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Introduction: Computational models using data from high-throughput
screening assays have promise for prioritizing and screening chemicals for
testing under the U.S. Environmental Protection Agency’s Endocrine Disruptor
Screening Program (EDSP). The purpose of this work was to demonstrate a data
processingmethod for the determination of optimal minimal assay batteries from
a larger comprehensive model, to provide a uniform method of evaluating the
performance of future minimal assay batteries compared with the androgen
receptor (AR) pathway model, and to incorporate chemical cluster analysis into
this evaluation. Although several of the assays in the AR pathway model are no
longer available through the original vendor, this approach could be used for
future evaluations of minimal assay models for prioritization and screening.

Methods: We compared two previously published models and found that an
expanded 14-assay model had higher sensitivity for antagonists, whereas the
original 11-assay model had slightly higher sensitivity for agonists. We then
investigated subsets of assays in the original AR pathway model to optimize
overall testing strategies that minimize cost while maintaining sensitivity across
a broad chemical space.

Results andDiscussion: Evaluationof thecritical assays across subsetmodels derived
from the 14-assay model identified three critical assays for predicting antagonism and
two critical assays for predicting agonism. A minimum of nine assays is required for
predicting agonism and antagonism with high sensitivity (95%). However, testing
workflows guided by chemical structure–based clusters can reduce the average
number of assays needed per chemical by basing the assays selected for testing on
the likelihood of a chemical being an AR agonist, according to its structure. Our results
show that a multi-stage testing workflow can provide 95% sensitivity while requiring
only 48% of the resources required for running all assays from the original full models.
The resources can be reduced further by incorporating in silico activity predictions.

Conclusion: This work illustrates a data-driven approach that incorporates chemical
clustering and simultaneous consideration of antagonism and agonismmechanisms
tomore efficiently screen chemicals. This case study provides a proof of concept for
prioritization and screening strategies that can be utilized in future analyses to
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minimize the overall number of assays needed for predicting AR activity, which will
maximize the number of chemicals that can be tested and allow data-driven
prioritization of chemicals for further screening under the EDSP.
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endocrine disruption, androgen receptor, computational toxicology, highthroughput
screening, tiered testing

1 Introduction

Perturbation of hormonal balance can result in adverse effects in
development and reproduction, increase cancer risk, and affect the
immune and nervous systems (Casals-Casas andDesvergne, 2011). The
U.S. Environmental Protection Agency’s (EPA’s) Endocrine Disruptor
Screening Program (EDSP) was created to prioritize, screen, and test
chemicals that potentially interfere with estrogen, androgen, or thyroid
hormone–related pathways using a two-tiered battery of in vitro and in
vivo assays and tests (U.S. EPA, 1998b; U.S. EPA, 1998a). Because
screening using the Tier 1 battery can be expensive and time
consuming, the EDSP developed EDSP for the 21st Century
(EDSP21), which relies on computational toxicology and high-
throughput screens (U.S. EPA, 2011; U.S. EPA, 2015; U.S. EPA, 2023).

EPA developed a computational network model to detect androgen
receptor (AR) agonism and antagonism in the ToxCast/Tox21 subset of
chemicals. Initially, an AR pathway model with 11 high-throughput
screening ToxCast and Tox21 in vitro assays (11-assay Kleinstreuer
model) was developed to estimate chemicals’ agonist and antagonist AR
activity (Kleinstreuer et al., 2017). The largest area under the curve (AUC)
value identifies the chemical modes (antagonist, agonist, or interference).
For example, if the model predicts, for a particular chemical, that the
agonist branch AUC value is above 0.1 and it is higher than the
antagonist branch AUC value, then the model essentially predicts that
a chemical produces an agonist effect. The 11-assay model was later
revised and expanded by three additional assays (Judson et al., 2020).

Based on the results, the AR model described by Kleinstreuer et al.
(2017) has been proposed as an alternative for the current low-
throughput androgen screening assays in the EDSP Tier 1 battery
(U.S. EPA, 2017; U.S. EPA, 2014; U.S. EPA, 2015; U.S. EPA, 2023).
The EDSP Universe of Chemicals (UoC) comprises approximately
10,000 substances that potentially need to be screened for endocrine
bioactivity (U.S. EPA, 2012). All combinations of 2–14 assays (a total of
214–15 = 16,369 combinations) were analyzed by Judson et al. (2020) and
calculated pathway AUC values for agonist, antagonist and other modes
for all chemicals. So, subsequent analyses identified subset models with
as few as five to six assays that deliver comparable AR activity predictions
to the expanded 14-assay ARmodel (Judson et al., 2020). This allows for
more cost-effective prioritization of chemicals for Tier 1 screening.

