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Introduction: The U. S. Environmental Protection Agency’s Endocrine Disruptor
Screening Program (EDSP) Tier 1 assays are used to screen for potential endocrine
system–disrupting chemicals. A model integrating data from 16 high-throughput
screening assays to predict estrogen receptor (ER) agonism has been proposed as
an alternative to some low-throughput Tier 1 assays. Later work demonstrated
that as few as four assays could replicate the ER agonism predictions from the full
model with 98% sensitivity and 92% specificity. The current study utilized
chemical clustering to illustrate the coverage of the EDSP Universe of
Chemicals (UoC) tested in the existing ER pathway models and to investigate
the utility of chemical clustering to evaluate the screening approach using an
existing 4-assay model as a test case. Although the full original assay battery is no
longer available, the demonstrated contribution of chemical clustering is broadly
applicable to assay sets, chemical inventories, and models, and the data analysis
used can also be applied to future evaluation of minimal assay models for
consideration in screening.

Methods: Chemical structures were collected for 6,947 substances via the
CompTox Chemicals Dashboard from the over 10,000 UoC and grouped
based on structural similarity, generating 826 chemical clusters. Of the
1,812 substances run in the original ER model, 1,730 substances had a single,
clearly defined structure. The ERmodel chemicals with a clearly defined structure
that were not present in the EDSPUoCwere assigned to chemical clusters using a
k-nearest neighbors approach, resulting in 557 EDSP UoC clusters containing at
least one ER model chemical.

Results and Discussion: Performance of an existing 4-assay model in
comparison with the existing full ER agonist model was analyzed as related to
chemical clustering. This was a case study, and a similar analysis can be
performed with any subset model in which the same chemicals (or subset of
chemicals) are screened. Of the 365 clusters containing >1 ER model chemical,
321 did not have any chemicals predicted to be agonists by the full ER agonist
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model. The best 4-assay subset ER agonist model disagreed with the full ER agonist
model by predicting agonist activity for 122 chemicals from 91 of the 321 clusters.
There were 44 clusters with at least two chemicals and at least one agonist based
upon the full ER agonist model, which allowed accuracy predictions on a per-
cluster basis. The accuracy of the best 4-assay subset ER agonist model ranged
from 50% to 100% across these 44 clusters, with 32 clusters having accuracy ≥90%.
Overall, the best 4-assay subset ER agonist model resulted in 122 false-positive and
only 2 false-negative predictions compared with the full ER agonist model. Most
false positives (89) were active in only two of the four assays, whereas all but 11 true
positive chemicals were active in at least three assays. False positive chemicals also
tended to have lower area under the curve (AUC) values, with 110 out of 122 false
positives having an AUC value below 0.214, which is lower than 75% of the positives
as predicted by the full ER agonist model. Many false positives demonstrated
borderline activity. The median AUC value for the 122 false positives from the
best 4-assay subset ER agonist model was 0.138, whereas the threshold for an
active prediction is 0.1.

Conclusion:Our results show that the existing 4-assaymodel performs well across
a range of structurally diverse chemicals. Although this is a descriptive analysis of
previous results, several concepts can be applied to any screening model used in
the future. First, the clustering of the chemicals provides a means of ensuring that
future screening evaluations consider the broad chemical space represented by the
EDSP UoC. The clusters can also assist in prioritizing future chemicals for screening
in specific clusters based on the activity of known chemicals in those clusters. The
clustering approach can be useful in providing a framework to evaluate which
portions of the EDSP UoC chemical space are reliably covered by in silico and
in vitro approaches and where predictions from either method alone or both
methods combined are most reliable. The lessons learned from this case study can
be easily applied to future evaluations of model applicability and screening to
evaluate future datasets.

KEYWORDS

estrogen receptor, new approach methods, NAMs, chemical prioritization, chemical
clustering, endocrine disruptor, endocrine disruptor screening program, EDSP

1 Introduction

In 1998, the U.S. Environmental Protection Agency (EPA)
established the Endocrine Disruptor Screening Program (EDSP),
following the Endocrine Disruptor Screening and Testing Advisory
Committee recommendations (EDSTAC, 1998), to prioritize,
screen, and test chemicals that potentially interfere with estrogen,
androgen, or thyroid hormone–related pathways using a two-tiered
battery of low-throughput in vitro and in vivo assays and tests (U.S.
EPA, 1998a; U.S. EPA, 1998b). In 2011, the EDSP published an
EDSP for the 21st Century work plan (U.S. EPA, 2011) focused on
developing and validating high-throughput (HT) assay batteries to
aid in the expeditious screening of chemicals.

EPA presented for peer review and comment (U.S. EPA, 2014) a
battery of 18 HT assays coupled with a mechanism-based
computational model, termed the ER pathway model, as an
alternative for various ER-related Tier 1 screening assays. Judson
et al. (2015) described the ER pathway model, which integrates
concentration-response data from 18 ER-related HT assays and
non-specific assay interference data to make predictions of a
chemical’s potential for ER agonism or antagonism (Judson et al.,
2015). The ER pathwaymodel was evaluated using in vitro data from
guideline documents (Judson et al., 2015) and in vivo assays (Browne

et al., 2015; Kleinstreuer et al., 2016). EPA proposed that the ER
pathway model could be a validated alternative for the estrogen
receptor (ER) binding, ER transactivation, and rodent uterotrophic
assays from the original Tier 1 screening battery (U.S. EPA, 2015).
Then, the European Chemicals Agency and European Food Safety
Authority together published guidance that the ToxCast ER pathway
model provides comprehensive pathway coverage for the biology of
the ER signaling pathway (EFSA, 2018). EPA is accepting ToxCast
ER pathway model data for 1,812 chemicals as alternatives for EDSP
Tier 1 ER binding, ER transactivation, and uterotrophic assays
(EFSA, 2018; U.S. EPA, 2023). EPA has worked in an open and
transparent manner to establish the scientific basis and robustness
associated with the utilization of new approach methods for toxicity
testing (U.S. EPA, 2023).

As with any model, it is important to more fully understand the
domain of applicability. Here, we have chosen to use the existing ER
pathway model and how it relates to the EDSP Universe of
Chemicals (UoC) as a case study because of the availability of
data and amount of research performed in the development of
the existing ER pathway model (Judson et al., 2015). Additionally, it
would be useful to be cognizant of whether the existing ER pathway
model has differing performance across areas of chemistry in the
EDSP UoC (e.g., based on chemical clusters) and how that
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knowledge may be incorporated into an efficient protocol for
screening chemicals. It should be noted that although we are
using the existing ER pathway model as a case study, the
investigations and learnings are applicable for any future testing
regardless of the model.

Chemical category formation has been utilized for decades; for
example, to predict the physicochemical properties or toxicological
effects of chemicals (Cronin, 2013). National and international
regulatory bodies, including the European Union, Canada, the
United States, and the Organisation for Economic Co-operation
and Development commonly use chemical category approaches
(U.S. EPA, 2010; OECD, 2014). The justification behind the
chemical category may be based on a variety of characteristics;
for example, structural features, physicochemical properties, or a
common mechanism, among others.

After clusters have been generated, relevant toxicological (including
new approach method or in vivo) data can be overlaid onto the
chemicals or clusters. From here, the data can be amalgamated with
knowledge of the toxicity pathway (e.g., provided by an adverse outcome
pathway) to help characterize chemical hazard or risk as part of an
integrated testing strategy, tiered testing strategy, or integrated approach
to testing and assessment. Alternatively, the available information may
be used to guide and/or prioritize chemicals for (further) testing.

Judson et al. (2015) provided predictions of ER agonism and
antagonism for 1,812 chemicals and evaluated the results based on a set
of 45 positive and negative reference chemicals. These included
28 agonist positives, 12 agonist negatives, 4 antagonist positives, and
14 antagonist negatives, with some chemicals being both agonist and
antagonist reference chemicals (OECD, 2012; Browne et al., 2015;
Kleinstreuer et al., 2016). The agonist portion of the existing full ER
pathwaymodel (herein referred to as the full ER agonistmodel), utilizing
a 16-assay subset of the original pathway model, was compared against
in vitro reference chemicals and in vivo uterotrophic studies (Browne
et al., 2015).When activity in the full ER agonistmodel was defined as an
area under the curve (AUC) ≥0.1, the accuracy was 93% for predicting
in vitro assay reference chemicals (i.e., activity from ER binding and ER
transcriptional activation assays) and 86% for in vivo assay reference
chemicals (i.e., guideline-like uterotrophic studies). A separate study,
using the full ER agonist model, was conducted to identify theminimum
subset of assays that could predict potential ER agonist activity with
performance similar to that of the full ER pathway model (Judson et al.,
2017). This study was based on a subset of 1,811 chemicals and
demonstrated that as few as four assays are needed to predict a
chemical’s ER agonism potential with performance similar to that of
the full ER pathway model. To identify this minimal set, Judson et al.
(2017) used data from the 16 ER agonism-related HT assays present in
the full ER agonist model to develop a total of 65,535 ER agonist subset
models: one for each combination of 1–16 in vitro assays.

