serving as a chemical barrier (Valenti et al.,

2018). In addition, Lactobacillus spp. produce bacteriocins, H2O2,

and reactive oxygen species (ROS), impeding the colonization

and adherence of pathogens (Felten et al., 1999), organisms that

would otherwise cause recurrent vulvovaginal infections (RVVI)

FIGURE 1
Human microbiome development and transmission. Panel (A) Representation of humans’ first contact with microbes during birth and a
comparison of how delivery mode (vaginal delivery and C-section) impacts infant microbiota. Panel (B) Human microbial transmission and
development from pre-birth to adulthood. Microbes that colonize newborns will form a variety of niches in different body sites, adult diversity is
attained at ~3 years old. Elder people have a decrease in microbial diversity leading to dysbiosis that may be associated with neurodegenerative
disorders. Panel (C) Practices of breastfeeding and/or formula feeding play an important role in shaping the intestinal microbiome. Formula feeding is
associated with intestinal inflammation, with an increase in Enterobacteriaceae andClostridium spp. and reduced levels of probiotic Bifidobacterium
and Lactobacillus spp. acquired via lactation. Image created with BioRender.com.
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associated with discomfort, odor, discharge, infertility, and, if

pregnant, could even lead to miscarriages. The vaginal

microbiota can be characterized in five Community State-

Types (CST), representing different microbial groups (Zhou

et al., 2007). CST-I has a predominant abundance of L.

crispatus, CST-II has L. gasseri, CST-III has L. iners, and

CST-V has L. jensenii. CST-IV, on the other hand, has a

reduction of Lactobacillus spp. and a higher abundance of

anaerobic bacteria such as Prevotella, Atopobium, Sneathia,

and Gardnerella, which have been associated with bacterial

vaginosis (Di Paola et al., 2017). CST profiles in women are

known to vary by ethnicity. Caucasians tend to exhibit a CST-I

dominated microbiota, while African-American and Hispanic

women tend to present a CST-IV profile (Di Paola et al., 2017).

Having a non-L. crispatus dominant community does not

necessarily mean severe dysbiosis; studies have shown healthy

Latinas who have a L. iners dominant community can be

asymptomatic (Godoy-Vitorino et al., 2018; Vargas-Robles

et al., 2020). Hormonal changes across the reproductive cycle

in women can disrupt the microbial equilibrium. When there are

high hormonal levels, the abundance of glycogen increases in the

vagina, which is used by bacteria to promote an increase in

diversity (Kaur et al., 2020). At the same time, glycogen is used by

Lactobacillus spp. to produce lactic acid, reducing and stabilizing

the diversity present. Puberty, menstruation, pregnancy, and

menopause compose the main stages of the female whole

reproductive cycle. The cervicovaginal microbiota becomes

even more dominated by Lactobacillus during pregnancy,

resulting in less diversified profiles than in non-pregnant

women (Serrano et al., 2019). However, as estrogen and

progesterone levels fall after menopause, there is a drop in

Lactobacillus spp. and an increase in vaginal pH (Auriemma

et al., 2021).

The skin microbiota

The skin is an essential element of defense against pathogens. Its

physiological and anatomical properties change throughout the

body, shaping microbial composition. Compared to the most

diverse body sites, the skin microbiome has fewer taxa due to its

textural characteristics such as oil, moisture, sebaceous glands, and

acidic pH (Chaudhari et al., 2020). External factors implicated in

changes in the skin microbiota include the use of antibiotics (Chien

et al., 2019), cutaneous burns (Sanjar et al., 2020), skincare, and

hygiene products (Bouslimani et al., 2019), and lifestyle habits

(Blaser et al., 2013). The most dominant genus in the skin is

Staphylococcus, Propionibacterium, Corynebacterium, and

Streptococcus (Bay et al., 2020). Furthermore, oilier sites have

significant dominance of Propionibacterium species (lipophilic),

whereas in humid niches, Staphylococcus and Corynebacterium

species thrive (Bay et al., 2020). Fungi are also a major

component of the microbiome. For example, Malassezia is a

major lipophilic yeast distributed throughout the body; however,

other fungi are site-specific such as Aspergillus spp., Cryptococcus

spp., and Rhodotorula spp. who colonizes regions of the feet (Gupta

and Kohli, 2004; Jo et al., 2017). In addition, shifts in fungal

composition can occur with age, as children have a marked

profile of Ascomycetes and lower levels of Malassezia when

compared to adults. The age-associated differences in the skin

microbiome is so marked that it has been used to predict an

individual’s age with a range of approximately 4 years. Dysbiosis

of the skin microbiome has been related to skin diseases/conditions.

For instance, patients with psoriasis have a higher abundance of

Proteobacteria and S. aureus and a decrease in Acinetobacter when

compared to healthy individuals (Chang et al., 2018). Similarly, the

skin of patients with atopic dermatitis is characterized by a higher

prevalence of S. aureus (Paller et al., 2019). S. aureus and S.

epidermidis distinguished skin lesions of patients with systemic

lupus erythematosus (SLE), whereas healthy individuals had a

higher abundance of Cutibacterium (Huang et al., 2020). On the

other hand, patients with alopecia have an increase in P. acnes and a

decrease in common members of the skin microbiome such as

Propionibacterium, Corynebacterium, and Staphylococcus (Ho et al.,

2019) (Figure 2).

The eye microbiota

The eye has three major microbial niches: the eyelid skin,

meibum, and conjunctiva, which differ in diversity and

composition. Similar to the skin microbiome, the microbial

composition of the eyelids is dominated by two skin taxa

Staphylococcus and Propionibacterium (Suzuki et al., 2020).

The meibum is characterized by a dominance of

Propionibacterium and Pseudomonas, while the conjunctiva is

defined exclusively by Propionibacterium (Suzuki et al., 2020).

The dysbiosis in the conjunctiva microbiome has been associated

with different health conditions, such as keratoconjunctivitis,

mucosa-associated lymphoid tissue (MALT) lymphoma, and

high glucose levels on the ocular surface due to diabetes (Asao

et al., 2019). Notably, the microbiota of conjunctiva in MALT

lymphoma patients is dominated by Delftia (Asao et al., 2019).

When evaluating the role of the ocular microbiota in relation to

diabetes, mice studies reveal a reduced diversity in Type

2 diabetes (Li et al., 2019; Suzuki et al., 2020), while an

increase in Bacteroides and a decrease in Proteobacteria and

Acinetobacter are observed in Type 2 diabetes (T2D) (Li et al.,

2019).

The ear microbiota

The microbiota of the ear canal is similar to that found on the

skin. Therefore, Corynebacterium, Staphylococcus, and

Propionibacterium genera are prevalent taxa (Jervis-Bardy
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et al., 2019). There is still a debate over whether microbes from

the nasopharynx colonize the middle ear or if this is a sterile site.

Although previous findings suggested no microbial colonization,

a recent Illumina microbiome profiling study demonstrated that

the middle ear is actually colonized by Proteobacteria,

Actinobacteria, and Firmicutes (Jervis-Bardy et al., 2019).

Otitis media infections can be characterized as Acute Otitis

Media (AOM) or Chronic Otitis Media with Effusion

(COME). Dysbiotic changes are observed in adults and

children who suffer from Otitis Media inflammation (Lappan

et al., 2018). The pathogenesis and development of AOM are

dependent on the microbiome of the nasopharynx, with

Haemophilus, Alloiococcus, Staphylococcus, Turicella,

Moraxella, and Streptococcus being taxa normally associated

with this condition (Lappan et al., 2018). In COME patients,

it’s been documented that a higher abundance of Alloiococcus,

Haemophilus, Moraxella, Turicella, Stenotrophomonas,

Streptococcus, and Staphylococcus (Kolbe et al., 2019). It’s

important to mention that Alloiococcus and Turicella are not

found in the healthy middle ear. In addition, COME is associated

FIGURE 2
Microbiome in human epithelial and mucosal sites other than the gut. Panel (A) Representation of biofilm formation in dental plaque,
periodontal disease progression and risk factors associated with periodontitis and oral cancer at each progression stage. Disease development is
associated oral dysbiosis. Disease stages are identified by colors; green represents healthy gums, yellow represents gingivitis, orange represents
periodontitis and red represents oral squamous cell carcinoma.
Panel (B) Characteristic microbiome of the skin, ear, eyes and the nasopharyngeal tract. Homeostatic microbiome are identified in green, and
microorganisms that increase in abundance during dysbiosis are identified in red. Alterations ofmicrobial populations can lead to the development of
different health conditions which could be irreversible. Image created with BioRender.com.

