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Mathematical modeling has made significant contributions to drug design,
development, and optimization. Virtual clinical trials that integrate
mathematical models to explore patient heterogeneity and its impact on a
variety of therapeutic questions have recently risen in popularity. Here, we
outline best practices for creating virtual patients from mathematical models to
ultimately implement and execute a virtual clinical trial. In this practical guide, we
discuss and provide examples of model design, parameter estimation, parameter
sensitivity, model identifiability, and virtual patient cohort creation. Our goal is to
help researchers adopt these approaches to further the use of virtual population-
based analysis and virtual clinical trials.
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1 Introduction

Virtual populations (VPs) and in silico clinical trials (also called virtual clinical trials) are
relatively new mathematical modeling techniques that are being increasingly used in the
fields of quantitative systems pharmacology and mathematical oncology (Scott, 2012; Kim
et al., 2016; Polasek and Rostami-Hodjegan, 2020; Wang et al., 2020; Jenner et al., 2021b;
Zahid et al., 2021; Cardinal et al., 2022). Traditionally, modeling and simulation have focused
on understanding biological processes and systems, sometimes with the aim of supporting
drug development (Holford et al., 2000; Holford et al., 2010; Scott, 2012; Kim et al., 2016;
Polasek and Rostami-Hodjegan, 2020; Wang et al., 2020; Jenner et al., 2021b; Zahid et al.,
2021; Cardinal et al., 2022). In silico clinical trials extend the tools and scope of modeling and
simulation with the goal of predicting the heterogeneous effects of drugs on populations of
individuals. In certain disciplines, virtual clinical trials can make use of statistical inference
instead of an underlying mathematical model (Van Camp et al., 2023); in this guide we focus
solely on in silico trials based on mathematical and computational modelling.

Specific applications of in silico clinical trials include refining dose projections for new
drugs before they enter the clinic, studying inter-patient variability in treatment response,
stratifying patient populations to identify treatment responders versus non-responders, and
assessing potential drug combinations or alternate treatment regimes. Thus, the questions
virtual trials are primed to address closely align with the dose optimization and selection
goals set forth by the U.S. Food and Drug Administration’s Project Optimus initiative (FDA,
2022) (USFDA, 2023). VP-based analysis can also be viewed as a bridge between the
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ubiquitous standard-of-care approach designed around the “average
patient” and fully personalized therapy. Currently, most clinical
trials are designed around the average patient, which can result in
toxicity or lack-of-efficacy for certain patients. Exceptions are
starting to emerge, including the I-SPY trials that utilize patient
imaging and tumor profiles to adaptively select the most promising
investigational drug to pair with standard-of-care treatments for
each patient in the trial (Perlmutter, 2011).

Despite recent progress, many challenges remain in realizing the
promises of personalized therapy. From a modeling and simulation
perspective, some of the challenges of personalization are
highlighted in a recent study by Luo et al. (Luo et al., 2022). In
this work, a mathematical model of murine cancer immunotherapy
that was previously validated against the average of an experimental
dataset was employed to make personalized treatment predictions
for genetically identical animals. The study found that one could not
confidently use the model for personalized treatment design due to
parameter identifiability issues that emerged when shifting the
model from the average context to the individual context. Given
the current scientific, computational, and financial challenges of
personalized therapy, tools that provide a better understanding of
population variability and its impact on treatment response are
needed. For this reason, virtual population analysis is becoming an
indispensable tool for advancing our understanding of treatment
response at both the individual and population level.

There are various methods for defining virtual populations and
for running in silico clinical trials. Different approaches have been
taken by different authors and been applied to a variety of questions,
ranging from the standard population pharmacokinetics analysis
used in drug discovery and development (Mould and Upton, 2012;
Mould and Upton, 2013), to simulating treatment impact over a
range of patient-specific characteristics. Here we will generally focus
on the latter approach via mechanistically based VP generation.

Independent of the approach used to define a VP, one can view
VP-based analysis as a form of sensitivity analysis wherein we select
characteristics of a population that we believe might affect responses,
introduce variability in one or more of the associated parameters
(i.e., drug clearance or impact on a biomarker), and use a
mathematical model to predict variability in outcomes. Typically,
we assume that selected characteristics deviate from the average to
some degree, ensuring that VPs represent a heterogeneous population.
However, there is no consensus in the field regarding how one designs
an appropriate model, identifies VPs characteristics, and introduces
variability in those characteristics, so that a virtual clinical trial is best-
positioned to answer the motivating treatment-related question.

In this paper, we introduce a step-by-step best practice guide for
researchers looking to extend their modeling and simulation work by
designing virtual patient cohorts for in silico clinical trials. This
methodological guide, developed to be broadly applicable to a wide
range of questions and software platforms, complements previous
overviews of virtual clinical trials in the literature, see for instance
(Pappalardo et al., 2019; Alfonso et al., 2020; Cheng et al., 2022). We
begin by considering how to build a fit-for-purpose model to address
the aim of a virtual clinical trial before exploring a range of techniques
available to parametrize such models using available biological,
physiological, and treatment-response data. We next explain the
important role that sensitivity analysis (quantifying changes in
model output as a function of model input) and identifiability

analysis (quantifying what we can and cannot say about model
parameters given available data) play in selecting the characteristics
of your virtual patients. This leads us to a discussion of various
iterative processes that have been introduced for designing a virtual
population so that you can conduct your in silico clinical trial. We
conclude with a discussion of the benefits and limitations of these
computational methods as a complement to clinical trials.

2 Steps for designing virtual patient
cohorts for in silico clinical trials

In this section we detail the step-by-step guidelines for
conducting an in silico clinical trial. A schematic summarizing
these steps, and highlighting the iterative nature of the process, is
found in Figure 1.

2.1 Step 1: Building a model for VP analysis

Model-based analysis has become an integral part of drug
discovery, development, and optimization. A major challenge in
model-based analysis is designing a model with not only the
correct structure, but also the appropriate level of mathematical
detail. Mechanistic mathematical models can incorporate an
immense amount of detail by, e.g., including elaborate descriptions
of drug pharmacokinetics or signal transduction pathways important
for tumor growth and response to the treatment under study. Such
complex models may allow for a better analysis of the underlying
biological mechanisms, and thus may be well-suited to understand
what causes patients to either respond, or not respond, to the
treatment. However, beyond computational demands, higher levels
of detail come with costs. For example, there is high potential for error
propagation in predictions if sufficient data are not available formodel
parametrization.