The previously chosen best 4-assay system includes an assay
(NVS_NR_hER) that is no longer available. However, it may be
possible to find or develop an assay that performs similarly to replace
it. Alternatively, another minimal assay ER pathway model could be
developed. This article demonstrates a method of comparing the
performance of any minimal assay model with data with the full
model based on structural clusters. This article also proposes how
this granular knowledge of the performance of a minimal assay set
could be informative for developing the most efficient method to
screen chemicals.

The present study has several objectives, including determining
whether there are structural classes of chemicals in the EDSP UoC
for which the performance of a minimal assay ER agonist model (using
the existing best 4-assay ER agonist subsetmodel as a case study) is not as
predictive of estrogen agonist activity compared with the existing full ER
pathwaymodel. To address this issue, the EDSPUoCwas organized into
clusters based on chemical-structural features, and the substances that
have been tested by the ToxCast/Tox21 program (Collins et al., 2008;
Richard et al., 2016; Richard et al., 2021) were mapped into these clusters
using the k-nearest neighbors (KNN) classification algorithm. This study
also attempts to evaluate the coverage of the EDSP UoC clusters against
the 1,800-plus substances used to develop the full ER agonist model
(Judson et al., 2015). Finally, this study evaluates the performance of the
existing best 4-assay ER agonist subsetmodel (Judson et al., 2017) relative
to the existing full ER agonist model and structural clusters to investigate
the potential causes of low performance. Although this particular 4-assay
ER agonist subset model cannot be performed in the future because one
of the assays is no longer available, it is possible that a similar model
could be developed, or this analysis could be performed similarly on data
generated with another set of ER assays. Although consideration of
chemical clustering could benefit the accuracy of ER agonist predictions
from the existing full and subset models, the focus of this study is not to
develop a method of predicting a chemical’s potential for ER agonism.
This work proposes a more robust analytical framework for integrating
the adequacy of screening and validation across the chemical space
particularly the considerations when building reduced assay sets against
more redundant models. It explicitly includes chemical structure and
chemical structure diversity overlaid onto assay space to assess the
confidence of biological responses to high-throughput assays and
computational models. This analysis can be used to additionally
assess the adequacy of data and the domain of applicability for
building QSAR models from a chemical space perspective.

2 Methods

The code for all analyses described below can be found at:
https://github.com/USEPA/edsp-er-subset-model-analysis.

2.1 Data sources

Four data sources were used in this study: the 2012 EDSP UoC,
ToxCast/Tox21 HT screening data, existing full ER pathway and ER
agonist model data from Judson et al. (2015), Judson et al. (2017),
and EPA’s CompTox Chemicals Dashboard.

2.1.1 EDSP UoC
The EDSP UoC is a list of approximately 10,200 substances, as

defined under the Federal Food, Drug, and Cosmetic Act and the
Safe Drinking Water Act 1996 amendments. To facilitate the
analysis, the EPA authors provided a computable version of the
published EDSP UoC (U.S. EPA, 2012).1

1 The file is available at https://www.epa.gov/sites/default/files/2015-07/

documents/edsp_chemical_universe_list_11_12.pdf.
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2.1.2 ToxCast/Tox21 HT screening data
The ToxCast/Tox21 HT screening data consists of

approximately 9,500 substances covering a wide variety of
chemical uses (including, but not limited to, pharmaceuticals,
pesticides, insecticides, and surfactants), which have been tested
in approximately 1,400 assays as part of the ToxCast/
Tox21 program. Information pertaining to whether a chemical
was tested as part of the ToxCast/Tox21 program was
downloaded as a comma-separated values file as part of EPA’s
invitrodb v3.2 (U.S. EPA, 2020). Meanwhile, assay results were
extracted from invitrodb v3.3 using the tcpl R package (v2.0)
(Filer et al., 2017). Assay data extracted included the chemical
assay AC50 values, the binary hit call (i.e., representing activity
[1] or inactivity [0] within a given assay), and the chemical-specific
cytotoxicity point.

2.1.3 Full ER pathway and ER agonist model data in
the form of AUC scores

The existing full and subset ER pathway models consist of
1,812 chemicals from ToxCast/Tox21 that have been tested in
18 ER-related HT in vitro assays.2 The results from the existing
full ER pathway model (Judson et al., 2015) and the existing full and
subset ER agonist models (Judson et al., 2017) were downloaded, as
Excel files, from the Supplementary Material sections of the
respective journal articles. In this study, we chose to use the
existing subset ER model identified as the “best” 4-assay subset
model from Judson et al. (2017) as our comparator. This existing 4-
assay subset ER agonist model consists of a human cell-free binding
assay (NVS_NR_hER), a protein dimerization assay (OT_ER_
ERaERb_1440), a reporter assay (ATG_ERa_TRANS), and a
proliferation assay (ACEA_T47D_80hr_Positive) and was
identified in (Judson et al., 2017) because it had the highest
minimum balanced accuracy while using the fewest assays.
Throughout this study, we will refer to this subset ER agonist
model as the best 4-assay subset ER agonist model.

2.1.4 EPA’s CompTox Chemicals Dashboard
EPA’s CompTox Chemicals Dashboard contains a variety of

information for approximately 875,000 chemicals. Defined chemical
structures were needed to perform the data analyses in this study. As
such, simplified molecular-input line-entry system (SMILES) strings
and quantitative structure activity relationship (QSAR)-ready
SMILES strings were extracted via a batch search of the
CompTox Chemicals Dashboard (Williams et al., 2017).

In addition to the structure information, we extracted
Distributed Structure-Searchable Toxicity (DSSTox) substance
identifiers (DTXSIDs), DSSTox chemical identifiers (DTXCIDs),
Chemical Abstracts Service registry numbers (CASRNs), and
preferred chemical names.

To retrieve this information for the EDSP UoC substances, the
name and CASRN of each substance were utilized as the inputs to

the batch search feature. The search was conducted on both name
and CASRN to assist with the manual quality check undertaken on
the EDSP UoC. A further search of the CompTox Chemicals
Dashboard was conducted to find the chemical components for
those substances with a DTXSID and identified as either a substance
with a Markush structural representation or of unknown or variable
composition, complex reaction products, or biological materials
(UVCB; throughout this study, UVCB will be used to represent
all complex chemical mixtures). Meanwhile, the DTXSID or CASRN
was used as the batch search input for the ToxCast/Tox21 and ER
model substances, respectively.

2.2 Creation of structural fingerprints

The ToxPrint chemotype feature set (v2.0_r711, https://
toxprint.org) and ChemoTyper software (https://chemotyper.org/)
were used to create ToxPrint fingerprints. The ToxPrint chemotypes
are a predefined library of 729 sub-structural features designed to
encapsulate a broad range of chemical atoms and scaffolds (Yang
et al., 2015).

Binary molecular fingerprints were created using the SMILES
strings for each substance (or known chemical component of a
UVCBmaterial) in the EDSP UoC and ERmodel datasets. These are
hereafter referred to as SMILES-based ToxPrint fingerprints.

2.3 Creation of an EDSP database

After the chemical structure information was retrieved from the
CompTox Chemicals Dashboard (see Section 2.1), a manual quality
check of the EDSP UoC was performed to identify potential
duplicate entries and instances where the search results of the
substance name and CASRN did not match the same DTXSID
(in this case, both substances were added).

2.4 Data analysis

Unless otherwise stated, all analyses in this study were
performed using R, v3.6.3 (R. Core Team, 2019).

2.5 Chemical clustering

As we were wanting to create structurally similar chemical
clusters for the EDSP UoC and understand how the ER model
chemicals fit into these clusters, we first clustered the EDSP UoC,
then incorporated the ER model chemicals into the EDSP UoC
clusters. The SMILES-based ToxPrint fingerprints were used to
perform the clustering. This was done so that as many of the
chemicals in the EDSP UoC as possible could be clustered.

