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The most interesting, but insufficiently known results obtained by the author in modeling
laser-induced hyperthermia of human tumors are discussed. It is important that the
traditional equation for the local bio-heat transfer does not work in superficial layers of
the body. It is shown also that the classical Arrhenius law is not applicable to living tissues
because of the tissue regeneration due to oxygen supplied by the arterial blood. The latter
is one of the main reasons of the suggested strategy of laser heating of tumors in the
therapeutic window of semitransparency when the tumor asphyxiation is considered as
one of important weapons against the cancer. The other advantages of this advanced
strategy of a soft thermal treatment (in few of sessions), which is painless for patients, are
discussed as well. Some features of modeling various heat transfer modes are also
considered. The best choice between the simplest differential models for the radiative
transfer calculations is dependent of the particular problem statement. The known finite-
difference or finite element algorithms can be preferable in solving transient heat transfer
problems. As a rule, it depends on the shape of the computational region. It is expected
that this paper will help the colleagues to overcome some typical weaknesses of
computational modeling of infrared photothermal treatment of superficial tumors.
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INTRODUCTION

Hyperthermia or thermal therapy, most likely, is the oldest method of treating superficial human
tumors (there is documentary evidence of the use of this method in ancient Egypt around 3000 BC).
With the invention of modern lasers, this method, sometimes used in combination with
chemotherapy and ionizing radiation therapy (van der Zee, 2002; Camerin et al., 2005; Datta
et al., 2015; Mallory et al., 2016; Peeken et al., 2017), has been fundamentally improved and continues
to be successfully applied in medical practice. The essence of local tumor hyperthermia is that cancer
cells are destroyed even with slight (up to 42–44°C), but prolonged overheating, while under similar
and even stronger thermal conditions the healthy cells can be self-regenerated (Yarmolenko et al.,
2011; Spichka et al., 2019).

The intensive development of modern technologies has led to the use of gold and composite
nanoparticles in laser hyperthermia (mainly for the treatment of superficial tumors) (Huang and
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El-Sayed, 2010; Chatterjee et al., 2011; Bayazitoglu et al., 2013;
Jague et al., 2014; Abadeer and Murphy, 2016; Kaur et al., 2016;
Bucharskaya et al., 2018; Dykman and Khlebtsov, 2019; Vines
et al., 2019). The implementation of such particles into
biological tissues leads to a significant increase in the local
absorption coefficient in one or another part of the therapeutic
semitransparency window, which covers the wavelength range
from about 0.6 to 1.4 μm (Cheong et al., 1990; Duck, 1990;
Mobley and Vo-Dinh, 2003; Tuchin, 2007; Bashkatov et al.,
2011; Jacques, 2013) and allows one to act on tissues at a certain
depth under the irradiated body surface.

The possibility of using short-pulse lasers has led to the
development of alternative methods of laser-induced treatment
and to new difficulties in modeling processes in biological tissues,
especially when nanoparticles are embedded in tissues (Jaunich
et al., 2008; Muthukumaran andMishra, 2008; Liu and Hsu, 2008;
Bhuvaneswari and Wu, 2009; Ruan et al., 2010; Mishra et al.,
2012; Zhang et al., 2013; Browmik et al., 2014; Randrianalisoa
et al., 2014; Yakovlev et al., 2019). At the same time, a number of
methodological issues that arise even with the use of
continuous-wave lasers and without nanoparticles remain
insufficiently clarified. As a result, even in recent
publications there are physical errors in the formulation of
the heat transfer problem and also not reasonable choice of the
method for calculating the radiative transfer. Moreover, the
kinetic models of thermal tissue injury ignore the continuous
regeneration of living tissue due to oxygen supplied by
erythrocytes of the arterial blood. These disadvantages not
only may lead to significant errors in the calculations, but
also do not make it possible to choose the right strategy for
combating superficial cancerous tumors.

In this regard, the author considers the objective of the present
work in a well-grounded and understandable presentation of key
physical issues using the example of the most technically simple
model of laser-induced hyperthermia.