On the other end of the spectrum are phenomenological models.
These models are generally not concerned with detailed mechanisms
and are instead focused on capturing the general behavior of a
system using a small number of variables and parameters. Such
models are much easier to parametrize and analyze, though they
cannot provide the detailed mechanistic insights of larger and more
complexmodels. Bridging these two extremes are intermediate-sized
fit-for-purpose models that incorporate mechanistic details for the
most important subcomponents of the system. In such models, the
components deemed to be less important for the drug of interest, or
for which adequate information is available, are represented using
more phenomenological equations. Therefore, the choice of model
structure and level of mathematical detail must be tailored to the
aims of your specific in silico clinical trial. Model selection
techniques, including information criteria (Dziak et al., 2020) and
testing model predictions on held out data (Brady and Enderling,
2019), can also be valuable tools when trying to identify the most
parsimonious model to describe experimental data from a set of
plausible models (Liu et al., 2021; Cárdenas et al., 2022).

The aspects of model development one must consider can be
generally divided into pharmacokinetic (PK) and pharmacodynamic
(PD) components. Drug pharmacokinetics refer to the change of
drug concentration over time (i.e., what the body does to the drug)
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and can typically be captured using two main classes of parameters
that describe the volume of distribution and the clearance rate
(Mould and Upton, 2013). For drugs that are administered orally
or subcutaneously, it is also necessary to estimate the rate of drug
absorption. PKs are typically described using compartment-based
models that capture the movement of the drug from its initial
(typically plasma) compartment into other regions of the body
before eventually being cleared by the system. An important
consideration for building an accurate PK model is determining
how many compartments (mathematical equations) are needed to
adequately describe available preclinical data. It is of note that while
PK parameters are typically determined from preclinical
experiments, a number of well-developed methods exist to scale
PK parameters to humans (Mager et al., 2009; Huang and Riviere,
2014; Davies et al., 2020).

Compared to PK modeling, quantifying the pharmacodynamic
effects of a drug is more challenging. PD models share the goal of
predicting treatment safety and/or efficacy (Mould and Upton,
2013). As an example, in preclinical oncology efficacy is typically
benchmarked by tumor growth inhibition (TGI) curves obtained
from mouse models. It is often at this stage where an experienced
modeler, in combination with the experimental collaborators, needs
to make choices about how much complexity to build into their
model. TGI curves provide little data to parametrize complicated
models, so the availability of other experimental measurements
should guide how much mechanistic detail to include, and for
which model components. It is important to note that as
challenging as it is to build the right-sized PD model using TGI
data in mice, the challenges are much greater when working with

human data. One cannot predict human dynamics based on mouse
TGI curves, and as TGI curves are rarely available for humans, one
must rely on biomarkers that can be readily collected to build and
validate PD models for humans.

2.2 Step 2: Model parametrization

After constructing a mathematical model to answer the
motivating question, the next step is to parametrize the model. For
a given model M with r � m + n parameters, m parameters will be
fixed at values from the literature (which can be represented in the
vector q � (q1, . . . , qm)), and n parameters will vary per virtual
patient (which can be represented in the vector p � (p1, . . . , pn)).
Then, the ith virtual patient is represented by the variable vector pi,
and their model-predicted response is found by solving M(q, pi, t).
While it may be tempting to assume that all model parameters vary
and have an underlying distribution of values, such an approach may
skew results of the analysis by introducing bias or assigning weight to
characteristics that are not relevant to the question of interest.

While selecting which parameters to fix and which to form the
basis of the VP-based analysis can be challenging, there are several
quantifiable metrics that can be applied to help make this decision.
Parameters that are fixed for the whole population (i.e., q) might
include:

• parameter values for which there is strong and consistent
experimental/literature support, for instance drug half-life,

• parameters that have low sensitivity to perturbation, or

FIGURE 1
Schematic of the process to design and implement an in silico clinical trial. The nature of the process is cyclical, with the possibility of steps being
revisited as needed.
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• parameters that are a part of the model but not necessarily
essential to the specific aims of the virtual trial and motivating
question.

In contrast, parameters that may capture population variability
(i.e., p) might include:

• parameters that have high sensitivity to perturbation, a
common example being the intrinsic tumor growth rate,

• parameters that capture biological aspects demonstrated by
the available data, and thus can be estimated by fitting to the
data, or

• parameters that describe biological features that are known to
be highly heterogeneous in a population.

In practice, model parameters chosen to represent the virtual
patient cohort for an in silico clinical trial (p) versus those that are
kept constant (q) might change as one begins the parametrization
process and learns about sensitivity and identifiability (explored
further in Step 3). The iterative nature of determining which
parameters to fix and which to fit is highlighted in the schematic
shown in Figure 1.

Model parameters can be fit in one of two ways: either
simultaneously or hierarchically. If most model parameters can
be fixed, then, depending on the available data, it may be
possible that good estimates can be found by fitting the entirety
of p simultaneously. However, if p contains a large number of
parameters, and the available data is appropriately decoupled, then a
hierarchical data-fitting approach may be preferred (Wares et al.,
2015; Jenner et al., 2021a; 2021b; Cho et al., 2023). For example,
assume that modelM describes tumor response to treatment, where
parameter p1 describes tumor growth rate, and parameter p2

describes tumor sensitivity to treatment. In this case, the best
way to estimate model parameters would be to first fit the model
to the control (untreated tumor) data to estimate parameter p1. This
value is held fixed in the ith VP parameter vector pi, and the model is
then fit to the treated data to estimate p2. This hierarchical approach
will improve identifiability for both parameters as compared to
simultaneously fitting both parameters to only the treated dataset
(Cho et al., 2023). However, while it is technically possible to pool
data from multiple experiments, it is preferrable to ensure that both
the control and the treatment curves were collected under the same
experimental conditions. Sometimes, only one dataset is available,
as, for example, in a trial where having a placebo arm would be
unethical. In this case, it is best to try reducing model parameter
redundancy before attempting to estimate their values from data.