To generate the EDSPUoC clusters, we started by calculating the
pairwise distances between each of the chemicals and UVCB
chemical components in the EDSP UoC using the SMILES-based
ToxPrint fingerprints and the Tanimoto distance [i.e., 1—Tanimoto
coefficient, as implemented within the philentropy R package
[v0.4.0] (Drost, 2018)]. The SMILES-based ToxPrint fingerprints

2 Between the results from Judson (2015) and invitrodb v3.3, there are five

chemicals whose CASRNs differ and two ER assays whose names have

changed. These are identified in the check “casrn_from_judson_2015_to_

ivdb_v3-3.R″ and “data_setup_tidyverse.R″ scripts.
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were used here so that all of the ToxPrint structural features present
in the chemicals would be considered when generating the clusters.
The final chemical clusters were created using hierarchical clustering
implementing Ward’s algorithm and a cut height of 1.

Once the EDSP UoC chemicals were clustered, the ER model
chemicals were assigned to one of the EDSP UoC clusters using the
k-nearest neighbors (KNN) classification algorithm. To ensure
consistency in the features considered, we used the SMILES-
based ToxPrint fingerprints of the ER model chemicals. To
identify the most appropriate value of k to use when assigning
the ER model chemicals to an EDSP UoC cluster, we split the
clustered EDSP UoC chemicals into “training” and “test” sets
comprising 80% and 20% of the data, respectively. Although
there is no empirically “true” Cluster ID for the EDSP UoC
(because it will change depending on the cut height chosen), we
determined our most appropriate cut height; thus, we can use the
final Cluster ID to provide a “known” Cluster ID for our purposes.
The KNN algorithm was then used to predict the Cluster ID of the
test set chemicals based upon the k nearest chemicals in the training
set, changing the value of k each time: values of k used were between
1 and 5. After each value of k, the predicted Cluster IDs for each
chemical in the test set were compared against the “known” Cluster
ID for the same chemical generated by the hierarchical clustering
with a cut height of 1 and the accuracy across all predictions was
calculated. The value of k with the best accuracy was utilized to
assign the ToxCast/Tox21 chemicals to one of the EDSP clusters.
Here, based on the test set results, the most accurate value of k and
the value used in this study was k = 1.

2.6 Comparing best 4-assay subset ER
agonist model results with full ER agonist
model results

To determine whether there are clusters where the existing full
ER agonist model works well, but the existing best 4-assay subset ER
agonist model does not, the results from the best 4-assay subset ER
agonist models were compared against the ER agonist results from
the full ER agonist model for each cluster. To achieve this, for each
chemical in the ER model set with a SMILES string, the ER agonist
AUC prediction from the best 4-assay subset ER agonist model was
calculated using the median chemical-assay AUC value and assay
weights for the relevant subset model [present in the Supplementary
Material of (Judson et al., 2017)]. The best 4-assay subset ER agonist
model AUC values were then merged with the ER agonist AUC
prediction from the full ER agonist model [present in the
Supplementary Material of Judson et al. (2017)]. This process
was also conducted using the lower and upper 95% confidence
interval chemical-assay AUC values from Judson et al. (2017) to
calculate the 95% confidence interval AUCs for each subset model.
The AUC value predictions for both the full ER agonist model and
the best 4-assay subset ER agonist model were, subsequently,
dichotomized based upon the threshold value identified in
Judson et al. (2017): chemicals with an AUC value ≥ 0.1 were
identified as active for ER agonism (i.e., assigned a value of 1), and
chemicals with an AUC value < 0.1 were identified as inactive for ER
agonism (i.e., assigned a value of 0).

Cluster-level statistics were calculated by comparing the best 4-
assay subset ER agonist model and full ER agonist model predictions
for clusters containing two or more chemicals in the ER agonist
model dataset. The cluster-level statistics calculated include 1) the
mean best 4-assay subset ER agonist model AUC, 2) the mean full
ER agonist model AUC, 3) the mean difference between the best 4-
assay subset ER agonist model AUC and full ER agonist model AUC
[calculated as mean (subset ER agonist model AUC—full ER agonist
model AUC)], and 4) the standard deviation in the difference
between best 4-assay subset ER agonist model AUC and full ER
agonist model AUC.

Meanwhile, for the dichotomized predictions, a 2 × 2 confusion
matrix was generated for each cluster, from which statistics
including sensitivity, specificity, accuracy, balanced accuracy,
positive predictive value, and negative predictive value were
calculated. In this study, we are using the full ER agonist model
results as our “truth.” As such, true positives will be chemicals
predicted as agonists by both the full ER agonist model and the best
4-assay subset ER agonist model, true negatives will be chemicals not
predicted as agonists by both the full ER agonist model and the best
4-assay subset ER agonist model, false positives will be chemicals not
predicted as ER agonists by the full ER agonist model but predicted
as ER agonists by the best 4-assay subset ER agonist model, and false
negatives will be chemicals predicted as ER agonists by the full ER
agonist model but not predicted as ER agonists by the best 4-assay
subset ER agonist model.

3 Results and discussion

3.1 EDSP UoC and ER model chemicals

As can be seen in Table 1, the EDSP UoC contains a total of
10,272 substances. For 6,947 of these substances, we retrieved
SMILES strings from the CompTox Chemicals Dashboard.
However, it should be noted that this value does not include the
EDSP substances that are knownmixtures for which SMILES strings
were obtained for the chemical components or those substances with
a Markush representation. Furthermore, we were able to retrieve
QSAR-ready SMILES strings for 6,172 EDSP substances. Unless
otherwise stated, all results discussed in this study will focus on those
substances for which SMILES strings were available.

Of the 6,947 EDSP UoC substances with a SMILES string,
1,385 are also present in the ER agonist model chemical list and
have, therefore, been tested in all 16 ToxCast/Tox21 ER agonist
assays that comprise the ER pathway models.

3.2 Chemical clustering of EDSP UoC

Using Ward’s hierarchical clustering algorithm and the cut
height of 1, the EDSP substances with SMILES-based ToxPrints
fingerprints were clustered into a total of 826 clusters
(Supplementary Data S1). The cut height of 1 was chosen to
balance competing priorities: exclude the generation of clusters
containing only a single chemical and limit the number of
clusters containing only two chemicals, while not setting the cut
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height too high so that obviously dissimilar chemicals were
clustered together.

3.3 Mapping ER model chemicals to EDSP
UoC clusters

Using the KNN algorithm, 1,730 ER model chemicals with
SMILES-based ToxPrint fingerprints were assigned to one of
557 EDSP UoC clusters (Supplementary Data S2). This
assignment of chemicals to clusters included 1,385 ER model
chemicals with SMILES-based ToxPrint fingerprints that were
also contained within the EDSP UoC. As we would expect, all
1,385 chemicals present in both datasets were assigned by the KNN
mapping to the same cluster as the EDSP UoC chemical.

3.4 Best 4-assay subset ER agonist model
versus full ER agonist model results

The results of the existing best 4-assay subset ER agonist model
[identified in Judson et al. (2017)] were compared against those of
the existing full ER agonist model on a cluster-by-cluster basis. This
task was undertaken to identify whether there are clusters for which
the best 4-assay subset ER agonist model does not perform quite as
well as the full ER agonist model. We were able to retrieve structural
information in the form of SMILES strings for 1,730 of the
1,811 chemicals present in the ER model dataset. Using the KNN
algorithm and workflow described earlier, these chemicals were
assigned to 1 of 557 EDSP UoC clusters. The vast majority of the
557 clusters contain only chemicals predicted to be negative for ER
agonism, irrespective of whether the full ER agonist model or the
best 4-assay subset ER agonist model was used.