TRANSPORT APPROXIMATION AND
DIFFERENTIAL MODELS

The radiative transfer in biological tissues has the following
features that are important for the rational choice of an
appropriate method for solving the problem:

1 In the therapeutic window of semitransparency, the scattering
of radiation by numerous structural elements of each biological
cell with size comparable with the radiation wavelength is
much greater than the absorption of radiation (e.g. Mobley and
Vo-Dinh, 2003).

2 To calculate the temperature of biological tissue, it is necessary
to know the power field of the radiation absorbed in the
medium, while the angular distribution of the radiation
intensity does not matter.

The first of these circumstances means that the incident
radiation undergoes multiple scattering. In problems of this
type, the details of the phase function of single scattering are

not important, and the simplest transport approximation is quite
sufficient. According to this approximation, the scattering
function is replaced by a sum of the isotropic component and
the term describing the peak of forward scattering. In this case,
the general radiative transfer equation (Howell et al., 2021;
Modest and Mazumder, 2021) is greatly simplified and has the
same form as that for the hypothetical isotropic scattering. The
transport approximation, first proposed for problems of neutron
transport (Davison, 1957; Pomraning, 1965; Sanchez and
McCormick, 1982), is widely used for radiative heat transfer in
scattering media by (Dombrovsky, 1996a, Dombrovsky, 1996b,
Dombrovsky, 2012, Dombrovsky, 2016, Dombrovsky, 2019) and
by Dombrovsky and Baillis (2010), as well as for radiative transfer
in biological tissues (Tuchin, 2007; Kienle et al., 2007; Sandell and
Zhu, 2011; Jacques, 2013; Dombrovsky et al., 2011, Dombrovsky
et al., 2012, Dombrovsky et al., 2013, Dombrovsky et al., 2015,
Eisel et al., 2018). Note that researchers dealing with the optical
properties of biological tissues talk about equivalent isotropic
scattering and use the term “reduced scattering coefficient”
instead of the “transport scattering coefficient”. It seems
appropriate to recall also several recent publications on
various problems of thermal engineering, geophysics, and
aerospace engineering (Dombrovsky et al., 2016; Dombrovsky
et al., 2017; Dombrovsky et al., 2018; Dombrovsky et al., 2019;
Dombrovsky et al., 2020; Krainova et al., 2017; Dombrovsky and
Randrianalisoa, 2018), a fairly accurate solution of which was
obtained using the transport approximation.

Due to the linearity of the radiative transfer equation, the
traditional technique can be used: the radiation intensity at each
point of the medium is presented as a sum of the diffuse
component and the directional incident radiation, which is
exponentially attenuated in the medium (Sobolev, 1975). As a
result, it is sufficient to focus on more complex problem for the
diffuse radiation.

The second feature of the problem being solved suggests a
possibility of a simple description of the angular dependence of
the diffuse component of the radiation field. It is known that this
approach leads to one of the simplest differential approximations:
either to the known P1-approximation, or to the modified two-
flux approximation taking into account the effect of total internal
reflection at the body surface (Dombrovsky et al., 2006). In both
cases, the calculation of the power field of the radiation absorbed
in the medium is reduced to solving a boundary value problem for
an ordinary differential equation of the second order. The choice
between the named differential approximations is determined by
the dimension of the problem and the type of boundary
conditions (Dombrovsky et al., 2012, 2015). Comparison with
exact numerical calculations for a typical problem of laser
hyperthermia (Dombrovsky et al., 2013) showed that the
modified two-flux method gives rather accurate results when
solving one-dimensional problems. At the same time, the classical
diffusion approximation (P1), which ignores the discontinuity in
the angular dependence of the radiation intensity on the
irradiated surface, is more universal, since it is applicable for
computational regions of complex shapes. As for the relatively
large error of P1 near the body surface, this disadvantage turns out
to be insignificant, for example, when cooling the surface, which
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is recommended for the promising peripheral heating of the
tumor (Dombrovsky et al., 2012).