Frontiers in Systems Biology frontiersin.org05

Reynoso-García et al. 10.3389/fsysb.2022.951403

http://BioRender.com
https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2022.951403


with respiratory illnesses such as asthma and bronchiolitis while

reflecting a lower richness and evenness in comparison with

those patients that do not present lower respiratory diseases

(Kolbe et al., 2019).

The microbiota of the nasopharyngeal
tract

The nasopharynx is a component of the upper respiratory

tract, specifically located at the upper part of the throat behind

the nose. The microbiome of the nasal cavity mucosa is colonized

primarily by Corynebacteriaceae and Staphylococcaceae families,

while Peptoniphilaceae and Carnobacteriacea are in lower

abundance (Kang and Kang, 2021). This niche also has a high

abundance of Staphylococcus, Corynebacterium, Alloiococcus,

Haemophilus, Streptococcus, Granulicatella, and Moraxella

(Teo et al., 2015). Diseases such as asthma, influenza A virus

(IAV), bronchiolitis, and rhinosinusitis acute respiratory illness

(ARI) are all associated with changes in the microbiota. Children

with IAV infection have increased microbial diversity,

specifically of Streptococcus—associated with the production of

type I interferons during IAV infection, with a concomitant

decrease in Corynebacterium, Moraxella and Dolosigranulum

(Wen et al., 2018). Infants with bronchiolitis have an

increasing dominance of Haemophilus, Moraxella, and

Streptococcus when compared with healthy individuals

(Stewart et al., 2017). Chronic rhinosinusitis (CRS) is also a

dysbiosis-related disease, with higher alpha diversity in CRS

compared to healthy individuals and increasing levels of

Proteobacteria and Escherichia. Other genera, including

Roseateles, Pseudomonas, and Escherichia, were positively

correlated with CRS symptom severity (Copeland et al., 2018).

The oral microbiota

The oral microbiome is one of the most diverse body

niches, only preceded by the colon. The oral cavity is highly

diverse due to its many structural and physiological niches

harboring a plethora of different microbial communities.

These niches include oral mucosa, tongue, saliva, soft

tissue, hard tissue, and the surfaces of the teeth. Each

surface has distinct communities; hence it provides the

conditions and nutrients required for these distinctive

microbes. For example, the flora of the tongue differs from

that in plaque or the hard tissues of the oral cavity due to its

specific microenvironment (Chen et al., 2018). Bacterial and

fungal communities play an essential role in the development

of many oral diseases such as dental cavities, gingivitis,

periodontitis and, subsequently, tooth loss. Bacterial

composition consists mainly of Firmicutes, Bacteroidetes,

Proteobacteria, Actinobacteria, Spirochaetes, and

Fusobacteria (Dewhirst et al., 2010). Among the most

dominant bacterial taxa in the oral cavity are Streptococcus,

Gemella, Abiotrophia, Granulicatella, Rothia, Neisseria, and

Prevotella (Dewhirst et al., 2010). The fungi flora is often

composed of Candida, being the most abundant,

Cladosporium, Aureobasidium, Saccharomyces, Aspergillus,

Fusarium, and Cryptococcus (Mark Welch et al., 2016). Few

studies have analyzed archaeal diversity in the oral cavity;

however, methanogenic archaea, like Methanobrevibacter

oralis, increase in abundance as periodontitis progresses.

The oral cavity is sterile before birth (Sulyanto et al., 2019).

However, soon after birth, the oral microbiome changes and

evolves through adulthood. After 24 h, the newborn oral

cavity will most likely be colonized by gram-positive cocci

like Streptococcus and Staphylococcus (Hegde and Munshi,

1998). Streptococcus salivarius is an initial colonizer because it

is capable of adhering to epithelial cells. From birth to

3 months old, infants have a simple microbial community

composed of six main species: Streptococcus mitis, Rothia

mucilaginosa, Veillonella parvula, S. salivarius, Gemella

haemolysans, and Veillonella HB016 (Sulyanto et al., 2019).

Between 3 and 6 months old, the infant shows a distinctive

microbiota due to solid food ingestion, hygiene, built

environment, and contact with other humans and domestic

animals; characterized by an increase of Prevotella,

Granulicatella, and Neisseria (Sulyanto et al., 2019). The

acquisition of these species has been assigned to the

emergence of teeth, forming microenvironments, niches,

and new surfaces for bacterial colonization and adherence

(Kennedy et al., 2019). Late colonizers include Prevotella,

Porphyromonas, Leptotrichia, and Actinomyces, which

colonize infants around 1 year of age (Kennedy et al.,

2019). Children with primary dentition have a higher

prevalence of Pseudomonas, Acinetobacter, Moraxella, and

Enhydrobacter (Crielaard et al., 2011). As dentition

becomes permanent, populations of Veillonella and

Prevotella increase, while Granulicatella decreases

(Crielaard et al., 2011). The oral microbiome continues to

develop from puberty to adulthood, and lifestyle habits have

an impact on microbial diversity. Mucosal surfaces and saliva

are primarily composed of aerobic bacteria. However, fissures

and supragingival surfaces have a higher abundance of

facultative anaerobes, in contrast with the subgingival

plaque, which favors strict anaerobes (Arweiler and

Netuschil, 2016). During puberty, many hormonal and

nutritional changes take place. These changes often lead to

an increase of gram-negative anaerobes and spirochetes,

which may be associated with a higher incidence and

severity of gingivitis. Gingivitis and periodontitis are

common bacterial infections that are caused by host

immune responses against pathogenic bacteria, leading to

inflammation and dysbiosis. While gingivitis is a mild

reversible inflammation, if left untreated, it could develop
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into periodontitis, an irreversible disease that causes chronic

inflammation of the gums and subsequent bone loss (Huang

et al., 2011). Research conducted on periodontal health and

changes after therapy found that plaque samples have more

abundance of Fusobacteria, while saliva samples have a higher

prevalence of Firmicutes and Proteobacteria, even though the

saliva microbiome is likely affected by conditions other than

the periodontal disease (Huang et al., 2011). Additionally,

Bacteroidetes and Spirochaetes were higher in healthy

individuals, while Porphyromonas, Tannerella, Prevotella,

and Filifactor were more abundant in participants with

periodontitis (Huang et al., 2011). Particularly,

periodontitis has been associated with a higher risk of oral

cancer. Nonetheless, the role of the oral microbiota in the

development of oral cancer is not yet well established;

however, certain species have been observed at tumor sites

(Guerrero-Preston et al., 2016) (Figure 2).

The microbiota of the gastrointestinal
tract: Stomach, intestines, and cecum

The gastrointestinal microbiome is the largest and most

diverse reservoir of all the human body niches. From the

mouth to the anal cavity, each digestive organ section

provides a specific environment that allows the growth and

colonization of organisms. The most common phyla across the

gut tube are the Firmicutes, Bacteroidetes, Proteobacteria, and

Actinobacteria. In the esophagus, the most prevalent bacterial

taxa are Streptococcus, Veillonella, and Prevotella (Pei et al.,

2004), a composition that resembles that of the oral

microbiome (Pei et al., 2004). The microbial communities

of the stomach are dominated by Proteobacteria and

Firmicutes (Maldonado-Contreras et al., 2011). Many

studies have also stipulated that Helicobacter pylori is part

of the normal flora found in the stomach, which was lost

through modern lifestyles (Pei et al., 2004). Other studies

found that positive H. pylori status was associated with an

increased relative abundance of non-Helicobacter bacteria

from the Proteobacteria, Spirochaetes, and Acidobacteria

phyla, alongside a decreased abundance of Actinobacteria,

Bacteroidetes, and Firmicutes (Maldonado-Contreras et al.,

2011). Despite the fact that H. pylori is a causative agent of

gastritis and is associated with gastric cancer, other studies

demonstrated how H. pylori infections could lower the risk of

celiac disease (Lebwohl et al., 2013), asthma (Arnold et al.,

2011) and esophageal adenocarcinoma (Xie et al., 2013).

