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Plastic particles in the nanometer range–called nanoplastics–are environmental
contaminants with growing public health concern. As plastic particles are present
in water, soil, air and food, human exposure via intestine and lung is unavoidable,
but possible health effects are still to be elucidated. To better understand the Mode
of Action of plastic particles, it is key to use experimental models that best reflect
human physiology. Novel assessment methods like advanced cell models and
several alternative approaches are currently used and developed in the scientific
community. So far, the use of cancer cell line-based models is the standard
approach regarding in vitro nanotoxicology. However, among the many
advantages of the use of cancer cell lines, there are also disadvantages that
might favor other approaches. In this review, we compare cell line-based
models with stem cell-based in vitro models of the human intestine and lung.
In the context of nanoplastics research, we highlight the advantages that come
with the use of stem cells. Further, the specific challenges of testing nanoplastics
in vitro are discussed. Although the use of stem cell-based models can be
demanding, we conclude that, depending on the research question, stem cells
in combination with advanced exposure strategies might be a more suitable
approach than cancer cell lines when it comes to toxicological investigation of
nanoplastics.
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1 Introduction

Plastic polymers have become indispensable in our everyday life due to their favorable
physicochemical properties and relatively low production costs. Annual plastics
production has risen to 368 million tons in 2019 (https://plasticseurope.org) and 71%
of the subsequent plastic waste ends up in aquatic or terrestrial environments (Geyer et al.,
2017; de Souza Machado et al., 2018). This plastic waste is continually exposed to physical
stress through abrasion or UV light and will inevitably fragment into microplastics
(<5 mm) and eventually nanoplastics (<100 nm) (EFSA, 2016). In addition to
environment-derived micro- and nanoplastic particles, microplastics have also
intentionally been included in consumer products and can subsequently fragment to
the nanoscale size (Enfrin et al., 2020). Other direct sources of micro- and nanoplastics
include the release of fibers from synthetic textiles (Cai et al., 2021) or abrasion of car tires
(Järlskog et al., 2022).
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Nanoplastics cannot easily be measured directly due to a lack of
suitable analytical techniques (Schwaferts et al., 2019), but are
assumed to be present in household dust (Zhang et al., 2020),
particulate matter in outside air (Yao et al., 2022) and foodstuffs
including salt (Kosuth et al., 2018), bivalves (Van Cauwenberghe and
Janssen, 2014; Davidson and Dudas, 2016), fish (Kershaw and
Rochman, 2015), honey (Liebezeit and Liebezeit, 2015) and water
(Kosuth et al., 2018; Mason et al., 2018). Humans are therefore
exposed to nanoplastics by ingestion and inhalation and
subsequent health outcomes are poorly understood. Studies on
human exposure to microplastic particles show that annual intake
may exceed hundred thousands of particles (Cox et al., 2019;
Mohamed Nor et al., 2021), while data on nanoplastic exposure is
not available yet. Societal concerns on the potential health effects of
micro- and nanoplastic exposure have been increasing, underpinning
the need for risk assessment (Coffin et al., 2022; Felipe-Rodriguez
et al., 2022).

Nanoplastics are not a homogeneous contaminant but represent a
mixture of sheets, fragments and fibers of various sizes comprised
mainly of polyethylene (PE), polypropylene (PP), polyethylene
terephtalate (PET) and polyvinyl chloride (PVC) (https://
plasticseurope.org, Karbalaei et al., 2018). This heterogeneity
complicates risk assessment as past research has mostly focused on
polystyrene (PS) nanospheres, which do not accurately represent the
multitude of nanoplastics to which humans are exposed. Only few
studies have considered alternative polymer types (Magrì et al., 2018;
Busch et al., 2021b; Magrì et al., 2021; Sun et al., 2021) and even fewer
studies have focused on non-spherical (Busch et al., 2022a) or
weathered particles (Gopinath et al., 2021; Roursgaard et al., 2022).
Despite the lack of data on prototypical environmental nanoplastics,
considerable effort has been made to implement read-across
methodologies based on the particles’ intrinsic properties, Mode of
Action (MoA) or associated (bio)molecules, but these algorithms are
not yet applicable to nanoplastics risk assessment (Walkey et al., 2014;
Helma et al., 2017; Toropova and Toropov, 2022).

There is limited information available on nanoplastics toxicity in
vivo and much of our current knowledge stems from rodent studies
using microplastics. These studies need to be interpreted with caution,
as some of these studies have been scrutinized because of issues related
to particle characterization, (overload) exposure, detection of particles
in tissues (mass balance) and methodological issues related to
histopathology (Coffin et al., 2022; Gouin et al., 2022). Rodent
studies using high concentrations of PS nanoplastics report
bioavailability after ingestion or inhalation and particle
translocation to lymph nodes, liver, spleen, and kidneys (Jani et al.,
1989; Walczak et al., 2015a). More data on plastic particle toxicity is
available in the context of occupational exposure to polymers (Mason,
1975; Heldaas et al., 1984; Hsiao et al., 2004). However, this
information holds limited applicability to environmental
nanoplastics exposure, as these studies were conducted to simulate
high lung exposure concentrations in plastic industry workers
(Hesterberg et al., 1992; Porter et al., 1999; Warheit et al., 2003),
which is hardly comparable to the current levels of airborne plastic
particles in a non-occupational environment.

Besides the direct toxicity of nanoplastics, the potential toxicity of
associated chemicals and components of the eco-corona should also be
considered. Nanoplastics frequently contain additives, e.g., phthalates,
which may comprise up to 50% of the total mass of plastics (Andrady
and Rajapakse, 2016; Hartmann et al., 2019) and often contain known

toxicants like dioxins, polycyclic aromatic hydrocarbons, halogenated
flame retardants and heavy metals (Bouwmeester et al., 2015;
Hahladakis et al., 2018; Zimmermann et al., 2019), which could be
released from the polymers after uptake (Peters et al., 2022).
Furthermore, the surface of particles spontaneously adsorbs
surrounding chemicals and biomolecules, leading to an eco-corona
or bio-corona, respectively (Casals et al., 2010; Pulido-Reyes et al.,
2017).