Once the patient-specific model parameters p have been
selected, and the choice of simultaneous or hierarchical fitting is
made, an optimization method for identifying the best-fit
parameters must be chosen. Many methods are available for this
task, each with their own benefits and limitations. Local
optimization algorithms are generally less computationally
expensive than global algorithms, though local algorithms are
more likely to converge to a suboptimal solution (Shoarinezhad
et al., 2020). In general, parameter estimation is an ill-posed inverse
problem where, given dataset D and mathematical model M, we
seek to find the parameter vector pi such that the model’s prediction
M(q, pi, t) best fits the data with respect to some measure. This

problem is unstable with respect to noise in the data, and real-world
measurements are inevitably noisy.

Perhaps the simplest method of curve fitting is the method of
least squares. In MATLAB, lsqnonlinminimizes the sum of squared
residuals by using approximate representations of the gradient and
the Hessian matrix (Mathworks, 2023b). This is implemented in a
wrapper lsqcurvefit to perform data fitting using a nonlinear model
(Mathworks, 2023a). Implementation in R can be achieved using the
function nls. While in practice these methods typically give
acceptable results, one should be aware that the least squares
approach assumes that the residuals are normally distributed.
Further, a major limitation of least squares is that outliers can
have a significant impact on the resulting fit. Additionally, the
optimization is local to the initial parameter guess p0. For this
reason, it is necessary to start with a reasonable initial parameter
guess to achieve the globally best parameter set, which is something
that can be difficult in practice.

To circumvent the challenges of the dependency on the initial
parameter guess, one can perform many repetitions of the fitting
process with randomized initial guesses to find the globally best
parameter set. In this case, the initial guess p0 could be randomly
sampled from uniform distributions over biologically reasonable
ranges; alternatively, the parameter space could be subdivided and
p0 can be iterated over all subdivision grid points of the parameter
space. These multi-start sampling methods extend local searches to
global ones. For instance, Latin Hypercube sampling, a type of
Monte Carlo sampling, performs global searches by randomly
sampling a parameter’s value from all subdivisions in its entire
parameter space (McKay et al., 2000). It then randomly combines
the samples for all parameter values together to form an ensemble of
random parameter sets. Lastly, the ensemble of parameter sets is
tested, and over the entire ensemble, the best fitting parameter set
can be found. Continuing increases in computational power have
made multi-start methods more feasible than they were in the past.

There are many other optimization methods that can be used for
parameter estimation. Some examples of global methods include
genetic algorithms that modify a population of potential parameter
sets and at each step evolve new potential parameter sets based on
the ‘parent’ sets, and Markov Chain Monte Carlo (MCMC) and
simulated annealing methods, which similarly generate new
potential parameter sets through random perturbation of the
previous set. These types of optimization methods rely on
random number generation to find the next potential candidate
parameter value instead of deterministic calculations, such as those
based on gradients and Hessians. Because of this randomization,
these optimization methods often accept worse-fitting parameter
modifications to guarantee that they eventually converge to the
global best-fitting parameters.

Several optimization methods have the added feature that they
identify the posterior population-level distribution of each fitted
parameter, rather than only identifying a single best-fit value, which
can provide valuable insight into the population-level heterogeneity
of your model parameters. For instance, nonlinear mixed effects
modeling is a statistical framework for identifying fixed effects
(parameters that can generalize across an entire population) and
random effects (parameters that differ between individuals) that are
randomly sampled from a population) (Olofsen et al., 2004).
Nonlinear mixed effects modeling is a parametric method, where
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the user must specify the structure of the posterior distribution for
each fit parameter—in biology, parameters are usually assumed to be
lognormally distributed to enforce non-negativity. There also exist
non-parametric methods for generating posterior distributions for
the fit parameters, including MCMC and the relatively new
Approximate Bayesian Computation (ABC) method (Csilléry
et al., 2010). In a rejective sampling ABC method, parameter p1

is sampled from a uniform prior, and the value is either accepted or
rejected by comparing the model output to data. If the value is
accepted, then it is added to the set of accepted values, building up an
estimate of the parameter’s posterior distribution. This probability
distribution for the parameter value can then be used to inform
construction of a virtual population.

With so many methods to choose from, it can be challenging to
identify the “best” approach for your problem. Yet, as shown in (Luo
et al., 2022), the choice of optimization method can substantially
impact the conclusions of your modeling study. As a rule of thumb,
as the dimensionality (i.e., number of parameters) of the fitting
problem increases, the cost function that is optimized in parameter
estimation increases in complexity and is more likely to have a
number of local minima. Such cost functions with a bumpy
landscape are better suited to genetic-type random algorithms
rather than gradient-based deterministic methods, to avoid the
trap of local minima (Mendes, 2001). Additionally, when fitting
several parameters from the patient-specific vector pi, caution must
be taken to not interchange these values later on. That is, optimal
parameter values that are fit together should always stay together
since coupled parameters cannot be independently sampled.

Once a fitting algorithm is chosen, one must also consider the
form of the cost function to be optimized. Is the goal to fit to the
average of the data or to fit each of the individual trajectories
separately? In fact, these approaches may be combined, if one
attempts to balance both objectives by fitting to an individual
and the mean at the same time, say through a linear
combination of error metrics (Wilkie and Vrscay, 2005):

cost D,M, q, pi, α( ) � αSSEindiv Di,M, q, pi( )
+ 1 − α( )SSEave D,M, q, pi( ) (1)

where 0≤ α≤ 1 controls the weight assigned to the individual data
trajectory. If α � 1, the optimization will fit to the individual, and if
α � 0 the optimization will fit to the average. Standard metrics for
cost functions include the sum of squared errors (SSE), mean
squared errors (MSE), root mean squared errors (RMSE), and
others. When fitting to the average, costs like the SSE can be
normalized by the variance at each time point. Such a
normalization reduces the cost associated with a data point that
has a large variance (that is, a data point we do not have much
confidence in). The choice of cost function should be based on the
available data and the optimization procedure.