Gastroesophageal reflux disease (GERD), Barrett’s

esophagus, and esophageal carcinoma are all a result of

microbial dysbiosis (Pei et al., 2004). Persistent GERD that

progresses to Barrett’s esophagus, predisposing to an

esophageal carcinoma, has been related to an increase of

Veillonella, Fusobacterium, and Prevotella, taxa that are

absent in healthy individuals (Liu et al., 2013). The small

intestine is characterized by an environment with high

concentrations of oxygen and antimicrobials along with a

short transit time that allows the rapid growth of facultative

anaerobes (Rinninella et al., 2019). It absorbs 90% of the host’s

energy from the diet and is divided into three parts:

duodenum, jejunum, and ileum. The most abundant phyla

in the duodenum are Firmicutes, Proteobacteria, and

Actinobacteria, taxa that contribute to most of the nutrient

digestion, including protein, lipids, and simple sugars

(Angelakis et al., 2015). Particularly, the most dominant

genera found are Prevotella, Stenotrophomonas,

Streptococcus, Lactococcus, Bacillus, Solibacillus,

Pseudomonas, Arthrobacter, and Lysinibacillus (Gong et al.,

2019).

In the jejunum, Firmicutes and Proteobacteria are the most

predominant, while E. coli, Enterococci, and Lactobacillus were also

identified as predominant species of the duodenum and jejunum

(Sundin et al., 2017). The ileal microbiota is dominated by

Streptococcus, E. coli, Clostridium (Zoetendal et al., 2012);

however, with significant inflammation, members of Fusobacteria

and Proteobacteria increase significantly with a reduction of

Bacteroidetes and Spirochaetes (Fan et al., 2020). The colon,

which is the most diverse niche, has an anaerobic environment

dominated by Bacteroidetes, especially in the sigmoid colon (James

et al., 2020). The most dominant taxa is Bacteroides, while

Enterococcus is more prevalent in the proximal colon, contrary to

the distal colon, which has higher abundance of Coprobacilus etc by

Coprobacillus and Escherichia/Shigella (James et al., 2020). Key

biomarkers of health across the human colon have been

identified, including Lactobacillus, Bifidobacterium and F.

prausnitzii (Khan et al., 2014). Other non-bacterial components

of the colonmicrobiome, which are also important residents, include

bacteriophages, fungi such as Ascomycota and Basidiomycota, and

archaea such asMethanobrevibacter smithii (Hoffmann et al., 2013).

The cecum and appendix sections of the large intestine have a

similar composition to those previously described, with a slight

reduction in Bacteroides (James et al., 2020). The appendix has been

characterized by high diversity, with the dominance of Firmicutes,

Proteobacteria, Actinobacteria, Bacteroidetes, and Fusobacteria. At

the family level, Lachnospiraceae, Enterobacteriaceae,

Bacteroidaceae, Fusobacteriaceae, and Bifidobacteriaceae,

specifically the genus Bifidobacterium were the predominant

groups (Guinane et al., 2013). During appendicitis, other non-

intestinal genus such as Fusobacterium Gemella, or Parvimonas

have been detected (Guinane et al., 2013). Fecal healthy biomarkers

such as Bacteroides, Eubacterium rectale, F. prausnitzii, and

Akkermansia muciniphila are inversely related with appendicitis

(Swidsinski et al., 2011). Despite being considered an organ that has

lost its function throughout evolution, the appendix has great

biological redundancy ensuring gut repopulation in dysbiotic

situations after pathogen colonization, diarrheal diseases, or

antibiotic treatments (Guinane et al., 2013) (Table 1).
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Gut microbiota and its implication in
obesity and diabetes

Obesity is not just a public health problem for adults, it is

estimated that 40 million children worldwide are obese (Chen et al.,

2020). This can lead to the future development of T2D,

cardiovascular diseases, and some types of cancer. A duodenal

microbiota dysbiosis of obese individuals is characterized by an

increase in Proteobacteria and a decrease in Firmicutes

(i.e., Lachnospiraceae family). In particular, Pseudomonadales

increase in obese people compared to lean individuals (Nardelli

et al., 2020). Within the roles of the gut microbiota is the

maintenance of the energy homeostasis through the fermentation

of short-chain fatty acids (SCFAs). Thus, a decrease in Firmicutes,

which are SCFAs producers, has been related to reduced protection

in the intestinal barrier (Schnorr et al., 2014). A Bacteroidetes to

Firmicutes ratio has been used as a barometer for obesity. A meta-

analysis of the gutmicrobiota of diet-induced obese rodents revealed

an increase in Firmicutes and Actinobacteria, alongside a reduction

of Bacteroidetes in obese compared to lean rodents; with no

significant differences in alpha-diversity (Jiao et al., 2018). At the

family level, the obese models showed an increase in

Ruminococcaceae and Christensenellaceae, whereas, at the genus

level, Ruminococcus, Dorea, and Oscillospira were significantly

increased (Jiao et al., 2018). An increase in Lactococcus was

associated with higher inflammation in obese individuals.

TABLE 1 Summary of the main bacterial taxa at human body sites.

Body site Main taxa in
healthy individuals

Main
alterations in disease

Associated diseases References

Vagina Lactobacillus crispatus, L. iners, L.
gasseri, L. jensenii Streptococcus,
Bifidobacterium

↑ Sneathia, Atopobium,
Gardnerella

Bacterial vaginosis, Vulvovaginal
infections (RVVI), HPV infections
and cervical cancer

Felten et al. (1999), Zhou et al. (2007),
Di Paola et al. (2017)

Very low abundance of anaerobes,
Prevotella, Atopobium, Sneathia
Gardnerella

↓ Lactobacilli Symptoms associated with these
include discomfort, odor, discharge,
infertility, and, if pregnant, could
even lead to miscarriages

Skin Staphylococcus, Propionibacterium,
Corynebacterium, and Streptococcus

↑ S. aureus, S. epidermidis, P.
acnes, Proteobacteria

Psoriasis, atopic dermatitis, systemic
lupus erythematosus and alopecia

Chang et al. (2018), Ho et al. (2019),
Paller et al. (2019), Bay et al. (2020),
Huang et al. (2020)↓ Acinetobacter Cutibacterium,

Propionibacterium,
Corynebacterium, and
Staphylococcus

Eye Staphylococcus, Propionibacterium,
and Pseudomonas

↑Delftia and Bacteroides Keratoconjunctivitis, mucosa-
associated lymphoid tissue (MALT)
lymphoma, and high glucose levels
on the ocular surface due to diabetes

Asao et al. (2019), Li et al. (2019),
Suzuki et al. (2020)↓Proteobacteria and

Acinetobacter

Ear Corynebacterium, Staphylococcus,
and Propionibacterium

↑ Haemophilus, Alloiococcus
Staphylococcus, Turicella,
Moraxella, Streptococcus and
Stenotrophomonas

Otitis media infections: Acute Otitis
Media (AOM) or Chronic Otitis
Media with Effusion (COME)

Lappan et al. (2018), Jervis-Bardy et al.
(2019), Kolbe et al. (2019)

Nasopharyngeal
tract

Corynebacteriaceae,
Staphylococcaceae,
Peptoniphilaceae, Carnobacteriacea,
Staphylococcus, Corynebacterium,
Alloiococcus, Haemophilus,
Streptococcus, Granulicatella, and
Moraxella