The plethora of possible polymers, shapes, sizes and exposure
scenarios make exhaustive testing of nanoplastics a daunting task that
is ethically, financially and temporally unfeasible using animal models.
The acceptance of data generated in in vitro models for regulatory
purposes is being spurred by the ban on animal testing in the
cosmetics industry (Pistollato et al., 2021) and nanotoxicity testing
will also have to rely on data generated in vitro (EFSA, 2021). Initiated
by “toxicology of the 21st century” (Hartung, 2009), and to better
explain MoAs, models that emulate human physiology best, should be
put forward. This is boosting the development of in vitro models
ultimately replacing animal based testing (Tannenbaum and Bennett,
2015). Currently, the main models used for in vitro oral or inhalation
nanotoxicity testing are based on immortalized cell lines derived from
cancer tissues, including Caco-2 for the intestine and A549 for the lung
(Jones and Grainger, 2009;WangM. et al., 2018; Fröhlich, 2018; EFSA,
2021). In addition to these conventional models, novel models
including stem cell-based approaches have recently started being
used in nanotoxicity testing. These novel methods offer advantages
over cancer cell lines by having an unaltered genotype, allowing the
presence of more physiologically relevant cell types and may help
estimate interindividual variation. In this review, we discuss novel
stem cell-based in vitro models of the primarily exposed organs,
intestine and lung, as a new approach methodology for
nanoplastics toxicity testing and how the resulting data can be used
to guide future risk assessment.

2 Selection of in vitro models to study
the toxicity of nanoplastics

Based on the knowledge on microplastics and engineered
nanomaterials, nanoplastics mainly enter the human body through
ingestion or inhalation. Therefore, these barriers are initially most at
risk and studying potential toxic effects in vitro requires
physiologically relevant models of the intestine and lung,
respectively. While cell line-based models have been extensively
used in toxicological research, these models lack essential features,
as discussed below.

Establishing advanced barrier models requires an actively dividing
and tissue-specific cell source, for example fully differentiated primary
cells or somatic stem cells that can be directly isolated from the human
body, often obtained from biopsies. However, the replicating ability of
differentiated primary cells is limited, as differentiation generally
occurs after exiting the cell cycle (Ma et al., 2019). Recently,
commercially available constructs based on primary human tissue
of the intestine or lung, have become available and applied for
toxicological studies (Jackson et al., 2018; Janssen et al., 2021).
These constructs are generated from human donors and are
directly provided to the user for one-time experimental application.
Although these primary models are highly relevant in terms of
physiology, the user is dependent on donor availability and
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unobstructed delivery, as these models cannot be permanently
established in a laboratory independently from the commercial
provider.

In contrast to already differentiated primary tissue and cells,
somatic stem cells are undifferentiated cells that divide to replenish
dying cells under physiological conditions (Zakrzewski et al., 2019).
These somatic stem cells, also called adult stem cells (ASCs), remain
dormant until surrounding factors activate them to divide and
terminally differentiate into functional cells (Urbán and Cheung,
2021). ASCs are multipotent, meaning that they can develop into
more than one cell type, but they cannot produce all cell types of the
body, as is the case for pluripotent cell types (Lyssiotis et al., 2011;
Lairson et al., 2013). Despite improvements in long-term culture
expansion of ASCs, their lifespan appears limited and inversely
correlated to the donors age and highly affected by the extraction
site (Bruder et al., 1997; Majors et al., 1997). Overall, the limited
availability of biopsy material in combination with the finite dividing
capacity of both primary cells and ASCs make them less suited to be
used in toxicological studies. However, their use has greatly advanced
the field of patient-specific disease modeling, i.e. cancer research and
drug screening (Drost and Clevers, 2018; Driehuis et al., 2020).

Embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSC), on the other hand, have gained increasing interest as a source
of stem cells due to their ability to differentiate into all cell types of the
organism and their high proliferative capacity (Shi et al., 2017).
Human ESCs are pluripotent stem cells generally derived from the
inner cell mass of blastocysts (Thomson et al., 1998). The required
number of embryos used to generate the resulting ESC lines have only
been reported in a small number of cases (Mehta, 2014), hinting at a
low success rate, which in combination with the destructive process on
the blastocyst have led to an extensive ethical debate on the use of
human material (Wert and Mummery, 2003; Lo and Parham, 2009).
Conversely, iPSCs do not rely on the use of embryos or invasive
biopsies, forming a more ethical source of pluripotent cells. iPSCs are
somatic cells (e.g. fibroblasts) reprogrammed into a pluripotent state
through the forced overexpression of the four transcription factors
OCT4, SOX2, KLF4 and MYC (Takahashi et al., 2007). From their
pluripotent state, iPSCs have been successfully differentiated to obtain
tissue-specific morphology and gene expression for various organs,
including the intestine (Takahashi et al., 2018) and lung (Miller et al.,
2019). Embryonic-like cells derived from iPSC differentiation can be
used to study a wide variety of organs and exposure scenarios, due to
their proliferative capacity and the wide spectrum of available
differentiation protocols (Ahmed et al., 2021). The differentiation
of iPSCs into mature models of human organs usually requires
multiple sequential steps in which cells are exposed to different
growth factors mimicking the in vivo cell environment during
mammalian embryonic development (Spence et al., 2011; Abud
et al., 2017). As a result, the differentiation of iPSCs leads to
models with a better representation of different tissue-specific cell
types encountered in vivo (Grouls et al., 2022), in contrast to cancer
lines which only represent one dominant cell type.

Particle toxicity is often evaluated based on the range of reversible
and irreversible cellular damage in addition to the cells’ ability to
overcome these effects, as well as signaling cascades involved in
processes like proliferation and inflammation. As cancer cell lines
underwent genetic changes to ensure continuous proliferation in a
tumor microenvironment despite challenging metabolic conditions
(Hartwell and Kastan, 1994; Sonugur and Akbulut, 2019), this could

potentially lead to a skewed view on the toxicity-induced effects of
nanoplastics on tissue. By contrast, stem cell-derived tissue-like cells
maintain physiological proliferative behavior to provide a more
representative view for toxicity-induced injury compared to cancer
cell lines, while simultaneously providing multiple cell types in the
same in vitro model. Thus, we view iPSC as a promising approach for
quantitative nanoplastics toxicity testing with high physiological
relevance in the primarily exposed organs intestine and lung.