Finally, one must consider if there are any constraints to impose
on the fitted parameters. In most biological models, parameters
must be constrained to be non-negative. But often it is necessary to
impose a stricter lower bound on parameters (so an important
biological feature is not removed from the model by setting its
parameter equal to zero, for example,), or to impose an upper bound
on the value of a parameter (to ensure the value is biologically
plausible). Note, however, that fitted parameters generally should

not take on the values of their upper or lower bounds. If this is the
case, the constraints need to be adjusted, or the model revised.
Another consideration is that, in some instances, relationships need
to be imposed between parameters. For instance, if we have a model
with a drug-sensitive and drug-resistant population, the drug
efficacy for the sensitive population must be strictly greater than
the efficacy for the resistant population. All told, there is an immense
number of choices one makes when parametrizing a model: which
parameters to fit, whether to fit them simultaneously or
hierarchically, what optimization algorithm to use, what cost
function to minimize, what initial guess to make for the
parameters, what bounds to impose, and so on. Because of this,
it is important to remember that the model parametrization step of
any project will always take longer than anticipated. As a rule of
thumb, estimate how long you think the parametrization step will
take and then double it. Reliable model simulation results are based
on solid model formulation, data collection, and parameter
estimation, so this step should not be rushed!

2.3 Step 3: Understanding your model and
parameter landscape

Once your model is parametrized, understanding the parameter
landscape and model output space through sensitivity and
identifiability analyses is another essential step for developing a
fit-for-purpose model for your virtual clinical trial. Sensitivity
analysis is used to quantify how changes in model input
(parameters) affect model outputs (i.e., tumor size). This in turn
informs model structure, as highlighted in the schematic in Figure 1,
and may even lead to recommendations for future experimental
design (Zhang et al., 2015). Sensitivity analyses can be conducted
locally or globally (Qian and Mahdi, 2020).

A local sensitivity analysis focuses on a single parameter at a
time. Typically, one perturbs the parameter value a relatively small
amount and quantifies the impact this perturbation has on model
output (Zhang et al., 2015). Suppose the best-fit parameter set �p �
(�p1, �p2, ..., �pi, ..., �pn) is known, and Y(�p) is the model output at a
selected time point corresponding to the best-fit parameter set (for
instance, tumor volume at some terminal time point). A local
sensitivity analysis of parameter �pi would perturb this parameter
a small amount Δpi, giving a new parameter set
p*i � (�p1, �p2, . . . , �pi + Δpi, . . . , �pn). The first-order local sensitivity
index Si for pi is then defined as the partial derivative of the output
with respect to the input parameter pi (Zi, 2011). A number of
methods exist to approximate this partial derivative (Zi, 2011),
though the simplest uses a finite difference approximation:

Si � zY p( )
zpi

≈
Y p*i( ) − Y �p( )

Δpi
(2)

The larger the value of Si, the more the parameter perturbation
affects model output, and thus the more locally sensitive the
parameter is considered. Historically, sensitivity analyses were
conducted after the system reached a steady state; however, now
it is common practice to choose a meaningful timepoint, such as
immediately following a treatment administration to assess
parameter sensitivity. One can extend this analysis to a dynamic
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sensitivity, by computing Si(t) for 0≤ t≤ tfinal, to explore the
robustness of parameters over a timeframe of interest (Farhang-
Sardroodi et al., 2022).

The advantage of local parameter sensitivity analysis is
computational simplicity: one must only solve the model at n + 1
parameter sets to quantify local sensitivity, where n is the number of
parameters. More sophisticated methods are available to compute
the local sensitivity index, though they require more computations
(Zi, 2011). Nonetheless, local sensitivity analysis has several
shortcomings. First, it can only be used when model output is
approximately linear within the specific region of interest. Further, it
only quantifies the impact of changing one parameter at a time and
therefore cannot evaluate the impact of parameter interactions
(Zhang et al., 2015). Finally, it does not allow for the
determination of whether there is more than one region of
parameter space that near equally-well describes the data, as the
analysis is performed locally about a particular point (the best-fit
parameters, if known) in parameter space.

As virtual clinical trials must be composed of a heterogeneous
group of virtual patients, it is likely too restrictive to only quantify
sensitivity local to the best-fit parameter set. A more holistic view of
the parameter space can be attained through a global sensitivity
analysis. A range of approaches exist to perform such analyses, and
the reviews in (Zi, 2011; Qian and Mahdi, 2020) summarize a
number of these methods and their associated computational
costs. All these methods overcome the shortcomings of local
sensitivity analysis by quantifying the sensitivity of model output
with respect to large variations in the input parameters. Here we will
focus on a computationally intensive but powerful class of global
sensitivity methods: variance decomposition techniques.

Variance decomposition techniques, including Sobol sensitivity
analysis and the Fourier amplitude sensitivity test (FAST), quantify
the contributions of a model parameter (or a combination of
parameters) to the output variance. We will focus on Sobol’s
method, while noting there are excellent resources to learn about
FAST and extended FAST (eFAST) (Marino et al., 2008). To
understand the Sobol sensitivity analysis method, consider the set
of input parameters p � (p1, p2, ..., pi, ..., pn) and view each pi, after
rescaling into the range [0,1], as a mutually independent uniformly
distributed random variable. Interpreting the parameters in this way
means the model output Y(p) is a random variable with mean Y0

and variance D, where

D � ∫Y p( )2dp − Y2
0 � ∫Y p( )2dp − ∫Y p( )dp( )2

(3)

And each multiple integral is evaluated over the rescaled domain
on each dimension (Zhang et al., 2015).

As the name implies, variance decomposition methods
decompose variance of the output Y(p) into the contribution
from single parameters, pairwise combinations of parameters,
and so on:

Y p( ) � Y0 � ∑n
i�1
Yi pi( ) +∑

i< j
Yij pi, pj( ) + ... + Y1...n p1, ..., pn( ), (4)

where model output Yi is a function of pi, Yij is a function of pi and
pj, etc. This can be shown (see (Zhang et al., 2015)) to be equivalent
to decomposing the total variance D as

D � Y0 � ∑n
i�1
Di +∑

i< j
Dij + . . . +D1...n, (5)

whereDi1 ...ik � ∫Y2
i1 ...ik

dpi1 . . . dpik is called the partial variance of Y
corresponding to the subset of parameters i1, . . . , ik{ }. With these
partial variances, the corresponding sensitivity indices can be
defined as

Si1...ik �
Di1...ik

D
. (6)

By definition, the sum of all the sensitivity indices evaluates to 1,
allowing for a straightforward interpretation of each sensitivity
index. For instance, if Si � Di/D � 0.75, 75% of the model output
variance is explained by varying just the parameter pi over its
interval. The sum of the first order sensitivity indices also gives
useful information regarding the role of pairwise (and higher)
interactions of parameters. For example, if the sum of all the
first-order sensitivity indices is close to 1, combinations of
parameters contribute little to model output variance. Conversely,
if the sum of these indices is close to 0, combinations of parameters
play a significant role in model output variance.