TRANSIENT HEAT TRANSFER MODEL

The simplest and frequently used description of heat transfer in
the human body is based on the so-called bioheat equation
proposed in the early work by Pennes (1948). It was assumed
that the arterial blood temperature, Tb, is uniform throughout the
tissue while the venous blood temperature is equal to the local
tissue temperature Tt. The resulting transient energy equation is
as follows:

(ρc)t
zTt

zt
� ∇(kt∇ Tt) + ρbcbωb(Tb − Tt) +Wm (1)

where the second term on the right-hand side is responsible for
the heat transfer due to arterial blood perfusion of rate ωb, and the
last term Wm is the metabolic heat generation within the tissue.
Approximate Eq. 1 contains obvious physical contradictions. It is
assumed that heat transfer from arterial blood does not depend
on the diameter of the blood vessels, whereas in many parts of the
body there are only thinner vessels and capillaries. This equation
does not take into account the cooling of arterial blood. This can
be applicable only to estimate the volumetric heat transfer in
internal organs containing large vessels of arterial blood.

A more general model for heat transfer in human tissues
should be based on two coupled energy equations for the tissue
and arterial blood with the spatial and time variation of the
arterial blood temperature (Khaled and Vafai, 2003; Nakayama
and Kuwahara, 2008). The models of this type have been
considered in early paper by Xuan and Roetzel (1997) and
also in more recent publications (Dombrovsky et al., 2012; He
and Liu, 2017;Wang et al., 2018; Andreozzi et al., 2019; Dutta and
Kundu, 2019).

In this paper, we consider only superficial tumors. This
simplifies significantly the calculations of heat transfer. There
are several layers of biological tissue at the surface of the body: a
thin epidermis that does not contain blood vessels, dermis
(sometimes subdivided into several layers) and a fat layer with
a small number of capillaries. The fat layer is followed by the
muscle layer with more arteries. Superficial tumors, as a rule, are
concentrated in the dermis, can penetrate into the fat layer, but do
not reach the muscle layer. According to (Dombrovsky et al.,
2012), the difference between the temperature of tissue and
arterial blood in the fat layer and epidermis is negligible and
heat is transferred from the muscle layer to the body surface
mainly by conduction.

Obviously, there is no need in a separate energy equation for
blood in the human skin, and the heat transfer during
hyperthermia can be calculated using the following simple
equation:

(ρc)t
zTt

zt
� ∇(kt∇ Tt) +Wm +Wrad (2)

where the last term is the absorbed radiation power.

Eq. 2 seems too simple to suggest an original tumor heating
method. Fortunately, this is not the case, and the author’s
experience in calculating the transient temperature fields in
structures of complex shapes made it possible to suggest an
interesting way of uniformly heating the tumor. This is the so-
called indirect heating strategy.

It is known that direct laser heating of a superficial tumor can
lead to an undesirable protective reaction of the body with an
increase in local perfusion. Periodic heating of only the annular
region around the tumor using a scanning laser beam proposed
by Dombrovsky et al. (2012) radically changes the strategy of
hyperthermia. During the long pauses between heating periods,
heat is transferred to the tumor by conduction. In this case, the
tumor is heated uniformly from several sides (Figure 1). The
human thermal regulation system is not designed to receive an
additional heat from the body volume (not from the body
surface), and such heating should not cause a significant
increase in perfusion. Heating of healthy tissue around a
tumor can be enhanced by introducing gold nanoparticles into
the illuminated area, but embedding the nanoparticles into
biological tissues is related with serious additional difficulties,
instead of which it is sufficient to increase the power of incident
laser radiation.

When calculating both the field of the absorbed radiation
power and transient axisymmetric temperature field in the tumor
and surrounding healthy tissues, it is possible to use the universal
finite element method, which is more convenient for
computational regions of complex shape (Chen, 2011;
Zienkiewicz et al., 2013), as was done in (Dombrovsky et al.,
2012).

Sometimes, it is possible to use a simpler and more economical
finite-difference method. In the heat conduction part of the
problem, the implicit scheme of the second order of
approximation with splitting the spatial differential operator
into two parts and alternately integrating the equation at each

FIGURE 1 | A typical temperature field in the case of a periodic peripheral
laser heating.
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time step along a set of grid lines in the axial and radial directions
is preferable (Dombrovsky et al., 2015).