2.1 Intestinal models

The intestine is a major part of the human digestive system,
responsible for the peristalsis of chyme and the uptake of nutrients
from ingested food. Accordingly, the intestinal epithelium is
constantly exposed to contaminants taken up with food and water,
making it an important target organ for toxicities and diseases.
Therefore, research in the fields of medicine, pharmacology and
toxicology has been focused on the development of suitable models
to study effects on the intestine outside of animals.

To date, several studies report intestinal effects of ingested micro-
and nanoplastics in a variety of in vitro models based on cancer cell
lines. Among the available cell lines, the colorectal cancer cell line
Caco-2 is by far the most utilized one (Cortés et al., 2020; Domenech
et al., 2021; Stock et al., 2021), as it spontaneously differentiates into an
enterocyte-like phenotype (Pinto et al., 1983), representing the most
abundant cell type in the human intestine. However, several attempts
have been made to increase the complexity of Caco-2 based in vitro
models by implementing additional cell lines when investigating
plastic particles (see Table 1). For example, an advanced intestinal
model included HT29-MTX-E12 as goblet cells and PMA-
differentiated THP-1 cells as macrophages to expand the model by
the presence of mucus and an immunocompetent cell type (Busch
et al., 2021a). Furthermore, a Caco-2/HT29 model supplemented with
Raji-B cells to induce the differentiation into microfold cells (M-cells),
a cell type specialized in transport across the epithelial barrier
(Mabbott et al., 2013), was used to investigate the effects of PS
nanoplastics (Domenech et al., 2020). Establishing even higher
levels of complexity, a quadruple culture model was used to study
plastic particle effects by complementing a Caco-2/HT29-MTX co-
culture with macrophages and dendritic cells derived from human
blood monocytes (Lehner et al., 2020). However, the co-culturing of
different cancer cell lines and/or primary cells requires extensive fine-
tuning of optimal culture conditions, e.g. in terms of medium
composition, whereas different cell populations in cultures derived
from stem cells originate from the same single cell source.

A breakthrough toward human cell-based models with advanced
physiological relevance was seen through the establishment of crypt-
based intestinal organoids, enabling the long-term culture of primary
intestinal cells in absence of mesenchymal tissue (Sato et al., 2009; Sato
et al., 2011). Since then, research interest in stem cells has increased
dramatically, resulting in the generation of numerous culture and
differentiation protocols (Cao et al., 2011; Spence et al., 2011; Forster
et al., 2014; Miura and Suzuki, 2017; Hou et al., 2018; Pleguezuelos-
Manzano et al., 2020; Stewart et al., 2020), establishing two principal
approaches for the generation of self-organized intestinal spheroids: 1)
isolation of intestinal crypts and 2) use of ESCs or iPSCs.

Uniquely, these spheroids represent all major epithelial cell
lineages within the organoid (Sato et al., 2011), and allow to skew
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them towards specific cell types and rare lineages like tuft cells (Gerbe
et al., 2016; Treveil et al., 2020; Inaba et al., 2021). Even the most
sophisticated non-stem cell models still fail to replicate the lineage
complexity to this extent (Lozoya-Agullo et al., 2017; Lehner et al.,
2020; Kämpfer et al., 2022). For the purpose of hazard testing of
nanoplastics, both overall effects on the tissue as well as effects in
specific individual cell types may be relevant. Using organoids, cell
type-specific uptake efficiencies were demonstrated for nanoplastics
(Hou et al., 2022). The authors generated intestinal organoids from an
iPSC line and reported the presence of enterocytes, Paneth cells, goblet
cells and endocrine cells using immunofluorescence. Uptake of 50 nm
PS nanoplastics was found to be cell type-dependent, which may have
been overlooked or drastically underestimated in standard culture
systems, as the authors report uptake primarily in goblet, Paneth and
endocrine cells. Furthermore, some cell types may be more sensitive
towards stressors or noxae (Busch et al., 2022b), and might, therefore,
represent important targets for exposure studies.

Also their (patho)physiological identity renders intestinal stem cell
models a highly versatile tool. The cultures can replicate the
complexity of various regions of the intestinal tract–from

duodenum to colon–as well as healthy or diseased tissue depending
on the biopsy origin or growth/differentiation protocol (Sato et al.,
2011; Tsai et al., 2017; Bandi et al., 2020). In contrast, standard cell
models mostly rely on cancer-derived cell lines in mono- or co-culture
that often require extensive differentiation times and further
manipulation to obtain rather mature cell types (Hilgers et al.,
1990; Lesuffleur et al., 1990) and disease-like phenotypes (Susewind
et al., 2016; Kämpfer et al., 2017). Inherently diseased, these cell lines
may be of limited physiological relevance for specific research
questions due to biochemical and genetic differences compared to
healthy intestinal tissue, e.g. the absence or limited presence of
phosphoprotein p53 (Thant et al., 2008) and cytochrome (CYP)
P450 isoforms (Ohta et al., 2020). While typically considered in the
context of drug metabolization (Fritz et al., 2019), CYP enzymes also
play a role in the effects of xenobiotics, e.g., organic pollutants
(Takeshita et al., 2011; Abass et al., 2012), which may be critical
contaminants to consider in plastic particle hazard assessment (Coffin
et al., 2019; Brachner et al., 2020).

It is important to also realize potential differences between stem
cell-based intestinal organoids and the in vivo situation, for example

TABLE 1 Human intestinal in vitro models used for plastic particle toxicity assessment.