Open source code exists for implementing variance decomposition
methods inMATLAB, including the GSAT package for implementing a
Sobol sensitivity analysis (Cannavo, 2012) and eFAST for implementing
FAST (Kirschner Lab, 2023). R has a sensitivity package that includes an
implementation of Sobol sensitivity analysis via the sobol command,
and an implementation of FAST via the fast command (DataCamp,
2023). Independent of the method and language used, care is required
in choosing which parameters to analyze and over what range of values
(Qian and Mahdi, 2020). As variance-based decomposition methods
are computationally expensive, it is not always feasible or necessary to
perform a global sensitivity analysis over all dimensions of parameter
space. The availability of real-world measurements on parameter values
can sometimes remove certain parameters from consideration for a
global sensitivity analysis. Alternatively, as recommended by (Zi, 2011),
low-cost global sensitivity methods can be used to screen all model
parameters and identify those that can be omitted from the more
computationally-expensive variance decomposition methods.

Once a subset of parameters has been identified, the lower and
upper bound on each parameter must be determined before a Sobol
sensitivity analysis can be conducted. The choices made at this step
can have a significant impact on your sensitivity analysis (Qian and
Mahdi, 2020): choosing a range that is too small can result in
underestimating the importance of a parameter on model output
variance, whereas choosing a range that is too large to be realistic
given the real-world context may result in overestimating the
sensitivity index. Unfortunately, there is no correct way to choose
these bounds in the absence of good data restricting the value of each
parameter, which rarely occurs in more complex biological models.
Despite this challenge, understanding the global sensitivity of model
parameters, and combinations of model parameters, is essential for
generating a heterogeneous set of virtual patients that mimics the
variability observed in real-world patients.

Anotherway to get amore global view of parameter space is through
an identifiability analysis, which assesses if the available data results in a
model with well-determined parameter values and predictions (Wieland
et al., 2021). As noted by Eisenberg and Jain, “Issues of parameter
unidentifiability and uncertainty are highly common in mathematical
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biology—even for very simple models” (Eisenberg and Jain, 2017). The
issue tends to be compounded as more complex models are built to
capture more mechanistic/physiological detail (Sher et al., 2022). Two
types of identifiability are commonly analyzed: structural identifiability
and practical identifiability.

Structural identifiability determines if the model structure allows
for parameters to be uniquely determined in the context of “perfect”
data (Eisenberg and Jain, 2017; Wieland et al., 2021). The
exponential growth differential equation in which a population y
grows at rate b and dies at rate d:

_y � by − dy (7)
is a trivial example of a model that is not structurally identifiable.
Suppose we had error-free, noise-freemeasurements of the population
y that allows one to determine that the net growth rate is 2
(i.e., b − d � 2). From this perfect data it is not possible to
uniquely determine the values of the birth and death rates, and
therefore this model is not structurally identifiable. Here, and in
general for models that are not structurally identifiable, one can
attempt to re-parametrize the system and/or reduce the number of
parameters to enforce structural identifiability (Eisenberg and Jain,
2017). In the exponential growth example, simply defining the net
growth rate as r � b − d is sufficient to make the model structurally
identifiable. Alternatively, one can incorporate the learned growth rate
(of 2 in the proposed example) into a formalized relationship between
parameters b and d, by replacing d in the model equations with
d � b − 2. Either way, the model has been reworked to reduce the
number of fitted parameters to achieve identifiability.While structural
non-identifiability can be determined a priori using only the model,
below we will only explore an a posteriori method that uses available
data. See (Eisenberg and Jain, 2017; Wieland et al., 2021) and the
references therein for a summary of a priori and a posteriorimethods
for determining structural identifiability.

Practical identifiability determines if the available data, which
are invariably incomplete and noisy, are sufficient to determine
model parameters with adequate precision (Wieland et al., 2021). As
with structural identifiability, there are many approaches for
assessing the practical identifiability of model parameters given
available data, and reference (Eisenberg and Jain, 2017) gives an
overview of several of these methods while providing references to
other methods. Herein, we highlight the profile likelihood method,
as this approach allows for both the practical and structural
identifiability of parameters to be determined (Raue et al., 2009).

The profile likelihood of a parameterpi describes how the goodness
of themodel fit to data changes aspi is varied across a specified domain.
The profile likelihood function for pi can be approximated using the
following step-by-step procedure (Raue et al., 2009).

1) Determine the domain over which pi is to be varied. Your local
and/or global sensitivity analysis can help here, along with a
priori biological knowledge.

2) Fix pi � p*
i at a value in the domain.

3) Using your chosen optimization algorithm, find the best-fit
parameter set, and the associated best-fit value of the cost
function, when pi is fixed at p*

i .
4) Repeat Steps 2-3 for a discrete set of sampled values p*

i

adequately covering the pre-determined domain of
parameter pi.

5) Plot the optimal value of the cost function determined at Step
3 for each sampled p*

i value. The resulting plot is a numerical
approximation of the profile likelihood function for parameter pi.

A confidence interval for pi can be derived by combining its
profile likelihood function with what is called the likelihood
threshold. In particular, if k parameters are being fit to profile pi,
the 95% likelihood threshold is determined from a chi-squared
distribution with significance level α � 0.05: Δα � χ2(α, k) (Raue
et al., 2009). The 95% confidence interval for pi is then the set of all
parameters for which the profile likelihood curve falls below the
computed threshold Δ0.05 + ζ min, where ζ min corresponds to the
value of the objective function at the best-fit parameter set when
fitting all k + 1 parameters. Three representative profile likelihood
curves and the corresponding 95% confidence threshold are shown
in Figures 2A–C.

The profile likelihood curve for a parameter that is practically
identifiable given available data should appear near-quadratic (as
shown in Figure 2A), with a clear global minimum representing the
best-fit value of the parameter. Another feature of a practically
identifiable parameter is that its profile likelihood curve exceeds the
95% confidence threshold as the parameter is both decreased and
increased from its best-fit value (Raue et al., 2009). In contrast, a
structurally non-identifiable parameter is characterized by a
completely flat profile likelihood curve (see Figure 2B) (Raue
et al., 2009; Eisenberg and Jain, 2017; Wieland et al., 2021),
indicating that an infinite set of parametrizations equally well-
describe the data. Finally, the profile likelihood of a model
parameter that is practically non-identifiable given available data
(but is structurally identifiable) does achieve a minimum value.
However, as illustrated in Figure 2C, the curve does not exceed the
95% confidence threshold in at least one direction (either when the
parameter decreases or increases from its best-fit value) (Raue et al.,
2009).