When considering the full ER agonist model, a total of 503 clusters
(90%) contained only chemicals predicted not to be ER agonists.
Meanwhile, this number was reduced to 432 clusters (78%) where
both the full ER model and the best 4-assay subset ER agonist model
predicted no agonist activity. Conversely, 71 clusters contained only
chemicals with a negative prediction for ER agonism in the full ER
agonist model and one or more chemicals with a positive prediction in
the best 4-assay subset ER agonist model. These 71 clusters were
composed of 287 ER model chemicals, of which 88 had discrepant
results. The median AUC prediction for the full ER agonist model
across these 88 chemicals was relatively low at 0.021, compared with the
median AUC prediction for these same chemicals in the best 4-assay
subset ER agonist model, which was just above the 0.1 threshold for an
active prediction at 0.132. Six chemicals had an AUC prediction >0.2 in
the best 4-assay subset ER agonist model. Of these six chemicals, the
three with the largest AUCs in the best 4-assay subset ER agonist model

were all from the same cluster (Cluster 419) and are known ER
antagonists (i.e., tamoxifen [DTXSID1034187], AUC = 0.338;
tamoxifen citrate [DTXSID8021301], AUC = 0.328; and clomiphene
citrate [DTXSID8020337], AUC = 0.277). Two of the remaining three
chemicals (clorophene [DTXSID5020154], AUC= 0.237; and 4-chloro-
3-methylphenol [DTXSID4021717], AUC = 0.206) were also from the
same cluster (Cluster 462). There is some conflicting evidence within
the literature that these two chemicals may act as ER agonists in vitro
(Houtman et al., 2004; Schmitt et al., 2012; Kenda et al., 2020). Some
evidence suggests that 4-chloro-3-methylphenol may have estrogenic
and/or anti-androgenic effects in vivo, with the lowest-observed-
adverse-effect level being based upon changes in male reproductive
endpoints and changes in the sex ratio at the mid-level of two studies
(Superfund Health Risk Technical Support Center, 2009). These
chemicals also exhibit activity across the ToxCast/Tox21 assays
related to ER receptor binding, dimerization, and RNA transcription
in the full ER agonist model; however, neither chemical is active in the
assays related to DNA binding, protein production, or ER-induced
proliferation. Based on the activity across multiple stages of the full ER
pathway model, conflicting in vitro evidence, and (current) lack of in
vivo data, hypotheses could be made that these chemicals may be either
partial or (very) weak ER agonists. Meanwhile, two clusters each
contained one ER model chemical with a positive prediction for ER
agonism in the full ER agonist model and a negative prediction in the
best 4-assay subset ER agonistmodel. TheAUCprediction in the best 4-
assay subset ER agonist model was just below the 0.1 threshold for
chloromethyl methyl ether (DTXSID6020307) and colforsin
(DTXSID8040484) at 0.0976 and 0.0901, respectively
(i.e., borderline negatives).

When comparing the binary predictions made by the best 4-
assay subset ER agonist model against the full ER agonist model
across all 1,730 chemicals, 124 differed in their predictions. Almost
all inaccurate predictions (122 out of 124) were false positives; that
is, the best 4-assay subset ER agonist model indicated the chemical as
positive for ER agonism, whereas the full ER agonist model indicated
the chemical as negative. Of the chemicals with a false positive
prediction, 12 were predicted to be ER antagonists according to the
full ER pathway model; this relates to 66.67% of the total number of
predicted ER antagonists (18 chemicals) from the full ER pathway
model. It should be noted that chemicals identified as antagonists by
the full ER pathway model tend to also have agonist AUC values
greater than 0.1, but the antagonist AUC is larger than the agonist
AUC. The ER antagonist AUC values from the full ER pathway
model are larger than the AUC values from the best 4-assay subset
ER agonist model for all but 2 of these 12 chemicals. The median
AUC value for the 122 false positives from the best 4-assay subset ER
agonist model was 0.138, whereas the threshold for an active
prediction is 0.1. In comparison, the median AUC from the full
ER agonist model for the same set of chemicals was 0.024. These

TABLE 1 The total number of substances within the EDSP UoC, the ToxCast/Tox21 program, and the ER model set, alongside the number of substances for
which SMILES and QSAR-ready SMILES were retrieved from EPA’s CompTox Chemicals Dashboard (not including UVCBs, mixtures, or chemicals with
Markush representations).

Data source Total substances Chemicals with SMILES Chemicals with QSAR-ready SMILES

EDSP UoC 10,272 6,947 6,172

ER model 1,812 1,730 1,703
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results are similar to those observed by Judson et al. (2017).
Whereby, on average, for chemicals with an AUC close to 0 in
the full ER pathway model, all subset ER agonist models tended to
over-predict the full ER pathway model AUC values. However, these
over-predictions appear to be relatively small.

Judson et al. (2017) attributed this tendency for over-prediction to
the fact that the full ER pathway model has additional assay interference
pathways (termed “pseudoreceptors”) into which these chemicals likely
would have been moved (Judson et al., 2015; Judson et al., 2017). These
pseudoreceptors are not present in the subset ER agonist models.

Another reason for the larger proportion of false positives may be
due to the smaller number of assays present in the best 4-assay subset ER
agonist model being less able to compensate for strong (potentially)
erroneous activity in one assay (or moderate activity in multiple assays)
compared with the full ER agonist model. Similarly, the two chemicals
with false-negative predictions (chloromethyl methyl ether and
colforsin) have a full ER agonist model AUC value slightly or
somewhat above the 0.1 threshold for an active prediction (0.2 and
0.1, respectively), whereas theAUC for the best 4-assay subset ER agonist
model is just below the 0.1 threshold (0.098 and 0.09, respectively).

FIGURE 1
(A) Breakdown of the number of clusters (and chemicals contained within) thatmeet each criterionwhen investigating results comparing the best 4-
assay subset ER agonist model with the full ER agonist model (B)Categories of false-positive predictions. NB: 0.214 is the lower 25th percentile AUC from
the best 4-assay subset ER agonist model for the true-positive chemicals. *The antagonist count includes one chemical that was in a cluster by itself,
which is not discussed in the main text.
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Next, we removed clusters containing only one ER model
chemical and calculated various statistics on a per-cluster basis
(Figure 1). A total of 192 clusters (34.5%) contained only a single

ER model chemical. Removing these clusters reduced the number of
clusters under investigation to 365, covering 1,538 ER model
chemicals, of which 1,222 are also in the EDSP UoC. Of these

FIGURE 2
Prediction metrics comparing the best 4-assay subset ER agonist model against the full ER agonist model on a per-cluster basis. Clusters included
contain more than one ER model chemical and have prevalence between 0% and 100%. Note that the small number of chemicals in the cluster results in
large drops in specificity and balanced accuracy due to a single chemical. As a result, the actual values should not be compared against typical results
found in larger datasets.
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365 clusters, 321 clusters (covering 1,220 ER model chemicals,
including 994 in the EDSP UoC) were composed of only
chemicals predicted by the full ER agonist model as inactive for

ER agonism (i.e., a cluster-level prevalence of 0%). The best 4-assay
subset ER agonist model predictions exactly matched those of the
full ER agonist model for 257 of the 321 clusters (covering 940 ER

FIGURE 3
Dot plot of AUC values from the best 4-assay subset ER agonist model (blue) and the full ER agonist model (red) for each chemical predicted to be a
false positive (ordered by smallest full ER agonist model AUC) per chemical cluster. The dotted horizontal line at 0.1 represents the threshold for an ER
agonist prediction. The dotted horizontal line at 0.214 represents the lower quartile of the best 4-assay subset ER agonist AUC values of the true-positive
chemicals. The vertical dotted colored lines represent the upper and lower 95% confidence intervals of the AUC predictions for the full ER agonist
model (red) and the best 4-assay subset ER agonist model (blue).

TABLE 2 The 11 chemicals with a false-positive prediction and an AUC value in the best 4-assay subset ER agonist model greater than 0.214 (i.e., the lower
25th percentile AUC value of the chemicals with a true-positive prediction).

DTXSID Name Predicted
cluster

Full
model
AUC

Subset
model AUC

2 2015 max
receptor

Number of
active assays

DTXSID1034187 Tamoxifen 419 0.030 0.338 Antagonist 3

DTXSID4022369 Fulvestrant 789 0.000 0.331 Antagonist 3

DTXSID3037094 4-Hydroxytamoxifen 184 0.017 0.330 Antagonist 2

DTXSID8021301 Tamoxifen citrate 419 0.037 0.328 Antagonist 3

DTXSID5027061 2-Naphthalenol 200 0.099 0.284 None 3

DTXSID8020337 Clomiphene citrate (1:1) 419 0.032 0.277 Antagonist 2

DTXSID5023322 Mifepristone 534 0.003 0.262 Antagonist 3

DTXSID3040776 Morin hydrate 418 0.093 0.261 None 3

DTXSID1021871 4-Chlorophenol 239 0.029 0.250 None 2

DTXSID9034997 Tributyltetradecylphosphonium
chloride

373 0.065 0.237 R8 2

DTXSID5020154 Clorophene 462 0.020 0.237 None 3

Six of the 11 chemicals have an antagonist prediction in the full ER pathway model presented in Judson et al. (2015).
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model chemicals, including 783 in the EDSP UoC). The remaining
64 clusters (covering 280 ER model chemicals, including 211 in the
EDSP UoC) had a cluster-level specificity of less than 100% (i.e., at
least one chemical in the cluster was predicted by the best 4-assay
subset ER agonist model to be a false-positive ER agonist). This
corresponds to 81 false-positive chemicals (including 65 in the EDSP
UoC), which will be evaluated in more detail as follows.