Model type Represented tissue or cell types References

Cell lines,
monoculture

Caco-2 Intestinal epithelium (undifferentiated Caco-2) or
Enterocytes (differentiated Caco-2)

Schimpel et al. (2014); Walczak et al. (2015c); Abdelkhaliq et al.
(2018); Inkielewicz-Stepniak et al. (2018); Stock et al. (2019); Wu
et al. (2019); Cortés et al. (2020); Liu et al. (2020); Wu et al. (2020);
Domenech et al. (2021); Huang et al. (2021); Jeon et al. (2021); Stock
et al. (2021); Ma et al. (2022); Steckiewicz et al. (2022); Xu et al. (2022)

HT29 Intestinal epithelium Inkielewicz-Stepniak et al. (2018); Visalli et al. (2021); Steckiewicz
et al. (2022); Xu et al. (2022)

LS174T Intestinal epithelium Inkielewicz-Stepniak et al. (2018)

CCD 841 CoN Intestinal epithelium Steckiewicz et al. (2022)

NCM 460 Intestinal epithelium Ma et al. (2022)

RKO Intestinal epithelium Xu et al. (2022)

HIEC-6 Intestinal epithelium Xu et al. (2022)

HCT-116 Intestinal epithelium Xu et al. (2022)

Cell lines, co-
culture

Caco-2+HT29 (MTX) Enterocytes and goblet cells Mahler et al. (2012); Schimpel et al. (2014); Walczak et al. (2015b);
Walczak et al. (2015c); Domenech et al. (2020); Fournier et al. (2023)

Caco-2+Raji-B (M-cell model) Enterocytes and microfold cells Schimpel et al. (2014)

Cell lines, triple
culture

Caco-2+HT29-MTX-
E12+THP-1

Enterocytes, goblet cells and macrophages Busch et al. (2021a); Busch et al. (2021b)

Caco-2+HT29+Raji-B (M-cell
model)

Enterocytes, goblet cells and microfold cells Mahler et al. (2012); Schimpel et al. (2014); Walczak et al. (2015c);
Domenech et al. (2020)

Cell lines,
quadruple culture

Caco-2+HT29-MTX +
MDDCa+MDMb

Enterocytes, goblet cells, dendritic cells and
macrophages

Lehner et al. (2020)

Organoid based Human iPSC-derived intestinal
organoids

Enterocytes, Paneth cells, enteroendocrine cells
and goblet cells

Hou et al. (2022)

Human iPSC-derived colon
organoids

Not reported Park et al. (2022)

Murine primary tissue-derived
intestinal organoids

Not reported Xie et al. (2022)

aMDDC: monocyte-derived dendritic cells.
bMDM: monocyte-derived macrophages.
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the limited presence of mucus, although refined protocols are being
developed (Navabi et al., 2013; Sontheimer-Phelps et al., 2020).
Whereas human organoids express physiologically relevant types of
mucins–especially mucin 2 (Sato et al., 2011)—the overall luminal
coverage and thickness of the mucus remains low (VanDussen et al.,
2015). In the context of particle hazard assessment, mucus is a crucial
determinant for the dose of nanoparticles that can interact with the
epithelium (Bandi et al., 2020).

However, stem cell-derived intestinal cultures remain scarcely
used for nanoplastics hazard assessment (Lu et al., 2017; Belair
et al., 2020) with only three studies on plastic particles to date
(Hou et al., 2022; Park et al., 2022; Xie et al., 2022), of which two
studies failed to report the differentiation procedure and/or
sufficiently characterize the organoids. Even with sufficient
characterization, treatment of organoids with particles is a
challenge, as the organoids’ morphology–the inward-facing apical
side creating a lumen–and their maintenance in semi-solid media
(e.g., Matrigel) impede particle exposures. Exposures would typically
occur from the apical side, which is not accessible without
manipulation, while diffusion of particles is obstructed in matrices
like Matrigel. Various adaptions might resolve these challenges,
including luminal microinjection or application of flow-through
after puncturing the organoid (Leslie Jhansi et al., 2015; Sidar
et al., 2019), reversed cell polarization (i.e. “apical-out” organoids)
(Co et al., 2019) or breaking the organoids’ 3D structure down to a 2D
structure. Especially the latter is applied frequently, either using the
whole organoid (Kasendra et al., 2018; Madden et al., 2018; Roodsant
et al., 2020; Yamada and Kanda, 2021; Breau et al., 2022) or selected
cell types (Workman et al., 2018; Yoshida et al., 2020). While the
structural change from 3D to 2D did not substantially modify the
expression of intestinal markers or functional genes (Takahashi et al.,
2021), these organoid-derived cell layers can develop a high
transepithelial electrical resistance (TEER>1,500Ω•cm2) (Wang Y.
et al., 2018), which might indicate restricted passive transport across
the cell layer andmay limit the transport of nanoplastics. In contrast to
manipulating mature organoids back into 2D layers, other protocols
are designed to differentiate iPSCs directly into intestinal epithelial
monolayers, without the detour of spheroid generation (Iwao et al.,
2014; Kabeya et al., 2020), resulting in more realistic TEER values of
~250Ω•cm2 (Kabeya et al., 2018). Besides 2D culturing, adaptions
creating accessible luminal space or using perfusion in tubular
intestinal structures are becoming increasingly sophisticated
(Naumovska et al., 2020; Nikolaev et al., 2020; Wilson et al., 2021)
and offer promising alternative test systems.

2.2 Lung models

For inhaled particles, the lung epithelium forms an initial barrier
and target site of interaction. Accordingly, in vitro testing of
particulates for lung toxicity has long used cancer or immortalized
epithelial cell lines (Hiemstra et al., 2018). While being less robust and
reproducible, particles have also been tested on primary epithelial cells
or tissue explant cultures from lungs of rodent or human origin
(Crocker et al., 1973; Craighead et al., 1980; Mohr and Emura,
1985; Driscoll et al., 1995). The introduction of stem cell-based
in vitro models and further advancement of associated tissue
engineering methodologies in pulmonary research has contributed
to an improved understanding of mechanisms of lung development,

damage repair and tissue regeneration processes (Gotoh et al., 2014;
Basil et al., 2020). However, the use of stem cell-based models for lung
toxicity testing is still in its infancy compared to, for example,
developmental neurotoxicity testing (Fritsche et al., 2021; Masui
et al., 2022).