↑ Streptococcus, Haemophilus,
Moraxella, Proteobacteria,
Escherichia, Roseateles, and
Pseudomonas

Asthma, influenza A virus (IAV),
bronchiolitis, and rhinosinusitis
acute respiratory illness (ARI)

Teo et al. (2015), Stewart et al. (2017),
Copeland et al. (2018), Wen et al.
(2018), Kang and Kang, (2021)

↓Corynebacterium, Moraxella
and Dolosigranulum

Oral Streptococcus, Gemella,
Abiotrophia, Granulicatella, Rothia,
Neisseria, and Prevotella

↑ Porphyromonas, Tannerella,
Prevotella, Filifactor

Dental cavities, gingivitis,
periodontitis, oral cancer

Dewhirst et al. (2010), Crielaard et al.
(2011), Huang et al. (2011), Kennedy
et al. (2019), Sulyanto et al. (2019)

Gastrointestinal
tract

Clostridium, Bacteroides,
Lactobacillus, Coprobacillus,
Escherichia/Shigella,
Bifidobacterium, Faecalibacterium
prausnitzii, Eubacterium rectale,
Akkermansia muciniphila,
Enterococcus, Streptococcus,
Veillonella, Prevotella, Helicobacter
pylori, Stenotrophomonas,
Lactococcus, Bacillus, Solibacillus,
Pseudomonas, Arthrobacter,
Lysinibacillus

↑ Veillonella, Fusobacterium,
Prevotella and Gemella,
Parvimonas and other
Proteobacteria

Gastroesophageal reflux disease
(GERD), Barrett’s esophagus, or
esophageal carcinoma, appendicitis

Pei et al. (2004),
Maldonado-Contreras et al. (2011),
Zoetendal et al. (2012), Guinane et al.
(2013), Liu et al. (2013), Khan et al.
(2014), Angelakis et al. (2015), Sundin
et al. (2017), Gong et al. (2019), Fan
et al. (2020), James et al. (2020)

↓ Bacteroides, Eubacterium
rectale, Faecalibacterium
prausnitzii, Akkermansia
muciniphila and Spirochaetes
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Furthermore, obese children have a greater abundance of

Campylobacter, Actinobacillus, Aggregatibacter, Streptococcus, and

Rothia (Chen et al., 2020). This microbial dysbiosis can have serious

consequences such as an abnormal absorption of polysaccharides

and proteins as well as disrupted pathways such as cellular processes,

genetic information processing, and metabolic disturbance (Chen

et al., 2020). In addition, obesity-associated dysbiosis can lead to the

poor fermentation process of polysaccharides and bile acid

dihydroxylation (Jiao et al., 2018).

These metabolic disturbances can have far-reaching

consequences, including the development of T2D (Gaike et al.,

2020). A reduction of Akkermansia and Blautia was found in

diabetic individuals. These also have lower levels of butyrate-

producing bacteria such as Roseburia intestinalis and F.

prausnitzii, alongside elevated amounts of Lactobacillus gasseri

and Streptococcus mutans (Pitocco et al., 2020). Diabetes and

obesity have been implicated with insulin resistance because of

the inflammation related to the lipopolysaccharide (LPS)

FIGURE 3
Complexity of the human gut microbiota. Panel (A) Representation of the most characteristic and predominant organisms found in each
gastrointestinal site. Panel (B) Representation of the differences between individuals with a healthy lifestyle compared to obese individuals. Normal/
lean microbiota are dominated by Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria (1B). Obesity, diabetes, and gut inflammation are
characterized by an increase in Firmicutes and Lipopolysaccharides (LPS), and a reduction in Bacteroidetes and short-chain fatty acids (2B). The
production of LPS is recognized by Toll-Like receptor four which produces inflammatory interleukins (IL-6) and phosphorylation of Insulin Receptor-
1 which is associated with insulin resistance (3B). Panel (C) Represents how bacterial antigens enter the Peyer’s patches through M cells and are
captured by dendritic cells (DCs). Lymphocytes interact with antigen-loaded DCs and they migrate to the lymph nodes causing expansion,
differentiation and proliferation. In addition, antigens can be transported to the spleen by circulation. Antigens are processed and presented to T cells,
initiating an immune response. Finally, effector T cells return to the gut lamina propria where they reside. Panel (D) shows how alterations in gut
microbiota can cause stress and anxiety-like disorders. Image created with BioRender.com.
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metabolites secreted by bacteria. In particular, LPS secreted by

Firmicutes is increased in obese and diabetic individuals (Saad

et al., 2016). These LPS are detected by Toll-like receptor four

(TLR-4), which activates a signaling pathway that leads to the

secretion of inflammatory cytokines such as IL-6 and Interferon-

alpha (Saad et al., 2016). In addition, serine kinases are also

activated, which act as substrates for insulin receptors, thus,

promoting insulin resistance (Saad et al., 2016). Akkermansia

muciniphila, a very dominant gut bacteria, has proved to be

inversely correlated with body weight, adiposity, blood glucose,

and intestinal permeability. In fact, the administration of A.

muciniphila to mice on a high-fat diet resulted in an increase in

the mucus layer as well as the restoration of tight junction

proteins, antimicrobial peptides, and anti-inflammatory

bioactive lipids; and was linked to lower adiposity and low

insulin resistance (Lecerf and Cani, 2022). A summary of

body niche bacteria, gut bacteria between lean and obese

individuals, and the details of the gut immune trafficking are

found in Figure 3.

Role of the gut microbiota in metabolizing
drugs and modulating immunotherapy
against cancer

The gut microbiome is also involved in metabolizing drugs

and is related to therapy efficiency. A study by Zimmermann

et al. examined how 76 different gut microorganisms could have

enzymes that metabolize and chemically modify 271 oral drugs

(Zimmermann et al., 2019). These findings showed how some

drugs cause more severe side effects in some individuals than

others, mainly because of the interpersonal microbiome

variations (Zimmermann et al., 2019). In another study on

the inactivation of digoxin- a drug to treat heart failure and

arrhythmias- researchers found that Eggerthella lenta reduced

digoxin potentially by using it as an alternative electron acceptor,

which leads to a decreased target affinity of the drug (Haiser et al.,

2013). Similarly, anti-cancer drugs can be modified by the gut

microbiota. Irinotecan, an anti-cancer drug used for a range of

solid tumors (Wallace et al., 2010), is inactivated through the

addition of glucuronic acid (GlcA). However, the bacterial

protein β-glucuronidase (GUS) removes GlcA and reactivates

irinotecan, which leads to epithelial damage and diarrhea

(Wallace et al., 2010; Bhatt et al., 2020). Recent studies have

targeted the GUS protein with inhibitors which effectively

prevented intestinal toxicity (Wallace et al., 2010), overgrowth

of Enterobacteriaceae, and maintained the antitumor effect of

irinotecan (Bhatt et al., 2020). Immunotherapy has risen as a

more sought treatment when dealing with cancer, mainly because

of the complex interactions that occur between a patient’s

immune system and the tumor. Particularly, immune

checkpoint inhibitors targeting CTLA-4 and PD-1 have been

developed; however, variable responses to these treatments have

been associated with the gastrointestinal (GIT) microbiome. A

recent study aimed at understanding the role of the gut

microbiome in response to immune checkpoint inhibitors

targeting PD-1 in patients with metastatic melanoma, showed

that responder patients had a higher alpha diversity and relative

abundance of Clostridiales, Ruminococcaceae, and

Faecalibacterium when compared to non-responders

(Gopalakrishnan et al., 2018). In addition, an oncolytic

adenovirus efficacy against malignant glioma in mice, seems

to be also modulated by gut bacteria, with an increase in

Bifidobacteria and Lactobacilli associated with a better

response to the therapy(REF: https://aacrjournals.org/

cancerres/article/81/13_Supplement/927/669706).