It is known that when using the finite element method, the
problem is reduced to solving a system of algebraic equations with a
matrix in which nonzero elements form a rather wide band along the
diagonal of the matrix. The width of the band depends on a
particular procedure for numbering the nodes of the finite
element model. When using a finite-difference algorithm with
splitting the problem into alternating heat propagation in
orthogonal directions, the width of a similar band of nonzero
matrix elements is equal to three. Therefore, the calculations by
the program using the finite-difference method turns are much
faster. In the numerical solution of transient axisymmetric problems
with equally detailed discretization of the computational region and
the same time steps, according to the author’s experience, the finite-
difference solution is about six times faster thanwhen using the finite
element method. I am talking about my home codes, which differed
only in the numerical solution of the problem.

It is important to note that the use of peripheral heating of the
tumor can be accompanied by water cooling of the irradiated
body surface, where most of heat receptors are located. One can
find some details about the cutaneous temperature receptors and
the pain related with the heating the body surface in (Spray, 1986;
Lorenz et al., 2002; Kobayashi, 2015). The water cooling the body
surface makes the suggested strategy almost painless and allows
longer sessions with detailed control of the process parameters.

Heating the normal human tissue around the tumor is
relatively low due to significant radial spreading of heat (see
Figure 1). At the same time, this heating is extremely important
because the red blood cells of arterial blood lose a part of the
oxygen they carry (Collins et al., 2015). Moreover, a favorable
factor is the possible destruction of some overheated capillaries at
the border of the tumor due to the release of gases in the heated
blood. As a result, the oxygen regeneration of tumor tissue
decreases. In fact, the peripheral heating is accompanied by
asphyxiation of the tumor with its partial or complete
necrosis. The latter is an important part of the recommended
heating strategy.

It goes without saying that the suggested method of laser-
induced hyperthermia of superficial tumors does not exclude
alternative approaches, such as that proposed in the recent study
by Yin et al. (2020).

NON-ARRHENIUS KINETICS OF THERMAL
DAMAGE

In many publications on the modeling of hyperthermia, the
kinetics of thermal degradation of tumor tissue is described by
the classical Arrhenius equation, which can be written as follows
(Dewey, 2009):

zξ

zt
� (1 − ξ)A exp(− E

RT
) ξ(0) � 0 (3)

where ξ is the degree of thermal destruction, E is the activation
energy, and the initial condition means a conventional beginning

of the process. The values of A and E should be determined
experimentally.

The Arrhenius’s law correctly describes the known physical
phenomenon: the exponential intensification of thermal
destruction with increasing temperature. Nevertheless,
when trying to apply this law to living human tissue, it
becomes obvious that the above formulation cannot be
immediately employed. It is enough to compare the state
of, for example, a piece of meat left in a warm room with
air temperature about 37°C (outside the fridge), and the state
of the muscle tissue of a living person. In no case can one
ignore the continuous process of regeneration of human
tissues due to arterial blood flow, which supplies the cells
of the body with oxygen. Of course, the last statement is true
for tumor tissues.

An attempt to take into account the regeneration of living
tissues when describing their possible damage during
hyperthermia by modification of Eq. 3 was undertaken in
(Dombrovsky and Timchenko, 2015) (see also (Dombrovsky,
2019):

zξ i
zt

� (1 − ξi)Aiexp(− Ei

RT
) − Biξ iωb

ξi(0) � 0 i � 1, ..., 6

(4)

where i≤ 5 are the numbers of skin layers, i � 6 corresponds to
the tumor tissue, and Bi are the dimensionless coefficients. It was
assumed in that Bi � Bh ≫ 1 for all the healthy tissues, whereas
B6 � 0 (for the totally destroyed regeneration of the tumor tissue).
The last assumption is supported by experimental data for very
high sensitivity of red blood cells to the overheating expected at
the periphery of the tumor (Gershfeld and Murayama, 1988;
Fasano et al., 2010). It should be noted that when using the
traditional Eq. 3, which does not take into account the
regeneration of living biological tissues, the formal solution
gives an incorrect result with noticeable thermal damage to
these tissues already within several tens of minutes of
thermal therapy. At the same time, the use of the kinetic
model (4) gives a qualitatively correct result, indicating
damage only to the tumor, which does not receive oxygen-
rich arterial blood during the recommended peripheral
heating (Dombrovsky, 2019).