In sharp contrast, the specific field of particle toxicology has
witnessed crucial progress through the development of improved
in vitro assays that use lung epithelial cell models in air liquid
interface (ALI) culture conditions (Adler et al., 1990; Blank et al.,
2006; Lacroix et al., 2018). Combined with aerosol generating devices,
this allows for a more realistic interaction between the test particles
and the surfactant-containing apical side of the epithelial cells, in
contrast to models in which cells are exposed to particle suspensions
under submerged conditions (Ding et al., 2020). Another innovative
in vitro approach involves the growing of lung epithelial cells on
mechanically stretchable membranes to enable testing of particles
under breathing movement mimicking conditions (Schmitz et al.,
2019).

To date, the pulmonary toxicity of micro- or nano-sized plastics
has been tested in various in vitromodels and aforementioned specific
experimental approaches. Most investigators have either used the
A549 human alveolar type II-like epithelial cell line or the BEAS-
2B human bronchial epithelial cell line under conventional submerged
testing conditions (see Table 2). The toxicity of PS nanoplastics has
been investigated in suspension on BEAS-2B cells as well as HPAEpiC
human pulmonary alveolar epithelial cells, comprised of type I and
type II cells (Yang et al., 2021). A microfluidic-chip test model with
BEAS-2B cells was employed by Gupta et al. (2021) to study uptake of
silica particles and PS. Furthermore, A549 cells were exposed on a
membrane under cyclic stretch conditions to PS nanoparticles in order
to mimic the effect of breathing movements (Roshanzadeh et al.,
2020). Airway and alveolar epithelial toxicity has also been explored in
ALI exposure settings. For example, the uptake and inflammatory
properties of various PS particles were investigated in A549 cells, as
well as in the Calu-3 human upper airway cell line under ALI exposure
conditions (Meindl et al., 2021). To account for the potential
contribution of alveolar macrophages, the authors also included a
co-culture model of A549 and THP-1 cells (Meindl et al., 2021). To the
best of our knowledge, to date only one study investigating plastics has
been performed using a lung organoid-based testing approach. The
toxicity of polyester fibers sampled from cloth dryers was investigated
in human airway organoids that were generated from tissue resident
ASCs obtained from three donors (Winkler et al., 2022). Using
immunofluorescence and qRT-PCR-based markers, basal cells,
ciliated cells, goblet cells, club cells, and even type I cells were
identified. Interestingly, the authors exposed the organoid spheres
after fragmentation to allow exposure to the fibers from the outside as
well as the more relevant “inner cavities” of the organoids. While the
outcomes of this study may be of limited relevance in view of the
dimensions of the tested materials (average length: 700 ± 400 μm and
average width 10 ± 5 μm), the work provides strong proof of principle
for the use of lung organoids for hazard assessment of airborne
nanoplastics.

Similar to the intestine, a further introduction and application of
stem cell-based models for pulmonary toxicity testing of nanoplastics
seems promising. Herein, however, the principal advantage of
exposing such models under ALI-conditions is to be emphasized in
terms of dose and kinetics. Construction of complex organoid (e.g.,
scaffold) models, in such a way they that can be coupled to ALI
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exposure systems in a realistic, physiologically relevant manner, is a
major challenge. If achieved, however, it will greatly contribute to
improved safety evaluation of airborne nanoplastics.

3 Challenges and considerations when
testing plastic particles in vitro

When studying the MoA of nanoplastics in an in vitro model,
certain points should be carefully considered when designing the
experiment, choosing relevant endpoints, or interpreting the data in
regard to plastics hazard assessment:

Low density of polymers. Industrially produced plastics cover a
whole spectrum of different densities, spanning from less than 1 g/cm³
(PP, PE), to around 1 g/cm³ (PS), to heavier polymers (PVC,
polyamide (PA), PET). The density of cell culture medium is
approximately 1 g/cm³, meaning that nanoplastics will either float
or sediment during in vitro experiments, depending on their polymer
composition. Polymers with a density lower than 1 g/cm³ will become
buoyant when applied in a traditional cell culture system and will not
establish contact with cells growing on the bottom of a well plate. So
far, several approaches have been used to tackle this issue: one
common approach is the inversion of the cell model, e.g. by
seeding cells on cover slips that are subsequently inverted and
exposed to buoyant particles from below (Stock et al., 2020), or by
sealing a well plate with silicone gaskets and then inverting the entire
plate (Watson et al., 2016). Furthermore, it has been reported that
inverted in vitro models can be established by seeding cells on the
basolateral side of transwell inserts (Stock et al., 2021), which also
enables the application of more complex co-culture models (Busch

et al., 2021b). Another approach to expose cells to buoyant plastic
particles could be the use of ALI systems (Upadhyay and Palmberg,
2018). The absence of medium on the apical side of cells allows
exposure to particles via particle-containing aerosols that sediment on
the cell layers, regardless of the particles’ density. Although this
approach has been used in an advanced in vitro model of the
intestine (Lehner et al., 2020), exposure via aerosols is obviously
more relevant for in vitro models representing the lung. A very
specific approach to solve the buoyancy problem was introduced
by Green et al. (1998). The authors embedded buoyant PE particles
in the surface layer of agarose and seeded primary macrophages on
top. However, due to the immobility of particles, this approach is only
useful for phagocytizing cell models and not applicable for models of
the intestinal or lung epithelium. A completely different approach to
test buoyant polymers in vitro is the modification of the material to
become denser. For example, mineral talc is a commonly used filler for
PP to increase the materials’ performance (Ammar et al., 2017), which
also increases the density of PP.

Differences in applied dose and effective dose. Apart from buoyant
polymers, the low density of non-buoyant plastic particles needs to be
considered as well. Polymers like PS are only marginally denser than
cell culture medium and therefore exhibit very slow sedimentation
rates. The amount of particles interacting with the cells (effective or
delivered dose) is often small compared to the total amount of particles
added to the in vitro system (applied dose). This may be further
aggravated by particle agglomeration in the cell culture medium,
which further decreases the density of the agglomerate (Hinderliter
et al., 2010). Therefore, considerations of sedimentation kinetics for
in vitro nanotoxicology research is important to avoid
misinterpretation of concentration-dependent cellular response and

TABLE 2 Human lung in vitro models used for plastic particle toxicity assessment.