The remaining 44 of 365 clusters (covering 318 chemicals,
including 228 in the EDSP UoC) have a cluster-level prevalence
greater than 0% and less than 100% (i.e., containing at least one
chemical predicted as active and at least one chemical predicted as
inactive by the full ER agonist model) (Figure 1). Out of the 318 ER
model chemicals included in the 44 clusters, there are no false-
negative chemicals and 34 false-positive chemicals. Figure 2
illustrates the cluster-level balanced accuracy, sensitivity,
specificity, accuracy, and prevalence for this set of 44 clusters.
The cluster-level balanced accuracy across these 44 clusters
ranges from 50% to 100%, with 32 clusters (72.7%) having a
balanced accuracy ≥90%. The mean cluster-level balanced
accuracy is 91.9%. This is very close to the minimum balanced
accuracy for this same subset model across all chemicals in Judson
et al. (2017). The decreases in cluster-level balanced accuracy are
driven by decreases in specificity, with 100% sensitivity seen across
all clusters (Figure 2). This is not surprising because there are only
two false-negative chemicals in the entire dataset.

The two clusters with the lowest balanced accuracy and
specificity (Clusters 179 and 789) each contain only one chemical

predicted as inactive for ER agonism in the full ER agonist model: 4-
hexylresorcinol in Cluster 179 and fulvestrant in Cluster 789. In both
instances, the chemical is predicted as active for ER agonism in the
best 4-assay subset ER agonist model. However, it is less of a surprise
that fulvestrant [a known ER antagonist and ER antagonist reference
chemical in Judson et al. (2015)] was picked up as an ER agonist
because the best 4-assay ER agonist subset model does not
simultaneously screen for ER antagonism. Both clusters illustrate
the difficulty in interpreting balanced accuracy when looking at
individual clusters. Given their small size (and, therefore, limited
number of “real” positives and negatives), if one chemical is
incorrectly predicted, the statistics for the cluster can seem much
worse than the reality: this appears to be the case for Clusters
179 and 789. In each instance, the cluster-level balanced accuracy is
inferring that the performance of the best 4-assay subset ER agonist
model is poor. However, the balanced accuracy is affected by the fact
that there is only one inactive chemical in the cluster, and the
prediction for that chemical was incorrect. In contrast, the cluster-
level accuracy and sensitivity values for these two clusters are much
greater. The cluster-level accuracy is 80% for Cluster 179% and 90%
for Cluster 789; meanwhile, the cluster-level sensitivity for both
clusters is 100%. More important than the cluster-level statistics,
however, is whether there are structural features associated with a
false-positive call from the best 4-assay subset ER agonist model.
This could allow a combination of biological activity and structural
information to be used when selecting chemicals for
further screening.

FIGURE 4
Illustration of the results for the ER agonistmodel chemicals in Cluster 789. The gray DTXSIDs represent chemicals correctly predicted by the best 4-
assay subset ER agonist model compared with the full ER agonist model. The Judson et al. (2015) prediction heat map displays the results from the
2015 full ER pathway model. The middle heat map identifies whether the chemical is a reference chemical for ER agonism. Themain heat map shows the
AUC values for each chemical-assay pair with darker red representing larger AUC values (i.e., greater activity). The red assay labels represent the
assays present in the best 4-assay ER agonist model. Chemical names associated with the DTXSIDs can be found in Supplementary Data S1.
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3.5 Investigating clusters containing false-
positive predictions

Although the number of false-positive chemicals (122) is
relatively low compared with the number of chemicals evaluated
using each model (1,730), we wanted to find out whether it would be
possible to discern criteria that may be utilized as part of a screening
strategy to further limit unnecessary testing. To do this, we further
investigated the clusters containing one or more false-positive
predictions (based on the dichotomized AUC values)
(Supplementary Data S3). A total of 91 clusters contained at least
one chemical with a false-positive prediction: seven clusters were
composed of only a single ER model chemical. Although seven
clusters could not be examined further in terms of comparing the
results from the false-positive chemical against other chemicals in
the same cluster, the chemicals were still of use when analyzing
across all chemicals with a false-positive prediction and so
were retained.

Figure 3 illustrates the AUC values from the full ER agonist
model and the best 4-assay subset ER agonist model for all chemicals
with a false-positive prediction within each chemical cluster (the
distribution of all AUC values for the best 4-assay subset ER agonist
model per outcome can be seen in Supplementary Figure S1).
Roughly half (64 out of 122, 52.5%) of the false-positive
chemicals have 95% confidence intervals for their AUC
predictions that overlap with the 0.1 threshold in either the full
ER agonist model or the best 4-assay subset ER agonist model (Watt
and Judson, 2018). This makes it more difficult to ascertain whether

these are “real” false-positive predictions. The majority (90.1%) of
chemicals with a false-positive prediction have an AUC value in the
best 4-assay subset ER agonist model of less than 0.214, which is the
lower 25th percentile AUC of the true-positive chemicals. As such, a
prioritization process based solely upon the AUC values would
mean that 75% of the true-positive chemicals would likely be tested
further before roughly 90% of chemicals with a false-positive
prediction. This is discussed in more detail in Sections 3.6 and 4.
Meanwhile, only 11 false-positive chemicals out of the 122 false
positives have an AUC in the best 4-assay subset ER agonist model
equal to or greater than 0.214 (Table 2). These 11 chemicals belong
to nine separate chemical clusters, with only one cluster (Cluster
419) containing multiple chemicals with an AUC greater than 0.214.
Examining these 11 chemicals further, we found that 6 of the 11 are
predicted to be ER antagonists in the full ER pathway model present
in Judson et al. (2015) (Table 2). Out of the top 11 chemicals, only 2-
naphthalenol has a subset model AUC value larger than the AUC
values of any of the chemicals with an antagonist prediction.

Given the prevalence of antagonist predictions in the chemicals
with a best 4-assay subset ER agonist model AUC above 0.214, we
explored the chemical clusters containing 1) at least two ER model
chemicals and 2) at least one false-positive chemical with an
antagonist assignment from the Judson et al. (2015) ER model.
Nine clusters met these criteria, covering a total of 62 chemicals
including 11 false-positive chemicals with an antagonist assignment
(Figure 1B). Next, we examined each of these nine clusters in more
detail (Supplementary Data S3). This included creating heat maps
that illustrated 1) which chemical in the cluster had a false-positive

FIGURE 5
Stacked bar graph illustrating the count of the number of assays within the best 4-assay subset ER agonist model in which the true-positive (blue)
and false-positive (red) chemicals were active. The false-positive chemicals do not include those predicted to be antagonists within the full ER pathway
model results from Judson et al. (2015). Of the true positives, all but 11 chemicals were active in three or more assays. Meanwhile, of the false positives, all
but 21 chemicals were active in two or fewer assays.
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prediction, 2) the prediction from the Judson et al. (2015) ER model,
and 3) the chemical-assay AUC values across the 16 assays present
in the ER agonist pathway.

Figure 4 illustrates the heat map for Cluster 789. This cluster
comprises 10 chemicals, including known ER agonists, such as 17α-
estradiol and 17α-ethinylestradiol. Nine of the chemicals in this
cluster were correctly predicted when comparing the best 4-assay
subset ER agonist model with the full ER agonist model (as shown by
the gray text in Figure 4). Additionally, each of these chemicals was
predicted to be an ER agonist by the Judson et al. (2015) ER model.
Meanwhile, the one false-positive chemical in this cluster,
fulvestrant, is a known ER antagonist and is predicted as such by
the full ER pathway model (Judson et al., 2015). Comparing the
activity of fulvestrant across all 16 assays present in the full ER
agonist model against that of the other chemicals in the cluster, we
can see a clear difference between the predicted agonists and
antagonist. Although the agonists have relatively high activity
across most, if not all, of the 16 assays, fulvestrant has high
activity in those assays that overlap between the agonist and
antagonist pathways and little to no activity in the assays that are
ER agonist pathway specific, which is what would be expected from
an ER antagonist.