An overview of the gut-brain axis

The gut-brain is a bidirectional link between the central

nervous system (CNS) and the enteric nervous system (ENS),

which communicates between four information carriers in the

so-called gut connectome: 1) the vagal and spinal afferent

neurons, 2) immune messages carried by cytokines, 3)

endocrine messages carried by gut hormones and 4) microbial

factors that reach the brain through the bloodstream (Holzer and

Farzi, 2014; Boem and Amedei, 2019). The communication

between these carriers is important for metabolic activities

and for maintaining microbial homeostasis, as some gut

hormones play an important role in the activation of afferent

neurons and the vagus nerve (Ye and Liddle, 2017). In the GIT

system, the microbiota controls the enteric neurons and motility

through transmitters like SCFAs (Obata and Pachnis, 2016), 5-

hydroxytryptamine (5-HT, serotonin) (Obata and Pachnis,

2016), γ-aminobutyric acid (GABA) (Pokusaeva et al., 2017),

hormones such as cortisol (Valles-Colomer et al., 2019) and

immune system modulators such as quinolinic acid (Valles-

Colomer et al., 2019). Diseases like schizophrenia and autism

have been associated with alterations in gut permeability and

even though research has expanded in the last few years, there is

still a lack of information on some groups, such as Hispanics

(Vera-Urbina et al., 2022).

Autism spectrum disorder (ASD) is a neurodevelopmental

disorder that has been linked to changes in gut microbiota. The

microbiota of healthy children was shown to be composed of

Bacteroidetes, Firmicutes, and Actinobacteria with a higher

abundance of Coprococcus and Bifidobacterium (Iglesias-

Vázquez et al., 2020). Children who suffer from ASD have a

greater composition of Bacteroides, Parabacteroides, and

Clostridium, and a lower abundance of Coprococcus and

Bifidobacterium (Iglesias-Vázquez et al., 2020). In addition,

research shows that Clostridium releases toxins that can affect

the brain. Alterations in SCFA production can affect homeostasis

and increase inflammation. SCFAs are speculated to regulate

neuro-Immuno endocrine functions as some are able to cross the
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blood-brain barrier and even maintain barrier integrity, thus

helping control the passage of molecules and nutrients from the

circulation to the brain (Silva et al., 2020). ASD patients have

demonstrated a lower abundance of Bifidobacterium, which plays

a role in producing Gamma-Aminobutyric Acid (GABA)—a

natural brain neurotransmitter—and ultimately translating

into cognitive deficits (Garcia-Gutierrez et al., 2020). Lower

levels of GABA affect glutamate metabolism, which leads to

anxiety and behavioral disorders. Abundance in taxa such as

Escherichia, Bacillus or Saccharomyces can produce

noradrenaline (Barrett et al., 2012), affecting its uptake by the

hypothalamic-pituitary-adrenal (HPA) axis, which centralizes

the stress response system (Scriven et al., 2018). Other studies

have revealed alterations in tryptophan metabolism with a

concomitant increase in serotonin, affecting different

behaviors such as sleep, appetite, emotions, and social skills

(Roth et al., 2021). Moreover, treatment with propionic acid

(PPA) in an animal model of autism showed enhanced

inflammation with an increase in pro-inflammatory cytokines

like IL-6 and TNF-α (Aabed et al., 2019).

Other neuropsychiatric diseases like depressive disorders are

associated with gut dysbiosis. It has been demonstrated that

transplantation of gut microbiota from depressed mice to germ-

free mice results in the display of depressive behavior (Knudsen

et al., 2021). Anxiety and depression have also contributed to the

global obesity burden, and authors suggest a role of gut-brain axis

malfunction through disruptions in the crosstalk between the

immune and the endocrine systems (Niccolai et al., 2019).

A decrease in Firmicutes accounts for a decline in SCFAs

with depression, affecting the intestinal barrier (Huang et al.,

2018). A study showed that women with depressive disorders had

lower concentrations of SCFAs in contrast to non-depressive

women (Capuco et al., 2020). The significant decrease in

Firmicutes associated with depression includes a decline in

Akkermansia, Ruminococcaceae, and Dorea; with a

simultaneous increase in Actinobacteria, Prevotella, and

Parabacteroides (McGaughey et al., 2019). Bifidobacteria levels

were also reduced in depression, nonetheless the restoration of

some species like Bifidobacterium longum and B. breve reduced

depressive behaviors and increased the secretion of 5-

hydroxytryptophan and butyrate (Tian et al., 2019).

Stress is a major disruptor of gut homeostasis. It can alter the

intestinal barrier, increase gut permeability dysfunction and

induce changes in the HPA-axis. Stress can affect gut

microbial composition stimulating inflammatory mechanisms

due to the release of pro-inflammatory cytokines. An element

responsible for cytokine release is NF-kB, a transcription factor

that, when inhibited by Bifidobacterium adolescentis results in a

positive effect on stress-related diseases (Guo et al., 2019).

Additionally, people with anxiety disorders have a decrease in

Lactobacillus rhamnosus (Slykerman et al., 2017). Prenatal stress

causes changes in the brain and behavior that can contribute to

the development of gastrointestinal and psychiatric disorders. An

animal study showed how supplementation of Lactobacilli could

reverse anxiety behavior in stressed rats accompanied by

normalized levels of adrenocorticotropic hormone (ACTH)

and corticosterone (Karen et al., 2021).

Another major disorder of the gut-brain axis is Alzheimer’s

Disease (A.D.), which is associated with memory deficit due to

the accumulation of β-amyloid plaques (Aβ) (Nimgampalle and

Kuna, 2017). Apolipoprotein E (ApoE) is the major risk for

developing A.D. because it enhances the production of Aβ. The
synthesis of ApoE is induced by neurons and is stimulated by

stressors like age, oxidative stress, or trauma (Mahley et al., 2009).

Microbial dysbiosis leads to an increase in microbial-associated

chemicals, like LPS, which play a vital role in activating innate

immunity and triggering neuroinflammatory pathways in the

brain’s microglia. Acetate a SCFA promotes microglia

development and can slow disease progression (Erny et al.,

2021). Patients with A.D. present an increased proportion of

pro-inflammatory taxa in the intestines, and altered gut

microbiota enhances cerebral aggregation and deposition of

Aβ plaques by immune, endocrine, and neural pathways

(Dumitrescu et al., 2018). A decrease in butyrate-producing

bacteria such as Butyrivibrio (B. hungatei and B.

proteoclasticus), Clostridium sp. strain SY8519, Eubacterium

(E. eligens, E. hallii, and E. rectale), F. prausnitzii and

Roseburia hominis is also observed in A.D. patients (Haran

et al., 2019).

Degradation of the gut microbiome:
Urbanization and westernized lifestyles

The “Missing Microbe” hypothesis postulates that

industrialization and current medical practices (e.g.,

vaccination) have diminished the prevalence of infectious

diseases such as tuberculosis and malaria (Blaser and Falkow,

2009). However, access to healthcare and improved life

expectancy has reduced gut microbial diversity. Urbanization

is the main cause of major human microbiome shifts and

microbial loss, as documented by studies evaluating rural and

urban lifestyles (Lokmer et al., 2020) (Figure 4). The transition of

diet and lifestyles has impacted the human gut microbiome, from

changes established during the hunter-gatherer transition to

agriculture to our modern time transition to urbanization (Jha

et al., 2018). For instance, the BaAka hunter-gatherers of the

Central African Republic have a high relative abundance of

Anaerovibrio, Sutterella, and unclassified members of

Clostridiaceae and Cyanobacteria (Schnorr et al., 2014). By

contrast, their agriculturalist neighbors, the Bantu, have a

higher abundance of Christenellaceae, Dialister,

Faecalibacterium, Lactococcus, Leuconostoc, Mogibacteriaceae,

and Ruminococcaceae (Schnorr et al., 2014). However, no

differences in bacterial diversity were observed between these

groups (Gomez et al., 2016).
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The Yanomami, indigenous peoples of the Amazonian jungle