When all parameters in a model are practically identifiable given
the available data, one can have high confidence in the value of the
model parameters. As a consequence, model outputs tend to be
tightly constrained, lending confidence to the model’s predictions
(Sher et al., 2022). When a model contains parameters that are
practically non-identifiable, a wide range of parametrizations can
near equally well-describe the data (Wilkie and Hahnfeldt, 2013;
Wilkie and Hahnfeldt, 2017). This may be a benefit when the aim of
the analysis is to capture population heterogeneity and to create
multiple VPs that will have differing responses in the trial. Caution
should be taken, however, as the model may predict an
unrealistically wide range of outcomes (Whittaker et al., 2020;
Sher et al., 2022), or potentially biologically unfeasible outcomes.
In the latter case, the constraints on that parameter could be
revisited, or the results taken as an extreme limiting case. In the
first case, we may not be able to draw any conclusions about a
variable-of-interest in experimental circumstances that differ from
the ones in which the data was collected. An example of this is shown
in Figure 2D, where a model of combination cancer immunotherapy
has multiple parametrizations that well-describe the 31 days of
available volumetric time-course data, but extrapolating tumor
behavior beyond that time frame results in wildly different
predictions of the treatment efficacy and tumor response (Luo
et al., 2022).
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In summary, sensitivity and identifiability analyses support the
work of creating a heterogeneous, yet realistic, group of virtual
patients. They do so by helping to refine a fit-to-purpose model that
threads the needle between simplicity (more likely with identifiable
parameters) and complexity (more detailed yet likely with non-
identifiable parameters) (Sher et al., 2022). While models with
practically non-identifiable parameters run the risk of predicting
unrealistic output, they are also more likely to be able to capture the
natural variability observed in real patients (Whittaker et al., 2020).
So, as argued by Sher et al. (Sher et al., 2022), one should not dismiss
a model with non-identifiable parameters outright, as it may be
necessary for representing a heterogeneous (yet realistic) range of
behaviors in virtual patients.

2.4 Step 4: Generate and verify the virtual
patients/parameter sets

Once a model’s parameters have been estimated, and the specific
characteristics have been identified to define virtual patients using

sensitivity/identifiability analyses, we need to generate a virtual
population cohort. In principle, a VP requires a priori knowledge
of parameter distributions from experimental or clinical data. In
practice, however, these data are rarely available, as models
frequently include kinetic rate parameters that are difficult or
impossible to measure and whose distributions are therefore
unknown. To get around this limitation, parameter estimation
and sampling are used to produce plausible parameter
distributions from which the virtual patients are constructed.

There are three main classes of techniques that can be used:
sampling from pre-established distributions (particularly relevant to
population pharmacokinetic models), probabilistic interference
using, e.g., MCMC, and trajectory matching via global
optimization strategies like simulated annealing, genetic
algorithms, etc. The choice of VP generation strategy depends on
the available data, a modeler’s familiarity with probabilistic
inference or optimization approaches, and the goal of the study.

In the most straightforward case, a population pharmacokinetic
(PopPK)model has been previously determined from patient data. If
one is interested in the effects of PK variability on projected

FIGURE 2
Illustration of the profile likelihood method. Profile likelihood curves (blue) of (A) a practically identifiable parameter, (B) a structurally non-
identifiable parameter, and (C) a structurally identifiable but practically non-identifiable parameter. Thresholds for the 95% confidence intervals are
indicated with red dashed lines. (D) Two parametrizations of the model of immunostimulatory oncolytic viruses and dendritic cell injections in (Luo et al.,
2022) that have near-identical fits to tumor volume data, yet yield drastically different predictions for post-treatment tumor dynamics.

Frontiers in Systems Biology frontiersin.org08

Craig et al. 10.3389/fsysb.2023.1174647

https://www.frontiersin.org/journals/systems-biology
https://www.frontiersin.org
https://doi.org/10.3389/fsysb.2023.1174647


outcomes, a nonlinear mixed effects PopPK model (with any
reported correlations between parameters) can be directly
implemented (Teutonico et al., 2015; Välitalo et al., 2017;
Surendran et al., 2022). From this model, virtual patients can be
defined as samples from the previously established log-normal
parameter distributions within the PopPK model using
multivariate random number generation. However, it is
important to note that in most cases, unless coupled with a
population pharmacodynamic (PopPD) model, this approach will
not provide any information on the effects of physiological variation
on PK outcomes.

Unlike sampling from PopPK models that are generally
constructed from clinical trial data, MCMC sampling, or Bayesian
inference, is a powerful tool that can be used to randomly sample from
and reconstruct distributions of parameters. MCMC (and
approximate Bayesian computing, as discussed above) is therefore
particularly well-suited to generating virtual patients when we have
experimental or clinical data for the mechanistic (i.e., non-
pharmacokinetic) parameters included in the virtual patient
parameter set. Note that approximate Bayesian computing and
MCMC have conceptual overlaps, in that they rely on priors for
their sampling and use rejection criteria to determine the suitability of
proposed posteriors. MCMC uses its sample to compute Bayes’ rule,
which is not required in ABC.

MCMC is focused on finding a Markov chain, defined on a state
space s � (s1, . . . , sn), that has a stationary distribution that satisfies
the probability density function (PDF) of the state space s. The
approach makes use of the memoryless nature of Markov chains,
their stationary distributions, and the transition probabilities R that
describe the probability of moving from state i to state j in the
Markov chain. The elements of R are generally unknown but can be
constructed using various sampling algorithms. Using such an
algorithm (e.g., the Metropolis-Hastings sampling), and sampling
from a prior PDF (e.g., a uniform distribution), we can construct a
Markov chain that converges to the stationary distribution described
above (Brooks et al., 2011). A general sketch of MCMC sampling is
as follows:

Suppose we are initially at state si.

1) Propose a move/jump to new state sj whose conditional
probability density given si is written as r(si, sj).