Strictly speaking, the loss of oxygen by erythrocytes during
heating of arterial blood as it approaches the heated tumor can
also be described by the Arrhenius law with some values of the
activation energy and the coefficient before the exponent.

The loss of oxygen by erythrocytes of arterial blood heated at
the periphery of the tumor can be significant only for superficial
tumors, which are approached by relatively thin blood vessels and
capillaries. In this case, the average velocity of blood flow is small
and the time of its heating is sufficient for a significant decrease in
the oxygen content in erythrocytes.

It is important to remind that the present work is not related to
tumors far from the surface of the body, in places where there
are significantly larger arteries. The relatively rapid flow of
blood through the large arteries makes it impossible any
thermal degradation of erythrocytes. The discussed strategy of
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indirect/peripheral heating of such tumors is also not expected
to be applicable.

In addition, with the slow thermal treatment of the tumor,
more detailed kinetic models should consider multi-stage
conversions in tumor cells (Feng and Fuentes, 2011; Pearce,
2013; Crapse et al., 2021). This means that a complete
Arrhenius equation includes several exponential terms
responsible for these stages of the process. Such a complete
description of the kinetics of thermal damage of tumor tissues
is not associated with additional mathematical difficulties.
However, there are no reliable data in the literature for the
parameters of the detailed kinetic models applicable for
various tumors. Therefore, currently, as a rule, simpler models
are used and multi-stage kinetic models are beyond the scope of
the present paper.

CONCLUSION

A discussion of physical and computational modeling of heat
transfer in laser-induced hyperthermia of superficial human
tumors is presented, including differential models for radiative
transfer, various approaches to the analysis of transient heat
transfer, and possible modifications of traditional kinetic
models of thermal degradation of tumors.

In radiative transfer modeling, the transport approximation
and differential models are recommended for the diffuse
component of the radiation field which contributes a lot to the
absorbed radiation power. The heat transfer in a multilayer skin
can be approximately calculated using the transient energy
equation taking into account mainly two modes of heat
transfer: the ordinary heat conduction and volumetric heat
generation due to the absorbed external radiation. In kinetics
of the tumor degradation, it is shown that a partial regeneration of
normal human tissues at the periphery of the tumor due to
oxygen supplied with the arterial blood should not be ignored.

When modeling radiative transfer, it is recommended to use
the transport approximation for the scattering phase function and
one of the differential models for the diffuse component of the
radiation field, which makes the main contribution to the
absorption of laser radiation. Heat transfer in a multilayer

human skin can be calculated using the transient energy
equation, which takes into account two main effects: ordinary
heat conduction and volumetric heat due to the absorbed
radiation power. In the kinetics of tumor damage, it has been
shown that one should not ignore the partial self-regeneration of
normal tissues at the tumor periphery due to oxygen supplied
with arterial blood.

The motivation and advantages of the previously suggested
painless procedure of a peripheral/indirect periodic heating of
the tumor with a focus on the tumor asphyxiation are clarified
in detail. It is expected that this discussion will be instructive
for alternative procedures developed by other researchers
as well.

The author hopes that this paper will be useful for young and
not so experienced researchers to overcome some typical
weaknesses of computational modeling the photothermal
treatment of superficial tumors.
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NOMENCLATURE

A coefficient in the Arrhenius equation, s−1

B coefficient in Eq. 4, dimensionless

c specific heat capacity, J/(kg K)

E activation energy, J/mol

k thermal conductivity, W/(m K)

W volumetric power, W/m3

Greek symbols

ξ degree of tissue degradation, dimensionless

ρ density of tissue, kg/m3

ω rate of blood perfusion, s−1

Subscripts and superscripts

b Arterial blood

h healthy

m metabolic

rad radiative

t human tissue
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