in Venezuela, have the most diverse gut-bacterial biota ever

found in humans and a significant increase in diversity

compared to people in the United States (Clemente et al.,

2015). This semi-nomadic tribe lives in isolation in southern

Venezuela, maintaining ancestral lifestyles (Clemente et al.,

2015). The Yanomami fecal microbiota was characterized by

high levels of Prevotella and low Bacteroides, contrary to what

was observed in the United States. Indeed, the study by

Dominguez-Bello highlights a significant difference in beta-

diversity among indigenous peoples and samples collected

from Americans (Clemente et al., 2015). The frequent meals

and food seasonality in the Yanomami contrasts with the large,

infrequent meals characteristic of Western diets. Paradoxically,

the study found no significant differences in oral bacteria,

possibly explained by chewing of tobacco in Amerindians

from an early age (Clemente et al., 2015). Chinese urban

populations have also shown a decrease in diversity at all

phylogenetic levels, including a loss of Archaea and viruses

compared to rural samples. Urbanization in these groups was

also associated with a higher number of virulence and antibiotic

resistance genes (Winglee et al., 2017). A study in Thailand

comparing the gut microbiota of children living in urban

Bangkok (whose diet consisted of high sugar, fats, and

protein) with children living in rural Buriram (with a diet rich

in vegetables and rice) found a loss of diversity and lower levels of

SCFAs in urban samples. Additionally, rural samples had a

higher prevalence of Ruminococcaceae and enriched gene

profiles involved in plant metabolism (Kisuse et al., 2018).

Similar to urban North Americans and Asians, the microbial

communities of children living in urban Burkina Faso and Italy

differed from those of children living in rural Burkina Faso (De

Filippo et al., 2017). Rural children contained gut fiber-degrading

bacteria (Prevotella, Treponema, and Succinivibrio), whereas

children living in urban areas had bacteria that metabolize

animal protein (De Filippo et al., 2017). One key aspect of

living in an industrial/urban setting is the availability of

drinkable water and the process of water purification

(chlorination). Some studies have shown that chlorine

concentrations in water can promote the incidence of colon

cancer (Benmarhnia et al., 2018). Stool samples of mice subjected

to chlorine water have seriously reduced C. perfringens and

moderately reduced C. difficile, Enterobacteriaceae, and

Staphylococcus (Sasada et al., 2015). The use of cosmetics and

cleaning products in urbanized areas can also be linked to

changes in gut microbiota. Triclosan (TCS) is a chemical well

known to be present in toothpaste as it possesses antimicrobial

properties. The gut microbiota of infants-mother dyads exposed

to TCS has shown an enrichment in Proteobacteria, which serves

as a marker for antibiotic resistance in the gut microbial

community (Ribado et al., 2017). On the other hand,

individuals using non-TCS containing toothpaste showed

FIGURE 4
Changes in the gut microbiome across urbanization and human lifestyles. Panel (A) shows the impact of modernization on the gut microbial
diversity due to changes in diet, healthcare, sanitation, and lifestyle associated to modernity. Ancient microbiomes have higher microbial diversity
and may even include taxa such as Treponema, that is no longer a component of the modern human microbiota. Panel (B) outlines the effects of
urbanization on the gut microbiome. Increase in the consumption of refined sugars, antibiotics, chemical antimicrobials, exposure to air
pollution and water chlorination, can have detrimental effects on the gut microbiota leading to the development of metabolic conditions, colorectal
cancer, and antibiotic resistance. Image created with BioRender.com.
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enrichment of B. fragiliswhich is linked to the production of anti-

inflammatory polysaccharides. The use and exposure to TCS has

also been correlated with an impact in the gut microbiome of

infants through breast milk (Bever et al., 2018). The presence of

TCS in the breast milk of mothers who use personal care

products can affect the microbial diversity of infants at an

early stage of gut microbial community development, thus

paving the way for future health problems. Another disrupter

of intestinal eubiosis can be air pollutants. Young adults living in

Southern California exposed to high levels of ozone showed

lower microbial diversity, along with higher levels of B.

caecimuris (Fouladi et al., 2020). Furthermore, higher

exposure to nitrogen dioxide correlated with higher Firmicutes

and less diverse taxa (Fouladi et al., 2020). Interestingly, the

exposure to traffic-related air pollution has been shown to alter

the abundance of Bacteroidaceae and Corynebacteriaceae, which

have been linked to obesity (Alderete et al., 2018). Modern food

processing has led to the loss of microbial diversity compared to

rural environments (Obregon-Tito et al., 2015). Non-thermal

and thermal processed food can affect the gut microbiota of

vertebrates, as seen in mice and catfish. Vertebrates with thermal

processing food diets had less diversity and a different microbial

composition according to the host (Zhang and Li, 2018). Dietary

toxic xenobiotics such as nitrosamines, polycyclic hydrocarbons,

and heterocyclic amines in processed foods are also associated

with a change in the gut microbiota, increasing the risks of

developing colorectal cancer (Zhang and Li, 2018). A murine

model exposed to the environmental pollutant benzo(a)pyrene

showed an increase in Bacteroidaceae, Paraprevotellaceae, and

Porphyromonadaeae alongside inflammation of colonic mucosa,

as well as a decrease in Lactobacillaceae and Verrucomicrobiaceae

(Ribière et al., 2016). Preservatives, from salt to chemical

components, have been used in urban countries for long-term

food storage. Some of these preservatives, like emulsifiers, may

alter the gut microbiota (Chassaing et al., 2017). Additionally,

prolonged exposure to Saccharin causes gut microbiota dysbiosis

and inflammation in mice, as shown by an increase in

Corynebacterium spp. with a reduction of key anti-

inflammatory taxa, including Dorea and Ruminococcus (Bian

et al., 2017). Saccharin is also related to a decrease in Equol

production. Equol is formed by gut bacteria during the

metabolization of daidzein (Isoflavone), a factor contained in

soy products. Even though equol is known for having antioxidant

and anti-carcinogenic properties (Bian et al., 2017), extensive

consumption of both equol of dairy products in Hispanics was

associated with reduced gut health (Lacourt-Ventura et al., 2021).

Extinct populations—What do
archeological findings tell us?

The evolution of the human microbiota can be addressed

from a paleontological point of view using ancient microbial

DNA, preserved in archeological samples. Human coprolites

(mummified feces) collected from Cueva de Los Chiquitos,

Rio Zape Valley, Mexico dating 1,300 years B.P., were similar

to each other and to feces from rural populations with higher

levels of Prevotella and Treponema (Tito et al., 2012). These

bacteria are commonly found in traditional communities and are

rare or missing in modern gut microbiomes (Tito et al., 2012).

Similarly, the gut microbiome preserved in coprolites from the

United States and Mexico were more similar to rural gut

microbiomes than to industrial ones (Wibowo et al., 2021). In

particular, coprolites and extant non-industrial fecal samples

have a higher prevalence of Ruminococcus callidus,

Butyrivibrio crossotus and Treponema succinifaciens, whereas

industrial fecal samples had a higher abundance of

Bacteroidetes such as Bacteroides and Prevotella (Wibowo

et al., 2021). Recently, paleomicrobiological studies showed

that coprolites from two ancient agricultural ethnic groups

(Huecoid and Saladoid) from Puerto Rico, exhibited microbial

community differences due to diet-related to cultural traditions

(Cano et al., 2014). Maize and Basidiomycetes sequences were

found in Huecoid coprolites, whereas sequences related to fish

parasites were detected in Saladoid, suggesting the consumption

of maize and fish, respectively (Cano et al., 2014). Similar to that

observed in coprolites, the gut microbiome of Peruvian Inca

mummies differs from that of modern Amazonians (Santiago-

Rodriguez et al., 2016). Analyses of the 16S rRNA gene showed

that Pseudomonadales and Enterobacteriales were more

abundant in modern Amazonians, whereas Lactobacillales

were more abundant in the Peruvian Inca mummies. In

addition, Trypanosoma cruzi sequences were detected in

higher abundance in mummies compared to modern

Amazonians suggesting the presence of Chagas disease in

South America before the arrival of Europeans (Santiago-

Rodriguez et al., 2016). Overall, ancient DNA studies could be

essential to understanding the changes in the humanmicrobiome

and the evolution of pathogens. However, with ancient samples, a

major caveat is DNA degradation, which may favor the

amplification of modern DNA due to contamination.