Model
type

Airway
model

Represented tissue
or cell types

References Alveolar
model

Represented
tissue or cell
types

References

Cell lines,
submerged

BEAS-2B Bronchial epithelium Lim et al. (2019); Dong et al.
(2020); Gupta et al. (2021);
Yang et al. (2021); Lin et al.
(2022); Zhang et al. (2022b)

A549 Alveolar type II
epithelial cells

Brown et al. (2001); Jeon et al.
(2018); Xu et al. (2019); Zhu
et al. (2020); Goodman et al.
(2021); Shi et al. (2021);
Bengalli et al. (2022); Florance
et al. (2022); Gautam et al.
(2022); Halimu et al. (2022);
Shi et al. (2022); Zhang et al.
(2022a); Zhang et al. (2022c);
da Silva Brito et al. (2023)

HPAEpiC Alveolar type I and II
epithelial cells

Yang et al. (2021); Zhang et al.
(2022b)

Cell lines,
submerged
advanced

BEAS-2B in
microfluidic-
chip

Bronchial epithelium Gupta et al. (2021) A549 on
membrane
under cyclic
stretches

Alveolar type II
epithelial cells

Roshanzadeh et al. (2020)

Cell lines, ALI
exposed

Calu-3 Bronchial epithelium Meindl et al. (2021) A549 Alveolar type II
epithelial cells

Binder et al. (2021); Meindl
et al. (2021)

A549+THP-1 Alveolar type II
epithelial cells and
macrophages

Meindl et al. (2021)

Organoid
based

Human ASC-
derived airway
organoid

Basal cells, ciliated cells,
goblet cells, alveolar type I
cells and club cells

Winkler et al. (2022)
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uptake data (Teeguarden et al., 2007). In silico dosimetry models have
been developed to predict the delivered dose based on the
physicochemical properties of the particles and the setup of the
in vitro exposure scenario. Currently, three main tools are used to
estimate the delivered dose during in vitro experiments; the In vitro
Sedimentation, Diffusion and Dosimetry model (ISDD), the In vitro
Sedimentation, Diffusion, Dissolution and Dosimetry model (ISD3)
and the Distorted Grid model (DG) (Hinderliter et al., 2010; DeLoid
et al., 2015; Thomas et al., 2018). In most cases, the ISDD model is
sufficient for predicting nanoplastics dosimetry. However, ISD3 and
DG are better suited for modelling buoyant particles such as PE or PP,
as well as polydisperse or degradable materials (Watson et al., 2016).
As an example for a severe discrepancy between the applied dose and
the effective dose that interacts with cells, ISDD sedimentation
modelling of 50 nm PS nanoparticles showed only 17% deposition
after 24 h at relevant in vitro conditions (Busch et al., 2021a).
Contrastingly, heavier, metal-based engineered nanomaterials like
silver nanoparticles of comparable size can sediment completely
within 4 h under certain conditions (Kämpfer et al., 2021). Cell
culture models grown under dynamic flow conditions to improve
differentiation (Sargent et al., 2010) or implemented in microfluidic
chips (Zhang et al., 2017; Kulthong et al., 2021) might improve the
distribution of nanoplastics, increasing the correspondence between
the applied and delivered dose. However, in silico dosimetry models
are not yet equipped to predict nanoparticle sedimentation under
dynamic flow conditions.

Adherence of macromolecules. Particles suspended in biological
media like cell culture medium will acquire a biomolecular corona, i.e.
proteins, lipids and carbohydrates, that adhere to the particles’ surface
(Docter et al., 2015). As the adherence of these macromolecules will
change the surface properties of the particles and therefore their
interaction with biological systems (Monopoli et al., 2012; Cao
et al., 2022), the possible role of the corona has to be considered
during in vitro testing (Allen et al., 2006). For example, Abdelkhaliq
et al. (2018) analyzed the protein corona on different PS nanoplastics
via LC-MS/MS and reported differences based on the surface
modification of the particles, which in turn impacted the uptake
rates of the nanoplastics.

A physiologically relevant exposure should include the history of
the particles, for example a simulated gastrointestinal digestion, or
incubation in lung fluids. During in vitro experiments, nanoplastics
are commonly applied in cell culture medium containing fetal calf
serum (FCS), leading to adherence of serum proteins to the
nanoplastic surface (Abdelkhaliq et al., 2018). Contrastingly, the
corona of ingested nanoplastics will more likely consist of
macromolecules from the food matrix and digestive fluids, while
inhaled nanoplastics will exhibit a corona that may be acquired
from exogenous environmental matrices (e.g. microbial
components, semivolatile organic compounds) and the obvious
endogenous molecules present in lung surfactant (Griese, 1999;
Ichinose et al., 2005).

Interference with test assays and readouts. Besides changing and
defining the surface identity, the adsorption of macromolecules, in
particular target proteins of interest, to the surface of plastic particles,
might distort the outcome of applied in vitro assays. Binding of
extracellular lactate dehydrogenase (LDH), a common marker of
membrane damage, might reduce the enzymes activity during the
LDH assay, as it was reported for silver nanoparticles (Oh et al., 2014;
Liang et al., 2015). Moreover, interference of amine-modified PS with

the interleukin (IL)-8 ELISA was observed in the form of exaggerated
IL-8 concentrations (Busch et al., 2022a). Therefore, assessing
potential interferences of the tested materials with the used assays
is necessary prior to toxicological investigations (Stone et al., 2009;
Wilhelmi et al., 2012; Ong et al., 2014).