This pattern of (relatively) high activity in the overlapping assays
present in both agonist and antagonist pathways and little to no
activity in the assays that are ER agonist pathway specific is also
observed for the other three clusters with a best 4-assay subset ER
agonist model AUC >0.214: Clusters 184, 419, and 534. However,

the remaining five clusters that do not have a best 4-assay subset ER
agonist model AUC >0.214 (i.e., Clusters 130, 247, 370, 592, and
621) do not exhibit the same pattern and, typically, have activity in
relatively few assays. Although the false-positive chemicals present
in Clusters 184, 419, 534, and 789 were predicted as false positives by
the best 4-assay subset ER agonist model, this is likely only because
potential antagonist effects were not being evaluated; thus, the
chemicals could not be moved into the antagonist mode.

Therefore, including ER antagonist-related assays when screening
potential ER-modulating chemicals would not only identify ER
antagonists but should also improve the predictions regarding ER
agonism. Within this strategy, one would initially test all chemicals
of interest in a preliminary 6-assay battery consisting of four assays
comparable with the best 4-assay subset ER agonist model and two ER
antagonist-specific assays. One would then use the best 4-assay subset
ER agonist model to calculate an ER agonist AUC for each chemical.
Additionally, the data from the 6-assay battery could be used to create
and validate a model to calculate an AUC for potential ER antagonism.
Because the false-positive chemicals with an antagonist prediction
would be expected to be identified as ER antagonists via the use of
one or two additional assays, they were removed from further
investigation. In addition, from the perspective of prioritization for
testing, whether the chemical is identified as an agonist or an antagonist
is less important than the fact that it has the potential to be an estrogen-
active chemical.

Next, we calculated the number of assays in the best 4-assay
subset ER agonist model with activity for each false-positive

FIGURE 6
Jitter plot of AUC values from the best 4-assay subset ER agonist model (blue) and the full ER agonist model (red) for each of the 11 true-positive
chemicals active in two assays (circles) and the 21 false-positive chemicals active in three or four assays not predicted to be an antagonist in the full ER
pathway model from Judson et al. (2015) (crosses). Each cluster is separated by the predicted chemical Cluster ID. The dotted horizontal line at
0.1 represents the threshold for an ER agonist prediction. The dotted horizontal line at 0.214 represents the lower quartile of the best 4-assay subset
AUC values of the true-positive chemicals. The vertical dotted lines represent the upper and lower 95% confidence intervals of the AUC predictions.
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chemical and compared this against the activity of the true-positive
chemicals: activity was considered as a chemical-assay AUC value
above 0. Most false-positive chemicals were active in one or two
assays, with 18 (14.7%) false-positive chemicals active in three assays
and only 3 (2.5%) active in four assays (Figure 5). Meanwhile, most
true-positive chemicals were active in three or four assays, with no
true-positive chemicals active in only one assay and only 11 (10.4%)
active in two assays (Figure 5). Therefore, requiring a chemical to be
active in three or four of the best 4-assay subset ER agonist model
assays would remove 89 (80.9%) of the remaining 110 false-positive
chemicals while only missing 11 true-positive chemicals (Figure 1B).
Most of the 11 true-positive chemicals missed could be considered
marginal actives, because 9 of the 11 have an AUC in the subset
model between 0.1 and 0.2. This step compensates for the loss of the
pseudoreceptor components in the original 16-assay model and
could represent an additional criterion that may be of use for
prioritization, with chemicals active in three or four assays being
given a marginally higher priority than chemicals with a similar best
4-assay subset ER agonist model AUC active in only one or two
assays. Although this would deprioritize 11 chemicals with a true-
positive prediction, over 85% of the chemicals that meet this
criterion are those with a false-positive prediction.

The names of the true-positive chemicals active in two assays
and the false positives active in three or four assays in the best 4-
assay subset ER agonist model can be found in Supplementary Table
S1. Plotting the AUC values (including the upper and lower 95%
confidence intervals) for the best 4-assay subset ER agonist model

and full ER agonist model for these 32 chemicals, one can see that
the majority have a best 4-assay subset ER agonist model AUC that is
below the lower-quartile best 4-assay subset ER agonist model AUC
of all true-positive chemicals (Figure 6). For several of the false-
positive chemicals, the full ER agonist model AUC is near the cutoff
for defining ER activity. Additionally, for other false-positive
chemicals, the upper 95% confidence interval of the full ER
agonist model AUC is close to or above the 0.1 cutoff (Watt and
Judson, 2018). This suggests that the activity calls from the full ER
agonist model are less certain for these chemicals. The same logic
holds for true-positive predictions from the best 4-assay subset ER
agonist model; the lower 95% confidence interval for several of these
chemicals is close to or below the 0.1 threshold for defining ER
agonist activity.

After further investigation of the true-positive chemicals with
activity in two assays, we found that 91% were active in the ACEA
assay and 73% were active in the ATG_ERa_TRANS_up assay. Only
two chemicals (melengestrol acetate [DTXSID5048184] and 4-
[hexyloxy]phenol [DTXSID4048195]) were active in the
NovaScreen (NVS) receptor-binding assay. According to Judson
et al. (2017), the NVS assays may miss many chemicals that only
weakly bind ER. As such, although it is difficult to ascertain whether
the inactivity observed in the NVS assay for the chemicals with a
true-positive prediction is “real,” several have an “active (weak)” or
“active (very weak)” binding prediction from the Collaborative
Estrogen Receptor Activity Prediction Project (CERAPP) model
(Mansouri et al., 2016). Some of these substances (such as rotenone

FIGURE 7
Illustration of the results for the ER agonist model chemicals in Cluster 534. Blue DTXSIDs represent true-positive chemicals active in two of the best
4-assay ER agonist subset model assays, orange DTXSIDs represent false-positive chemicals active in three or four of the best 4-assay ER agonist subset
model assays, and gray DTXSIDs represent chemicals that do not meet these criteria. The “Full Model Prediction (2017)” heat map illustrates the results
from the Judson et al. (2017) full ER agonist model, with red indicating chemicals predicted to be active and white indicating chemicals predicted to
be inactive. The main heat map shows the AUC values for each chemical-assay pair with darker red representing larger AUC values.
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[DTXSID6021248]), may act via estrogen-related receptor alpha
(ERRα; NR3B1) (Lynch et al., 2019), which is not assessed as part of
the EDSP Tier 1 battery of assays or the ToxCast ER Bioactivity
Model (Judson et al., 2015).

Of the true positives active in two assays and false positives
active in three or four assays in the best 4-assay subset ER agonist
model, only six clusters (Clusters 289, 462, 95, 474, 200, and 534)
contain more than one chemical (Figure 6 and Supplementary Table
S1). These clusters were examined more closely to determine the
possible reasons behind the differences between the best 4-assay
subset ER agonist model and the full ER agonist model. Both
chemicals from Cluster 289 were just above the threshold in the
subset model and had low AUC values in the full model, so they are
assumed to be truly false positives, which cannot be avoided in an
initial screening assay. The remaining clusters are considered in
more detail as follows.

Cluster 534 is the only cluster to have a true-positive chemical
where the AUC in the subset model is greater than 0.214, but the
activity is restricted to two assays. In fact, two of the three chemicals
that were positive in the subset model and had activity in two assays
(testosterone propionate [DTXSID9036515] and melengesterol
acetate [DTXSID5048184]) had an AUC in the best 4-assay
subset ER agonist model greater than 0.214. Cluster 534 is
composed of 17 steroidal androgens, progestins, and/or
glucocorticoids. Example chemicals within this cluster include
prednisone (DTXSID4021185), corticosterone (DTXSID6022474),

and 17-methyltestosterone (DTXSID1033664, an ER reference
agonist). As can be seen in Figure 7, most chemicals in this
cluster tend not to have activity in the eight Odyssey Thera (OT)
assays evaluating biological process targets of protein stabilization
and gene expression (Judson et al., 2015; Judson et al., 2017). Of the
four assays present in the best 4-assay subset ER agonist model, both
testosterone propionate and the remaining true positive with activity
in two assays (4-androstene-3,17-dione [DTXSID8024523]) were
active in the ATG transactivation assay (ATG_ERa_TRANS_up)
and the ACEA cell proliferation assay (ACEA_T47D_80h_Positive).
Both chemicals were most active in the ATG transactivation assay. It
was pointed out by Judson et al. (2015) that this transactivation assay
is highly multiplexed, with concurrent androgen receptor and ER
readouts, along with some metabolic capability. Therefore, the
observed activity of these chemicals may be “real” estrogenic
activity, due to metabolic activation of the chemicals, or it may
be being caused by cross-reactivity due to the assay technology.
Melengestrol acetate, meanwhile, was quite highly active in the NVS
receptor binding (NVS_NR_hER) and ACEA cell proliferation
assays, with assay-specific AUCs of 0.735 and 0.521, respectively.
Relatively high concentrations of melengestrol acetate have
previously been reported to be able to bind to the ER and induce
cell proliferation (Le Guevel and Pakdel, 2001; Perry et al., 2005).
Furthermore, the T47D cell line used within the ACEA cell
proliferation assay is known to be highly responsive to progestins
and glucocorticoids (Capen andMartin, 1989; Judson et al., 2015). It

FIGURE 8
Illustration of the results for the ER agonist model chemicals in Cluster 462. Blue DTXSIDs represent true-positive chemicals active in two of the best
4-assay ER agonist subset model assays, orange DTXSIDs represent false-positive chemicals active in three or four of the best 4-assay ER agonist subset
model assays, and gray DTXSIDs represent chemicals that do not meet these criteria. The “Full Model Prediction (2017)” heat map illustrates the results
from the Judson et al. (2017) full ER agonist model, with red indicating chemicals predicted to be active and white indicating chemicals predicted to
be inactive. The main heat map shows the AUC values for each chemical-assay pair with darker red representing larger AUC values.
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appears that in addition to their primary nuclear receptor target,
these chemicals may also exhibit (weak) ER agonism.