Furthermore, sequencing errors may produce distorted DNA

sequences that could lead to bias in taxonomic assignments.

Therefore, hunter-gatherers and agriculturalists are better suited

for the study of ancient microbiomes (Figure 4).

Microbial restoration—A potent new
avenue in microbiome research

Diet and nutrition are known as the best modifiers of the gut

microbiota. Specific nutrients are known to modulate the

amounts and types of gut bacteria, as explained before. For

instance, protein metabolism from beef induces a lower

abundance of Bifidobacterium adolescentis and higher

prevalence of Bacteroides and Clostridia when compared to
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consumers of a meatless diet (Singh et al., 2017). Proteins from

whey and peas, however, increase Bifidobacterium and

Lactobacillus, who function as anti-inflammatory taxa and

SCFA-producers and decrease Clostridium perfringens (Singh

et al., 2017). Consumption of saturated and trans fats is

associated with cardiovascular disease risk (Estadella et al.,

2013). Studies have suggested that a high-fat diet increases

total anaerobic microflora and counts of Bacteroides, produces

a lower concentration of Lactobacillus and is also related to

inflammation and insulin resistance (Wu et al., 2011). A study

found that a low fat, high carbohydrate diet increased fecal

Bifidobacterium, and reduced fasting glucose and cholesterol

when compared to baseline (Fava et al., 2013). A high

unsaturated fat diet leads to an increase in lactic acid bacteria

and Bifidobacteria. Saturated fat, however, promotes the

proliferation of F. prausnitzii, Bilophila, and Bacteroides

(Singh et al., 2017). As for carbohydrates, these are either

digestible or non-digestible. Digestible carbohydrates,

including starches and sugars, are degraded by digestive

enzymes in the small intestine (Seo et al., 2020). On the

contrary, non-digestible carbohydrates include fiber (cellulose

and hemicellulose) and resistant starch, which can only be

digested by fermentation through resident microorganisms of

the large intestine (Sonnenburg and Sonnenburg, 2014). The

fermentation of fiber changes the composition of the gut

microbiota favoring bacteria capable of these processes. Fibers

are thereby designated as prebiotics. A diet based on vegetables

and fruits can act as prebiotics, providing polyphenols (Henning

et al., 2017) and reducing the levels of Firmicutes and increasing

Bacteroides (Henning et al., 2017). It can also lead to an increase

in the abundance of Akkermansia and Bifidobacteria. The

American Gut Project—the biggest microbiome citizen science

project to date—has revealed that one does not need to be vegan

or a strict vegetarian to have good gut bacteria, the important

thing is to consume a variety of plants per week. It’s been

documented that individuals who consume more than

30 types of plants per week compared to those who consume

ten or fewer, had significantly reduced abundance of antibiotic

FIGURE 5
Restoration of the gut microbiome. Panel (A) Probiotics provide live microorganisms in the form of food or supplements that directly colonize
the gut, while prebiotics provide fiber and carbohydrates that stimulate the growth of healthy bacterial colonies that already reside in the gut.
Together, probiotics and prebiotics compose synbiotics which can be obtained commercially. Panel (B) displays two ways of microbial seeding,
vaginal transfer for C-section born babies and fecal matter transplants. Image created with BioRender.com.
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resistance genes and gut diversity (McDonald et al., 2018). In

summary, a balanced diet can improve gut microbiota, metabolic

functions, and overall health (Figure 5A).

Synbiotics are products that have both probiotic and

prebiotic components (Anand et al., 2019). An example is the

use of Lactobacillus and Bifidobacterium along with

carbohydrates (Rigo-Adrover et al., 2018). The use of

synbiotics, although new, has given promising results. In a

double-blind placebo-control trial, administration of a

synbiotic reduced neonatal death and sepsis between the

placebo group and treatment group by 40% (Panigrahi et al.,

2017). In addition, to help maintain homeostasis in the gut and

restore normal microbial populations, probiotics, prebiotics, and

synbiotics have shown they can serve as alternative treatments for

different conditions, as well as boost body functions. Fermented

foods can either be fermented naturally -microorganisms pre-

exist in raw food, or can be fermented using starter cultures,

i.e., adding microbial colonies to already existing food products

(Rezac et al., 2018). Historically, fermented foods have stood out

for their long shelf life, but in recent years they have gained

popularity because of their potential health benefits, especially

gut health, since these fermented foods contain probiotic bacteria

and prebiotic components. One of the most widely known

fermented foods that have proven to have a beneficial effect

on the gut microbiota is yogurt (Le Roy et al., 2022). More

specifically, recent studies found that the use of fermented yogurt

with probiotic Lactobacillus improves blood glucose and insulin

levels in rats with T2D and increases the production of SCFAs

(Qu et al., 2018). Cheese is another food that has been widely

consumed around the world for centuries. A recent study found

beneficial effects in cream cheese containing Lactococcus

chungangensis. Specifically, it was found that rats that were

administered cream cheese containing this microorganism

presented lower IgE levels, increased fecal Bacteroides,

Lactobacillus and Ruminococcus, as well as increased SCFA

production (Kim et al., 2019b).

Additionally, there has been a recent interest in how prebiotic

compounds in fermented foods benefit gut diversity and overall

health. A study with fermented milk containing probiotic

Bifidobacterium breve and prebiotic galactooligosaccharides

found that people who were administered this milk had

increased hydration and defecation as well as more clear skin

(Mori et al., 2016); suggesting the potential beneficial effects on

skin and gut health that a combination of probiotics and

prebiotics can have, i.e., synbiotics (Figure 5A). In addition to

traditional fermented foods that are consumed around the world,

such as milk, cheese, and yogurt, there are three fermented foods

that have proven to have a beneficial effect on gut and overall

health: Kefir, Kimchi, and Kombucha. Kefir is a fermented milk

drink with a sour taste that is produced using a starter culture

that contains yeasts such as Kluyveromyces and Saccharomyces as

well as bacteria such as Lactobacillus, Leuconostoc, and

Acetobacter (Prado et al., 2015). Indeed, Kefir has been shown

to alleviate obesity and hepatic steatosis in high-fat diet-fed mice

by modulation of gut microbiota and mycobiota (Kim et al.,

2017). Lactulose, a synthetic sugar added to Kefir has also been

found to have prebiotic effects by increasing Bifidobacteria and

defecation (Sakai et al., 2019). Thus, Kefir can increase gut

diversity and benefit health by providing both probiotics and

prebiotics. Kimchi is a group of fermented and salted vegetables

that include cabbage, carrot, pear, apple, and ingredients such as

chili, pepper, soybean, and ginger (Patra et al., 2016). Kimchi is

usually a fermented food that has high concentrations of

Leuconostoc, but can also have good concentrations of

Lactobacillus, Weissella, and Pseudomonas (Jeong et al., 2013).