Use of fluorescently labeled nanoplastics. Often, it is important to
know to what degree particles are internalized by target cells. In
contrast to metal-based nanoparticles, where techniques like ICP-MS
can be used to measure the cellular uptake of unlabeled particles
(Mitrano et al., 2012), no equivalent techniques are currently available
for polymeric particles. Instead, fluorescently labeled nanoplastics are
commonly used to monitor the potency of cellular uptake, which can
be quantified using confocal microscopy or flow cytometry. The use of
fluorescent labels, while seemingly simple, require great care to avoid
artifacts during the measurements. For instance, it is reported that
fluorophores may leach out of the plastic particles, causing higher
fluorescent signals in cells, or fluorescence in cell compartments not
commonly available to nanoplastics (Tenuta et al., 2011; Catarino
et al., 2019). Additionally, fluorophores might be pH-sensitive, leading
to alterations in signal strength in subcellular compartments like
lysosomes (Simonsen and Kromann, 2021), complicating
interpretation of data. Another issue of using fluorescent particles
is the inability to distinguish between internalization and surface
adhesion of particles. Flow cytometry is commonly used to assess
particle internalization, as it offers higher throughput than confocal
microscopy and is more easily quantifiable. However, flow cytometry
is unable to distinguish between fluorescence originating from within
cells or from cell surfaces, necessitating further experiments to confirm
actual internalization. This can be achieved by using dyes that are
specifically quenched at the cell surface (Nuutila and Lilius, 2005;
Dumont et al., 2017), by validating and correcting flow cytometry with
confocal microscopy data (Gottstein et al., 2013), or by using a
modified setup such as imaging flow cytometry (Phanse et al.,
2012; Smirnov et al., 2015). Issues surrounding the use of
fluorescence to determine nanoparticle internalization have
received increased scientific interest and have been discussed in
great detail in a recent review (FitzGerald and Johnston, 2021).

Size limitations depending on the exposed organ.Unlike engineered
nanomaterials, environmental plastic particles do not have a clear size
cutoff, covering a whole size spectrum from sub-nano size to several
millimeters. In the case of ingested particles, size limitations only play
a minor role, as even centimeter-sized plastics can be swallowed and
are able to pass the human gastrointestinal tract. Therefore, the
intestinal epithelium can, in theory, be exposed to particles of
enormous size, justifying the testing of larger particles. For
example, Lehner et al. (2020) applied microplastics up to 500 μm
in an intestinal in vitromodel. In contrast, the size of inhaled particles
is strictly limited in the context of lung anatomy and physiology.
Particles with an aerodynamic diameter of less than 10 μm are able to
deposit in the tracheobronchial region, while only particles less than
approximately 2.5 μm are small enough to reach the alveoli
(Oberdorster et al., 2005; Xing et al., 2016). Therefore, when
testing plastic particles in an in vitro model of the human
respiratory system, the size of the test material has to be chosen
accordingly.

Relevance of available model particles. When looking at available
scientific literature regarding toxicological investigations of plastic
particles, the majority of studies is carried out using spherical PS
particles of a defined size. However, there is a strong discrepancy
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between available data and environmental occurrence: PS makes up
only 6.1% of globally produced polymers (www.plasticseurope.org)
and shapes of micro- and nanoplastics have been described to be
primarily fibers, fragments and sheets (Hongprasith et al., 2020).
Furthermore, plastic particles in the environment cover a whole
size spectrum that might exhibit synergistic effects during co-
exposure of differently sized particles (Liang et al., 2021). While PS
spheres are widely commercially available, particles of other polymers
or shapes are very limited. Currently, research groups mostly rely on
producing their own model plastics via methods like laser ablation,
cryocutting or milling (Magrì et al., 2018; Lionetto et al., 2021; Busch
et al., 2022a), which result in much more relevant polymer types,
shapes and size distributions, but might limit the comparability
between different studies. The urgent need for standardized, widely
available reference particles of relevant polymers, sizes and shapes has
already been repeatedly expressed in recent reviews (Gouin et al., 2019;
Brachner et al., 2020; Halappanavar and Mallach, 2021).

Chemicals in nanoplastic samples. Commercial nanoplastic
suspensions are often used as model particles for the hazard
assessment of plastic particles in toxicological studies. These
suspensions might contain additives like preservatives,
antimicrobials or surfactants, which may cause artifacts in toxicity
tests. For example, the preservative sodium azide that was present in a
commercial PS suspension was found to be the cause of acute toxicity
towards Daphnia magna, instead of the PS particles themselves
(Pikuda et al., 2019). Furthermore, nanoplastics produced from
bulk plastic and/or plastic products might contain additives and
unpolymerized monomers, like bisphenol A, heavy metals or
styrene (Ajaj et al., 2021; Catrouillet et al., 2021; Gulizia et al.,
2023). These chemicals might be released from the nanoplastics
during incubation in the in vitro culture medium or in the cells
that have taken up the plastic particles (Peters et al., 2022). To prevent
incorrect interpretation of nanoplastics in vitro data and to distinguish
between actual particle effects and effects stemming from associated
chemicals, it is recommended to include a filtrate control in
experiments (Petersen et al., 2022).

4 Conclusion and future outlook

Currently developed (advanced) in vitro models, due to their
increased physiological relevance for human hazard assessment and
suitability for in-depth MoA studies, are well positioned for
contributing to solve the complex issues surrounding nanotoxicity.
Different in vitro models are suited to tackle different challenges and
depending on the research question, stem cell-based models might be
a suitable approach for the investigation of nanoplastics uptake and
effects in the primarily exposed organs intestine and lung, as they offer
specific advantages over traditional immortalized cell lines.

Common knowledge derived from in vitro models includes the
prediction of absorption rates, the derivation of MoAs and the
estimation of potency by relating in vitro endpoints to in vivo
endpoints (Bernauer et al., 2005). The derivation of MoAs highly
depends on the physiological relevance of the model and partly on the
cell types present. Conventional cell models benefit from a high
relative robustness compared to stem cell models and are
comparatively easy to culture, which may lead to a higher
interlaboratory comparability and more accurate estimation of the
benchmark dose (Black et al., 2022) when comparing different

nanoparticles. This is especially true when comparing results found
in different stem cell-based models, where a lack of consistency could
imaginably complicate risk assessment. However, in the case of
cellular processes altered due to the disease status of cancer cell
lines, including genotoxicity, proliferation and cytokine production/
response (Kauffman et al., 2013), iPSCs may be more relevant to study
the real world situation. Similarly, when considering omics-based
MoA screening approaches, the multitude of mutations commonly
seen in cancer cell lines (Hartung and Daston, 2009) can alter RNA or
protein expression and can mask the true effect of many small
molecule compounds (Ben-David et al., 2018) and potentially also
nanoplastics. Especially when using approaches such as systems
toxicology (Hartung et al., 2012), small alterations in e.g.
transcriptomics might help identifying important early signaling
events at low exposure concentrations that might only lead to
detectable toxicity at prolonged or repeated exposure. Furthermore,
while the lack of robustness of stem cell-based models can be seen as a
demerit, these models do allow for the estimation of relative sensitivity
of subpopulations of cells or individuals with a particular genetic
background. Such information can be especially relevant for risk
assessment as this reduces the need for potentially inaccurate
scaling factors. While in vivo studies are commonly used to derive
the lower confidence limit of the benchmark dose (BMDL) and organ
concentrations, special care must be taken when interpreting these
results. The saying “mice are not men” (Warren et al., 2015) especially
holds true regarding nanoparticles where differences in physical
barriers including the amount of Peyers patches and M-cells, as
well as the structure of the mucus layer in intestine and lung can
cause further discrepancies between the human and animal situation
(Kararli, 1995; Fagerholm et al., 1996; Ermund et al., 2013).