Cluster 462 contained six chemicals, all of which were predicted
to be negative in the full model. Three of these six chemicals were
predicted to be positive in the subset model, with one chemical
(clorophene [DTXSID5020154]) having an AUC from the subset
model greater than 0.214, whereas the remaining two chemicals (4-
chloro-3-methylphenol [DTXSID4021717] and 4-chloro-3,5-
dimethylphenol [DTXSID0032316]) had a subset model AUC
less than 0.214 (Figure 6). All subset model–positive chemicals
had activity in three of the four assays and would, therefore, be
included if the two active assay filter is applied. There is relatively
consistent activity across the cluster, with all chemicals active in
multiple OT protein stabilization assays and/or ATG assays
(Figure 8). The greatest activity was observed in the OT_ER_
ERaERb and OT_ER_ERbERb assays for all chemicals, except
clotrimazole (DTXSID7029871). Because of the consistency in
activity, we investigated the best 4-assay subset ER agonist model
AUC values of the chemicals predicted to be negative in both the full
and subset ER agonist models and discovered that all best 4-assay
subset ER agonist model AUC values were ≥0.07: two chemicals
(dichlorophen [DTXSID6021824] and 4-chloro-2-methylphenol
[DTXSID5022510]) had a subset model AUC >0.09, which is
very close to the 0.1 threshold. Further investigation of the best
4-assay subset ER agonist model active chemicals revealed that
clorophene and 4-chloro-3-methylphenol have been identified as
possibly having some slight ER activity, especially in vitro, where

these chemicals have been observed to weakly bind ER (Körner et al.,
1998; ECHA, 2017; Kenda et al., 2020). Moreover, 4-chloro-2-
methylphenol has been seen to bind very weakly to ER, with a
relative binding affinity of 0.00021% compared with 17β-estradiol
(Körner et al., 1998; Blair et al., 2000). Therefore, it appears likely
that these chemicals may have the potential to all be very weak ER
agonists and, as such, may be close to the limit of detection for
the assays.

Clusters 95 and 200 have chemicals that are positive in both the full
and subset models but have activity in only two assays from the best 4-
assay subset ER agonist model. They also have chemicals that are
positive in the best 4-assay subset ER agonist model but with no activity
in the full ER agonist model. With one exception, all AUCs from both
models were less than 0.21 (Figure 6). Cluster 95 showed spotty activity
across all assays (Figure 9). Both the full ER agonist model and the best
4-assay subset ER agonist model predicted two positives from this
cluster. Both models predicted 3,3′-dimethylbenzidine dihydrochloride
(DTXSID6020511) to be positive regardless of filters. The best 4-assay
subset ER agonist model also predicted 3,3′-dimethylbenzidine
(DTXSID5024059) to be positive, but this chemical showed activity
in only two of the four assays, so it would be excluded if that filter is
applied. In addition, the best 4-assay subset ER agonist model picked up
4,4′-diamino-3,3′-dimethyldiphenylmethane (DTXSID5020867),
which has an AUC value of only 0.0458 in the full ER agonist
model. Visually examining the results from the individual assays,
however, it is impossible to definitively establish a difference among
these chemicals with regard to the potential for estrogenic activity

FIGURE 9
Illustration of the results for the ER agonist model chemicals in Cluster 95. Blue DTXSIDs represent true-positive chemicals active in two of the best
4-assay ER agonist subset model assays, orange DTXSIDs represent false-positive chemicals active in three or four of the best 4-assay ER agonist subset
model assays, and gray DTXSIDs represent chemicals that do not meet these criteria. The “Full Model Prediction (2017)” heat map illustrates the results
from the Judson et al. (2017) full ER agonist model, with red indicating chemicals predicted to be active and white indicating chemicals predicted to
be inactive. The main heat map shows the AUC values for each chemical-assay pair with darker red representing larger AUC values.
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(Figure 9). It is unclear whether the chemical properties of this cluster
are unsuitable forHT screening, which could cause variability across the
assays, or whether this cluster contains chemicals that are extremely
weak agonists and therefore fall at the limit of detection for the assays.
Regardless of the reason, these chemicals are likely all weak agonists or
all false positives, and the best 4-assay subset ER agonist model would
flag this cluster as effectively as the full ER agonist model does.

Cluster 200 shows a pattern similar to that of Cluster 95, except for
four chemicals that show consistent activity acrossmost of the assays and
are therefore called active in both models (Figure 10). Excluding those
chemicals, however, we have the same situationwhere the full ER agonist
model predicts two positive chemicals (4-[hexyloxy]phenol
[DTXSID4048195] and 3-hydroxyfluorene [DTXSID9047540]) and
the best 4-assay subset ER agonist model predicts two positive
chemicals (2-naphthalenol [DTXSID5027061] and 3-hydroxyfluorene
[DTXSID9047540]) with one in common and two discrepancies. The
consistent activity for three chemicals from this cluster would suggest
that the other chemicals are likely agonists as well. However, from the
standpoint of screening chemicals, the best 4-assay subset ER agonist
model is just as likely to flag chemicals from this cluster for further
evaluation as the full ER agonist model. As additional data are gathered
for the chemicals that are predicted to be agonists, structure-based
predictions should assist with prioritizing the other chemicals within the
cluster where the results are currently equivocal.

Similar to Cluster 200, Cluster 474 contains a set of four
chemicals that exhibit relatively high activity across most of the
ER assays and are predicted active in both the full ER agonist model

and the best 4-assay subset ER agonist model (Figure 11). However,
in this instance, all chemicals predicted to be active in both models
are active in all four of the best 4-assay subset ER agonist model
assays. Excluding these chemicals, the best 4-assay subset ER agonist
model predicts four positive chemicals (2,4-di-tert-pentylphenol
[DTXSID9026974], 2,4-diisopropylphenol [DTXSID7042273], 4-
propylphenol [DTXSID9022100], and 4-isopropylphenol
[DTXSID5042299]). Two of these four chemicals are active in
three (4-propylphenol [DTXSID9022100]) or all four (4-
isopropylphenol [DTXSID5042299]) of the best 4-assay subset
ER agonist model assays. Again, this consistent activity suggests
that the other chemicals in this cluster could also be agonists.
However, given the relatively large proportion of chemicals that
exhibit activity mainly in the Attagene assays, there may be an
activity cliff whereby some of the chemicals in this cluster may elicit
activity via the associated pseudoreceptor, which may result in this
cluster being split in two. As with Cluster 200, additional data
generated for the chemicals predicted to be agonists should help to
prioritize the remaining chemicals in the cluster.

3.6 Implications for a multi-stage
prioritization workflow prior to EDSP
tiered testing

Everything considered, one potential multi-stage prioritization
workflow that could be implemented to assist in identifying

FIGURE 10
Illustration of the results for the ER agonist model chemicals in Cluster 200. Blue DTXSIDs represent true-positive chemicals active in two of the best
4-assay ER agonist subset model assays, orange DTXSIDs represent false-positive chemicals active in three or four of the best 4-assay ER agonist subset
model assays, and gray DTXSIDs represent chemicals that do not meet these criteria. The “Full Model Prediction (2017)” heat map illustrates the results
from the Judson et al. (2017) full ER agonist model, with red indicating chemicals predicted to be active and white indicating chemicals predicted to
be inactive. The main heat map shows the AUC values for each chemical-assay pair with darker red representing larger AUC values.
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potential endocrine disruptors acting via ER is illustrated in
Figure 12. As part of this, the EDSP UoC would be tested in an
initial battery of six assays composed of four assays comparable with
the best 4-assay subset ER agonist model, as well as two antagonist-
specific assays. These data would then be used as input to the best 4-
assay subset ER agonist model, which would be utilized to calculate
an ER agonist AUC for each chemical. Meanwhile, the creation and
validation of an ER antagonist model utilizing data either from all six
of the assays in the battery, or a subset thereof, should enable the
calculation of an ER antagonist AUC. Any chemical with a positive
prediction from either the ER agonist or ER antagonist model would
be prioritized for Tier 1 screening.