Apart from bacteria, Kimchi has also been found to contain

archaea and yeast (Chang et al., 2008). A study found that

Lactobacillus Plantarum, which is usually found on Kimchi,

can reduce mesenteric adipose tissue and increase the

genomic expression of lipid oxidation genes (Park et al.,

2017), features that suggest Kimchi may contribute to weight

loss. Originating in China, Kombucha is a popular fermented tea

beverage that is produced through aerobic fermentation and uses

both bacteria and yeast (Gaggìa et al., 2018). Acetic acid and lactic

acid-producing species such as Acetobacter and Lactobacillus, as

well as yeasts such as Saccharomyces are the most commonly

found organisms in Kombucha (Coton et al., 2017). The acid

produced by these bacteria lower the pH of Kombucha, making it

difficult for pathogenic bacteria such as E. coli to grow inside the

beverage (Gaggìa et al., 2018). Although only recently Kombucha

has been associated with benefits in health and the microbiota, a

recent study found that administration of Kombucha tea reduces

fat accumulation in the liver of rats with non-alcoholic fatty liver

disease and decreases specific bacteria such as Clostridium in a

mouse model (Jung et al., 2019). A study found that

Gluconobacter, a bacteria commonly found in Kombucha, can

produce D-Saccharic acid-1,4-lactone - a compound that has

been this compound has been found to inhibit oxidative stress

and the release of pro-inflammatory cytokines (Bhattacharya

et al., 2013).

Microbial communities can also be restored by microbial

seeding and fecal matter transplants (FMT). Even though

microbial dysbiosis is expected as aging occurs and depends

on environmental and birth-related factors, several restoration

techniques have been developed to regulate microbial

communities and improve health. So far, the best examples of

microbiome restoration are vaginal and fecal microbial transfer

to neonates (seeding) and fecal microbiota transplantations. The

vaginal microbial transfer has been recently reported as the

technique of acquiring vaginal bacterial communities from a

mother awaiting a C-section and smearing the baby after birth

(Dominguez-Bello et al., 2016).

The target of the vaginal seeding is to partially restore the

microbiome of a baby born via C-section, using the vaginal

microbiota of the mother upon delivery (Dominguez-Bello et al.,

2016). The purpose is to transfer the vaginal flora from mothers
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to the mouth, nose, and skin of the newborn. Nonetheless,

restoration of the neonatal microbiota born via C-section with

maternal vaginal microbes has raised concerns about infection

risks (Dominguez-Bello et al., 2019). Not all mothers qualify as

candidates to be donors of vaginal fluids for the seeding

procedure. Only women who were not carriers of infectious

diseases nor tested positive for Sexually Transmitted Diseases

(STDs) at the time of delivery were allowed to donate

(Dominguez-Bello et al., 2016). Also, oral-fecal transplantation

has proven successful in changing the neonate microbiota. De

Vos and colleagues theorized that vaginally born babies might get

their microbes from accidentally ingesting their mother’s stool

during the birthing process (Helve et al., 2021). They diluted fecal

matter into breast milk donated from the bank and pumped from

the mothers themselves—and then fed it to their babies. The gut

microbiome of the babies later resembled those born vaginally

(Helve et al., 2021).

FMT is the administration of fecal matter from a healthy

adult donor into the intestinal tract of an affected adult to

change and restore their microbiome to healthy conditions

(Pigneur and Sokol, 2016). In recent studies, it has been

recognized that FMT is extremely efficient in treating

inflammatory bowel disease (Tanaka and Nakayama, 2017),

psoriasis (Yin et al., 2019), Crohn’s Disease (Sarrabayrouse

et al., 2020), Clostridium difficile infections (Cammarota et al.,

2017), and ulcerative colitis (Lleal et al., 2019). In addition,

FMT has been known to suppress intestinal apoptosis, which

reduces inflammatory responses, regulates lymphocytes, and

alters the microbiota (Burrello et al., 2019). It has been shown

that fecal matter from a healthy donor has the capacity to

overturn dysbiosis by restoring alpha-diversity and increasing

the abundance of health-related microbiota (Lleal et al., 2019).

The long-lasting effects of FMT have been reported in patients

with Irritable Bowel Syndrome (IBS) (El-Salhy et al., 2022). It

has been reported that both recipient and donor bacterial

strains in the FMT recipient persist after 3 months of the

procedure, leading to a positive result against previous

inflammatory disorders (Li et al., 2016). Lastly, cytokine

testing is now performed to assess the accurate reduction

of inflammation within the intestines by analyzing the

recipient’s fecal matter with mucosal biopsies (Burrello

et al., 2019). FMT has the capability to control chronic

intestinal colitis by instigating a cascade of anti-

inflammatory immune regulations, thereby supporting its

usage in individuals with severe intestinal dysbiosis

(Burrello et al., 2019) (Figure 5B).

Long term storage of microbiomes: The
Microbiota Vault project

Currently, the global diversity of the human-associated

microbiota is threatened by the westernization of lifestyles in

the context of urbanization and the shrinking of indigenous

cultures, in which a much higher microbial diversity has been

observed. While the scientific discovery of causal relationships

between individual microbes or microbial communities and

human health is still in its infancy, means to protect and

preserve microbial diversity may become critical to conserve

long-term human health. Metagenomic analyses of the human

microbiome revealed that ~80% of the bacteria inhabiting the

human body are unknown, prompting the metaphor of

“microbial dark matter” (Eckburg et al., 2005). Such

unknown diversity also extends to archaea, microbial

eukaryotes, and viruses. Taken together, this means that

there is a danger of irrevocably losing valuable information

and opportunity at a time when science has just started

understanding the health relevance and potential of our

microbial environment and the microbiome. Hence the

need for a global collection of such microbiota and for

their safe storage and preservation. Within the Microbiota

Vault initiative, a pioneer team of international experts has

come together with the aim of safeguarding microbial

diversity by supporting collection efforts and creating an

institution for safe preservation, the Microbiota Vault. The

initiative takes inspiration from the Svalbard Global Seed

Vault, which safeguards the global diversity of food crop

seeds. The program is supported by several nonprofit

foundations and academic institutions, which published a

feasibility study in order to assess and concretize the

concept for its implementation. This study found that the

Microbiota Vault initiative has great significance and

potential and urged its leaders to establish a pilot project

that would include infrastructure to store diverse

microbiomes of the world’s human population (Steiger and

Heuss, 2020). In 2022 a documentary titled “The invisible

extinction” premiered at CPH:DOX explain the project by its

founders https://www.theinvisibleextinction.com/. Such

samples and collections are to be made available for future

resuscitation, culturing, and research based on clearly defined

rules such as those established by a dedicated international

treaty—a human microbial “Noah’s Ark.”

Concluding statement

The humanmicrobiome has clear implications for health and

disease and is getting popularized in clinical and translational

studies. Many limitations of microbiome studies include the fact

that the large and complex data sets require specific training for

effective analysis which is not usually available worldwide,

corresponding to the need in representation of biological

samples. Low- and middle-income countries -where most

human microbial diversity and health problems reside-

requires a significant investment in training in bioinformatics

so that scientists at ease utilizing and creating projects involving
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sequence data. Open science, including meta-analysis of

previously published microbiome data can also pave the way

to new hypotheses and knowledge.

For this to happen it is essential that only high-quality

metadata and raw sequence data are used and openly

accessible. Transparency and reproducibility should also be

enhanced and required from published papers, with the use of

standard methodologies such as protocols suggested by

international consortia such as The Earth Microbiome Project

or the international Human Microbiome Standards and the use

of microbiome data management tools (e.g., QIITA) (Gonzalez

et al., 2018; Bokulich et al., 2020). Efforts to standardize

procedures and analyses as well as to promote equity and

inclusion in this Frontier microbial science are underway and

many resources that can help in conducting microbiome,

research have been very well summarized in (Foxx et al.,

2021; Marcos-Zambrano et al., 2021). Certainly, microbiome

efforts from around the world are showing unique characteristics

of the microbiota dependent on lifestyles and geographical areas.

Microbiome research is transforming our understanding of

human biology. There are still there are still many answers that

remain unanswered, including detailed microbiome

transmission in body sites, lifestyle impacts to microbiome

transmission, how microbiomes evolve and stabilize after

antibiotics, population resilience and even how other members

such as Fungi, Archaea or even the virome respond to changes in

the bacterial biota, from perturbations to new probiotic

therapeutics and if and how these dynamic changes continue

longitudinally through time. Although there is still much

research to be done to understand the mechanistic links

between the microbiome and disease, this branch of the

microbial sciences is opening vast opportunities for

therapeutic treatments and improving human health.
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