2) Calculate the Hastings ratio (i.e., the probability of acceptance) as

a si, sj( ) � h sj( )r sj, si( )
h si( )r si, sj( ) .

Here, h(sj) is a (unnormalized) density of the stationary distribution
of the MCMC sampler.

3) Sample a binomially distributed random variable with success
probability a(si, sj). If this value is less than a(si, sj), the new
state is accepted, si � sj, otherwise keep state si. The probability
1 − a(si, sj) is known as Metropolis rejection.

4) Repeat steps 1-3 until the desired chain length is obtained.

Using this or similar probabilistic inference schemes will provide
samples of the model parameters that correspond to the
distributions we seek, namely, those in the data of interest.

Unfortunately, parameter distributions are not always known or
available from in vitro, in vivo, or clinical studies. One approach to
constructing VPs in this situation is to bootstrap the available
experimental data and construct a distribution for each
parameter using its best-fit value in each bootstrap replicate, as
was done in the Virtual Expansion of Populations for Analyzing
Robustness of Therapies method (Barish et al., 2017). A more
common approach is to use trajectory matching/parameter fitting
optimization to generate parameter samples that enable model
outputs to fit the available data. A direct MCMC parameter
fitting method will generate parameter sets pi that adequately fit
the model to the data and generate the posterior parameter value
distributions at the same time. The approach developed by Allen
et al. (Allen et al., 2016) and expanded upon by Rieger et al. (Rieger
et al., 2018; Rieger et al., 2021), uses global optimization routines
(such as MCMC) and selection criteria based on experimental or
clinical data to form a VP cohort corresponding to model
predictions within a plausible range for the observable outputs.
The basic scheme is as follows:

1) Randomly sample selected parameters from uniform (or other)
prior distributions centered at their mean values and store in the
set pi.

2) For parameter set pi, use a global optimization strategy to
minimize the cost function g(pi) by perturbing pi, where

g pi( ) � ∑
j

max Mj pi( ) − Lj + Uj

2
( )2

− Uj

2
− Lj

2
( )2

, 0[ ],

pi is the resulting fitted parameter vector, Mj(pi) is the model
prediction for the jth state variable or output, and Lj and Uj are
biologically plausible lower and upper bounds for the jth model
trajectory, respectively. Note that if a trajectory is within the interval
defined by the plausible bounds, then g(pi) � 0. Once optimized,
store pi as a plausible virtual patient.

3) Repeat steps 1 and 2 until the desired plausible VP pool size is
achieved.

4) Select the VP population from the plausible VP pool (i.e., all pi)
to match the prevalence of selected features within the clinical
population of interest and adjust the VP population size to
correspond to the observed data. This selection step is not
always necessary, but can be required when e.g., generating a
VP from a larger population than the study population of interest
(see Allen et al. (Allen et al., 2016), for example,). Other
approaches to pruning candidate VP populations to a final
VP are discussed in Derippe et al. (Derippe et al., 2022),
where parameter monotonicity is exploited to systematically
reduce the relevant parameter space.

In all three scenarios (sampling from previously establish
PopPK/PD model, performing MCMC sampling, and using
global optimization strategies to match model outputs to clinical
observations), it is critical to ensure that the VP population matches
observed behaviors. Simulating the entire cohort’s dynamics and
validating against secondary data is therefore the final crucial step in
the generation procedure (Brady and Enderling, 2019), regardless of
the strategy employed.
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2.5 Step 5: Conduct your virtual clinical trial

Once you have generated your virtual patients, you are ready to
explore your problem of interest (Cassidy and Craig, 2019; Jenner et
al., 2021a). While there are a large range of questions that one can
explore in a virtual trial, here we highlight some examples. Those
who work at the interface of preclinical and clinical science may be
interested in using a virtual clinical trial to guide dose selection prior
to giving the drug to patients. For first in human (FIH) dose
selection, the two key criteria that need to be assessed are safety
and efficacy. A viable drug candidate will have a minimally
efficacious/effective dose that is significantly lower than the
maximum tolerated dose; the difference between these two doses
is known as the therapeutic index (Tamargo et al., 2015). Safety
assessments are typically based on toxicity studies, where
increasingly higher doses are given to preclinical species until a
safety signal is observed. Pharmacokinetic metrics for these doses,
such as the maximum observed concentration (Cmax), and total
exposure (area under the curve, or AUC) are used to calculate safety
margins and to determine dosing thresholds for many drugs.

Minimally efficacious doses are hard to determine since we often
do not have clear quantifiable efficacy markers. For this purpose, site
of action models have proven to be very helpful. They describe both
change in drug concentration over time, and the dynamics of the
desired target at the site of action, such as a tumor. With these
models, based on known or estimated drug and target properties,
one can calculate doses that will result in “sufficient” target coverage.
While the level that is sufficient for efficacy may sometimes be hard
to quantify precisely, for antagonist drugs, one typically strives to
ensure a minimum of 90% target coverage at the site of action. This
approach is called a “no regrets” strategy and is predicated on the
assumption that if we covered over 90% of the target and have not
observed efficacy, then it is most likely the wrong target for this
disease, or that targeting this mechanism alone is not sufficient
(Kareva et al., 2018; Kareva et al., 2021).

VP-based analysis can allow balancing efficacy and safety
considerations in cases when quantifiable safety and efficacy
thresholds are available. In such cases, VP simulations can allow
estimating at what dose/schedule a majority (often around 90%–
95% but it depends on the indication and study design criteria) of
simulated patients would be expected to be both as efficacious and
safe as possible/acceptable, which may guide dose selection prior to
administering the drug to actual patients.

Beyond FIH dose selection, there are many other questions that
can be explored in a virtual clinical trial. For instance, virtual clinical
trials can be used to identify predictive biomarkers that separate
responders from non-responders (Wang et al., 2020; Jenner et al.,
2021b; Cardinal et al., 2022). It should be noted, though, that such
stratification is only based on inter-individual variability criteria that
are already built into the model, and thus VP simulations cannot
identify novel factors that may affect treatment safety or efficacy. A
virtual clinical trial can also be used to quantify how the optimal
personalized treatment protocol varies across VPs (Barish et al.,
2017) and to identify promising drug combinations. Further, the
generation of VPs can be applied beyond virtual clinical trials to
identify biomarkers of disease severity (Jenner et al., 2021a), with the
potential to be directly integrated into the clinic and leveraged for
drug discovery. The references in this section, along with (Cheng

et al., 2022; Surendran et al., 2022), are recommended for the reader
who would like to explore concrete examples of executing in silico
clinical trials.