The potential short-term impact of data collected using the 6-
assay battery over a 4-assay battery comparable with the best 4-assay
subset ER agonist model may be minimal, because, as mentioned in
Section 3.5, in terms of prioritizing chemicals for testing, identifying
a chemical as a potential estrogen-active is more important than
identifying whether it is an agonist or antagonist. However, in the
longer-term, the potential benefits of collecting these additional data
include being able to use the additional data from the antagonist-
specific assays to help distinguish agonists from antagonists, which
should, in turn, allow for a more comprehensive identification of
both agonists and antagonists.

The results from this study suggest that the positive chemicals
could be prioritized based on a combination of the model AUC and
the number of active assays. Subsequently, the data from the initial

screening could be overlaid onto the EDSP UoC clusters and used to
identify clusters that either contain ER-active chemicals or are
enriched for ER activity. From here, positive chemicals, as well as
chemicals with a negative prediction present within clusters
containing or enriched for ER activity, would then be screened
through the remaining 12 ER assays and the full ER pathway model
used to re-calculate the ER agonist and antagonist AUC values. The
results from this model could then be used as an alternative to
conducting the ER binding in vitro, ER transcriptional activation
in vitro, and rat uterotrophic assays (U.S. EPA, 2023). Chemicals
with a positive prediction in the full ER pathway model would be
prioritized for Tier 2 testing, with the AUC values from the full ER
pathway model and whether an agonist or antagonist prediction was
stronger than that of the pseudoreceptors being used as criteria to set
the prioritization.

Additionally, where the results from the full ER network model
and the initial assay battery model disagree, the chemicals and/or
clusters can be re-evaluated. Further re-evaluation also could be
conducted for those chemicals and/or clusters where the model
predictions disagree with the Tier 2 in vivo results. As more and
more data are generated by the screening workflow and tiered
testing, these data have the potential to be further utilized for
prioritization or other purposes. Examples include the
identification of pharmacophores or toxicophores associated with
potential endocrine effects via ER, or the prioritization of clusters
that contain large proportions of chemicals active across many

FIGURE 11
Illustration of the results for the ER agonist model chemicals in Cluster 474. Blue DTXSIDs represent true-positive chemicals active in two of the best
4-assay ER agonist subset model assays, orange DTXSIDs represent false-positive chemicals active in three or four of the best 4-assay ER agonist subset
model assays, and gray DTXSIDs represent chemicals that do not meet these criteria. The “Full Model Prediction (2017)” heat map illustrates the results
from the Judson et al. (2017) full ER agonist model, with red indicating chemicals predicted to be active and white indicating chemicals predicted to
be inactive. The main heat map shows the AUC values for each chemical-assay pair with darker red representing larger AUC values.
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assays but that may not quite surpass the 0.1 threshold because these
chemicals may still be of concern, among other potential uses.

Although there are assays in the current model that no longer
exist, this information is provided as a proof of concept that can still
be informative for evaluating subset models and developing
prioritization and screening plans for future models.

4 Conclusion

We separated the EDSP UoC into 826 clusters based upon
structural similarity among the chemicals. The chemicals used to
build the full ER agonist model and subsequent best 4-assay subset
ER agonist model provide relatively good coverage of the EDSP UoC,
with 1,730 ER model chemicals mapping to 557 EDSP UoC clusters
(67%). As desired for an early-stage test, the sensitivity was particularly

high, with 122 of 124 discrepancies being a false-positive call from the
best 4-assay subset ER agonist model compared with the full ER agonist
model. When considering implications for chemical screening and
prioritization, it is important to note that the results from the best 4-
assay subset and 16-assay full ER agonistmodels agree 87.8%of the time
for stronger agonists’ calls (i.e., when the AUC for the agonist model
was 0.214 or greater, which corresponds to the lower 25th percentile of
the active chemicals based on the best 4-assay subset ER agonist model).
The performance of the model seemed to be independent of the
chemical structure with 122 false positives distributed across
84 clusters, with most cases being a single false positive per cluster.

Because more than 90% of the false positives have an AUC below
the lower 25th percentile, they would be unlikely to be prioritized for
screening in the short term. As additional screening is done, the
model predictions should improve as our understanding of the
structural features and bioactivity measurements that are most

FIGURE 12
Workflow of a potential multi-stage screening strategy. The 0/1 coding in certain boxes represents assays from the full ER pathway model in which
chemicals would (1) or would not (0) be screened.
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predictive improves. In addition, 10% of the false-positive agonist
predictions (representing over half of the false positives with an
AUC above the lower 25th percentile) are predicted to be
antagonists by the full ER pathway model. Because subsequent
testing would distinguish between agonism and antagonism, any
activity prediction at this stage would be equally valuable for
prioritizing those chemicals to undergo future screening. Of the
false positives that are not predicted to be antagonists by the full ER
pathway model, over 80% can be filtered by requiring activity in at
least three of the four assays in the best 4-assay subset ER agonist
model, which only removes ~10% of the true-positive chemicals.

Many potential false-positive predictions fall within clusters
with other chemicals predicted to be weak ER agonists by the full
ER agonist model and, therefore, could as easily represent a false-
negative call by the full ER agonist model instead of a false-positive
call by the best 4-assay subset ER agonist model. Incorporation of
antagonist assays along with the four assays corresponding to the
best 4-assay subset ER agonist model could help distinguish
antagonists if desired, and additional data collected when
screening the higher-priority chemicals should allow a
combination of in silico and in vitro predictions to better
distinguish weak agonists from inactive chemicals.

Although this is a descriptive analysis of previous results, several
lessons learned could be applied to any testing battery used in the future.
First, the clustering of the chemicals provides a means of ensuring that
future testing covers the full chemical space represented within the
EDSP UoC. The clusters can also assist in prioritizing chemicals with a
weak signal in a future 4-assay (or other minimal assay configuration)
battery. A chemical with amarginal signal that falls within a cluster with
other known agonists would be a higher priority for future testing than
one that falls within a cluster with known inactive chemicals. The
incorporation of the filter for activity in more than 50% of the assays
when utilizing a minimal assay model is also a reasonable criterion
when trying to minimize false positives.

Furthermore, this workflow can be applied to future datasets as they
are generated by leveraging the clusters to borrow information from the
1,730 chemicals tested in the full ERmodel. As new chemicals are tested,
read-across analysis can be used to estimate their activity in the full ER
model, which can then be compared with themeasured values from the
new assay battery and associated model. Because any new assays are
likely to be validated by comparing the results from chemicals from the
original chemical list in the new assay, this information can also be used
to translate findings from any future assay battery back to the original
dataset. As additional chemicals are prioritized for testing in the full ER
battery, the workflow can be repeated using the measured data for
chemicals from theminimal assay battery compared against the new full
assay battery.

As more data are collected, the in silicomodels should improve and
decrease the reliance on bioactivity alone. Here again, the clustering
approach can be useful in providing a framework to evaluate which
portions of the EDSPUoC chemical space are reliably covered by in silico
and in vitro approaches andwhere predictions from eithermethod alone
or both methods combined are most reliable. Although the clusters
generated by using features representing the overall chemical structure
will not always capture the functionally relevant structural features that
drive receptor binding or activation potential, they allow the EDSP UoC
to be separated into smaller units, which can then be investigated in
depth, as illustrated for the clusters highlighted in this article.

In conclusion, this case study presents a proof of concept for
evaluating subset models and providing support for their use in
screening and prioritization strategies. The high sensitivity
demonstrated in this case study is desirable to avoid filtering
chemicals too early. Chemicals of highest priority are consistently
identified by both models, and simple rules can be applied that
distinguish chemicals likely to be positive from those without
support from the full ER agonist model. The lessons learned from
this case study can easily be applied to future testing regardless of
whether the same assays are used, and this general workflow can be
applied to future datasets (either independently or after harmonizing
and merging with the previous data) to understand the performance of
the models associated with the testing battery.
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