While the methodologies to scale in vitro nanoparticle
toxicokinetics to in vivo kinetics are in the explorative phase, they
are the only conceivable, consistent source of human toxicokinetic
data. When considering in vitro models for the possibility of
extrapolation from in vitro to in vivo (i.e. quantitative in vitro to in
vivo extrapolations or QIVIVE), stem cell-based models seem to be
favored as these consist of non-diseased tissue made up of the relevant
cell types found in vivo. In view of replacing animal experiments,
efforts have already been made to apply physiologically based kinetic
(PBK) models to nanomaterials in order to extrapolate in vitro uptake
data to the in vivo situation (Brouwer et al., 2023). Although the
acceptance of PBK model data in a regulatory context is still limited
(Lamon et al., 2019), using input data from physiologically relevant
stem cell-based in vitromodels might facilitate the development in this
direction.

The identification of key events leading to adverse health
outcomes and subsequent implementation in an adverse-
outcome-pathway (AOP) frame is currently explored for
nanomaterials. These AOPs, and associated key events, might
aid in selecting relevant in vitro assays. It is expected that
commonly used in vitro assays can be used, however some
emphasis to typical “nano”-related endpoints are foreseen, such
as cellular uptake, membrane damage, ROS generation or release of
pro-inflammatory cytokines (Jagiello and Ciura, 2022). However,
the molecular initiating events (MIE) of nanoparticles leading to
toxicity are often unspecific, in direct contrast to the MIE of a
chemical that binds to a receptor or target molecule (Halappanavar
et al., 2020). Therefore, translation of in vitro effects to the in vivo
situation in the case of nanomaterials including nanoplastics still
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requires extensive development, but will greatly benefit from
in vitro models that closely mimic the in vivo situation, such as
the stem cell-based models discussed in this review.

Despite the unique features that qualify stem cell-based models as
a promising approach for future nanotoxicity studies, there are some
limitations that can make the use of these models challenging. The
cultivation and differentiation of stem cells into a mature model
usually covers time spans of two weeks or more for a single
experiment (Kabeya et al., 2018; Naumovska et al., 2020), and is
quite expensive in terms of consumption of medium and themultitude
of growth factors required for differentiation. The handling of stem
cells requires highly trained operators, since wrong handling can easily
lead to death or spontaneous differentiation of stem cells, e.g., by
suboptimal cell confluence or inappropriate passaging (Kogut et al.,
2014; Castro-Viñuelas et al., 2021; Yamamoto et al., 2022), which
drastically impairs the robustness of the model itself. This issue of
robustness is further supported by the lack of standardized protocols
for stem cell-based models in the current literature.

Another current limitation of both cell line and stem cell-based
models is the lack of immunocompetent cells, as immune cells like
macrophages or neutrophils are derived from hematopoietic stem cells
in the bone marrow, instead of tissue-resident stem cells, and
transported via the blood (Epelman et al., 2014; Leiding, 2017).
Organ models based on stem cells exclusively consist of the cell
types that stem from the respective tissue-resident stem cells. Yet,
pro-inflammatory effects appear to be one of the main mechanisms
of nanoplastics toxicity, as they have been described in several in vivo
studies (Choi et al., 2021; Sun et al., 2021; He et al., 2022; Tang et al.,
2022). Similarly, nanoplastics have been shown to interact with
components of the nervous system (Jung et al., 2020), which stem
cell-based models of intestine and lung are currently lacking. However,
the generation of immune and neural cells from iPSCs has been reported
(McKinney, 2017; Trump et al., 2019; Gutbier et al., 2020) and the co-
culture of mature stem cell-based models with additional cells is
possible, e.g. intestinal organoids with an enteric nervous system
(Noel et al., 2017; Takahashi et al., 2017; Workman et al., 2017; de
Rus Jacquet, 2019; Choi et al., 2022). However this has, to the best of our
knowledge, not been applied in the field of particle toxicology yet.

The limitations of stem cell-based models, such as the reduced
robustness and the lack of standardized protocols might eventually be
overcome, as the field develops rapidly and new insights are gained
frequently. Similarly, the implementation of other relevant cell types
into these models will be the next step towards highly versatile
alternatives to animal testing, as it will be possible to investigate
immune- or nervous system-related effects of nanoplastics in a
physiologically relevant in vitro environment.

Lastly, recreating dynamic conditions as present in the intestine
and lung by creating in vitromodels in microfluidic devices (i.e. organ-
on-a-chip) might also help to tackle some specific particle-related
challenges such as the buoyancy issue. Initial work using a
microfluidic-chip model has been performed by exposing human

bronchial BEAS-2B cells to PS (Gupta et al., 2021). By generating
scaffold-like (Shim et al., 2017) or tubular structures (Naumovska
et al., 2020) inside of microfluidic devices that are exposed to a
dynamic flow of particle suspension, the sedimentation behavior of
buoyant particles will no longer be an obstacle when testing polymers
like PP or PE, allowing more accurate dosimetry estimates in intestinal
or non-ALI lung models. The adaption of protocols and settings of the
microfluidic devices for the purpose of particle testing will require
extensive optimization, such as flow rates, exposure time and exact
dosimetry calculations. However, the successful integration of such
advanced models into the portfolio of validated methods of in vitro
nanotoxicology will greatly enhance the field.
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