2.6 Step 6: Go back to prior rules as needed
and cycle until satisfied

To summarize, designing a virtual clinical trial involves the
following steps.

1) Identify the question of interest, such as percent of patients for
which a drug is expected to hit an efficacy threshold at a
particular dose or schedule.

2) Create a model of sufficient complexity to be able to capture the
key features of the process of interest, but not so complex that the
variations in output cannot be traced to specific mechanisms
built into the model.

3) Parametrize the model using either literature values or
experimental data and parameter fitting methods. If the
model cannot be parametrized with available data, one may
need to return to Step 1 and reframe or simplify the model.

4) Conduct parameter sensitivity and identifiability analyses to help
select model parameters that should be held fixed versus those
used to define the virtual patients.

5) Create a virtual patient cohort.
6) Conduct model simulations and analyses to address the

motivating question.
7) If the VP analysis and simulations do not make sense, then a

problem has been identified in the process: i) the question was
not well posed (in which case return to step 0), ii) the model
structure was incorrect (in which case return to step 1), or iii)
parameter estimates were incorrect (in which case return to step
2). All of these scenarios can be informative, with the second
scenario being perhaps the most scientifically informative, as it
suggests that the foundational biological understanding is
insufficient. This in turn provides an opportunity to formulate
and test additional biological hypotheses using computational
methods prior to conducting the VP analysis.

These steps, and the interdependence between them, are
summarized in the schematic shown in Figure 1.

Importantly, one should try to find a “test case” scenario to
evaluate and calibrate the VP analysis methods. For example, if the
virtual population is used to test the impact of a novel checkpoint
inhibitor, it would be very informative to check first if the model can
capture the key results available for an existing trial of another
checkpoint inhibitor, potentially with a similar mechanism of action.
If such data are not available, one should still design “control”
experiments to evaluate whether the model captures reasonable
qualitative behaviors under reasonable “experimental” conditions.

3 An illustrative example

In this section, we show how to execute the steps described above
to conduct a virtual clinical trial using a mathematical model for
oncolytic virotherapy. Oncolytic viruses (OVs) are standard viruses
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that are genetically modified to target, replicate within, and lyse
cancer cells (Jenner et al., 2021b). The data used to calibrate the
model considers treatment of murine B16-F10 melanoma tumors
with three doses of 1010 OVs given 2 days apart (Huang et al., 2010).
Figure 3A–C shows a previously developed and parametrized three-
compartment system of ordinary differential equations to model the
OV data (Wares et al., 2015). Parameters that could be estimated
from the literature are fixed, whereas parameters that are harder to
measure or are likely to vary from patient to patient are fit.

An identifiability analysis of the fit parameters using profile
likelihood (Figure 3D–F) demonstrates that the tumor growth rate r
and the initial tumor volumeU0 are practically identifiable, whereas the
infectivity parameter β is identifiable structurally but not practically.We
were comfortable proceeding with our virtual clinical trial under these

conditions, as all parameters are structurally identifiable, and the lack of
practical identifiability can result in clinically meaningful response
differences between virtual patients. We generated 100 virtual
patients by randomly sampling a value of (r,U0, β) from a normal
distribution with a mean equal to the best-fit value of the parameter
((�r, U0, �β) � (0.2676, 0.5693, 57.25)) and standard deviation equal to
a quarter of the mean. Any parametrization for which the
corresponding tumor trajectory lies within three standard deviations
of the mean trajectory of the experimental data (grey shaded region in
Figure 3G) is accepted as a virtual patient. Any trajectories outside the
grey region are rejected and not considered for further analysis.

With the virtual population defined, we are ready to conduct a
virtual clinical trial. We explored the following question: how does the
percent of responders (defined here as individuals whose tumors shrink

FIGURE 3
Example of conducting a virtual clinical trial. (A) Model of oncolytic virotherapy, where uV(t) is the source term of the virus determined by the
administration schedule shown in (C) (Wares et al., 2015). (B)Model parameters and initial conditions. (C) Best fit of model to average experimental data
when fitting only the parameters and initial conditions specified in (B). (D–F) Profile likelihood curves for the non-fixed parameters. (G) 100 virtual patients
that form our virtual population. (H) Virtual clinical trial predicts what percent of virtual patients shrink in response to OV treatment as a function of
OV dose [with the protocol fixed as in (C)]. Doses range from experimental dose of 1010 OVs/injection to 90 times the experimental dose.
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from it is initial volume) change as a function of the OV dose
administered? (Notably, while partial response is defined as at least
a 30% decrease in the sum of target lesions according to RECIST criteria
(Villaruz and Socinski, 2013), here we define response as any reduction
of tumor volume from initial volume, an assumption that can be
modified as needed for a particular situation). The results are
summarized in Figure 3H. Our virtual clinical trial reveals that OVs
must be administered at significantly higher doses than the
experimental dose to observe efficacy at the protocol used in
(Huang et al., 2010). For instance, giving ten times more OVs per
dose only results in 29% of the virtual patients being classified as
responders, while a dose 87 times higher than the experimentally tested
one is required for all virtual patients to respond. This analysis also
suggests that the doses required to elicit a response in a sufficient
number of virtual patients are likely prohibitively high. Therefore, either
the proposed protocol (three doses given every 2 days) is not
appropriate or OVs should not be used as monotherapy. Both
possible conclusions provide testable hypotheses that can be
evaluated prior to investment into further clinical studies.

4 Conclusion

For the last several decades, mathematical modeling has played a
pivotal role in the drug development process. It is now poised to
further support this process using the novel techniques of in silico
clinical trials and digital twins. In this review, we focused on virtual
clinical trials that aim to simulate and predict the heterogeneity in
response across a patient (sub)population. Such in silico clinical
trials may allow for the drug development process to be more
financially efficient, safer, and effective for a broader range of
patients. On the other hand, the purpose of a digital twin is to
mirror key characteristics of a single person as they pertain to their
response to particular therapeutics (22). Together, these
computational tools offer immense promise in supporting the
development of drugs, doses, protocols, and combinations that
benefit larger portions of the patient population.
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