The AR models were previously evaluated using balanced
accuracy, which is generally a good choice for evaluating binary
classifiers. However, this affords equal weight to sensitivity and
specificity, whereas sensitivity is more important for prioritization
and screening to avoid false negatives. In particular, most of the AR
subset models have higher specificity scores than sensitivity scores
for the detection of agonism and antagonism effects. For example,
Supplementary Tables S3, S4 from Judson et al. (2020) show that
only 18 subset models in agonist mode and 125 subset models in
antagonist mode have higher sensitivity than specificity.

The current work is focused on identifying assay batteries that
include agonist and antagonist subset models that could be used for
prioritizing chemicals from the EDSP UoC for EDSP screening
based upon potential AR effects. We adjusted the evaluation criteria
(specificity >85% and sensitivity >95% across all chemicals in both
AR modes) to minimize the number of false negatives produced in
this initial round of testing. We first compared the original 11-assay
AR model from (Kleinstreuer et al., 2017) with the expanded 14-
assay model from Judson et al. (2020), then evaluated the
importance of individual assays across the AR subset models, and
identified subset models that met our specified criteria. We also
investigated the performance of subset models without NovaScreen
(NVS) receptor-binding assays, which are no longer available.
Finally, we evaluate strategies that leverage chemical structure
and activity predictions from subset models to prioritize
chemicals from the EDSP UoC for screening.

This exercise illustrates the use of data processing to help choose
critical assays from a comprehensive model for optimal screening
batteries. Some of the assays investigated in this case study (the NVS
receptor-binding assays) are no longer available. However, assays
that measure receptor binding with performance (specificity,
sensitivity, variability) similar to that of the NVS assays may be
substituted and be expected to yield similar battery results.
Furthermore, chemical cluster analysis was used in this
evaluation and is an important consideration in future analyses
for coverage of the EDSP UoC and possible refinements to the
regulatory screening process.

2 Methods

The code for all analyses described below can be found at:
https://github.com/USEPA/edsp-ar-subset-model-analysis.

2.1 Data sources

2.1.1 EDSP UoC
The EDSP UoC is a list of approximately 10,200 substances, as

defined under the Federal Food, Drug, and Cosmetic Act and the
Safe Drinking Water Act 1996 amendments. To facilitate the
analysis, the EPA authors provided a computable version of the
published EDSP UoC (U.S. EPA, 2012).1

1 The file is available at https://www.epa.gov/sites/default/files/2015-07/

documents/edsp_chemical_universe_list_11_12.pdf.
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2.1.2 ToxCast/Tox21 high-throughput
screening data

The high-throughput screening data contained within ToxCast/
Tox21 is a set of approximately 9,500 substances that have been
tested in up to approximately 1,400 assays as part of the ToxCast/
Tox21 program. Information on whether a chemical-assay pair was
tested as part of the ToxCast/Tox21 program was downloaded as a
comma-separated values file associated with EPA’s invitrodb v3.2
(U.S. EPA, 2020). Meanwhile, assay data including the chemical-
assay AC50 values, binary hit call (i.e., the binary representation of
activity [1] or inactivity [0] for a given chemical-assay pair), and
chemical-specific cytotoxicity point were extracted from invitrodb
v3.3 using version 2.0 of the tcpl R package (Filer et al., 2016).

2.1.3 AR pathway model data as AUC scores
A total of 1,820 chemicals tested in all 14 AR-related high-

throughput in vitro assays present in ToxCast/Tox21 were used to
develop the full 14-assay AR model and the associated subset AR
models present in Judson et al. (2020) (herein called the AR model
set). These 1,820 chemicals are a subset of the 1,855 chemicals used
to create the original 11-assay AR model developed by Kleinstreuer
et al. (2017).

The R package “ARminassaymodel” (Judson et al., 2020) was used
to generate the chemicals’ AR activity predictions. The package
accompanies the Judson et al. (2020) paper, which defines the
updated 14-assay AR model and all subset models. The
“ARminassaymodel” package was downloaded from EPA’s FTP
site [ftp://anonymous@newftp.epa.gov/COMPTOX/STAFF/rjudson/
publications/Judson%20AR%202019/ARmodelForPublication.
zip, accessed September 2020; these data now are available at (Rpubs,
2023)]. After download, the package was set to query the ToxCast
invitrodb v3.3 (U.S. EPA, 2020).

2.2 Chemicals and AR subset models

2.2.1 Chemical clustering data
As described in our companion article, a study was performed

that investigated the nature and structural classes of
10,272 substances in the EDSP UoC and their alignment with
EDSP21 (Nelms et al., 2023). Briefly, structural information, in
the form of simplified molecular-input line-entry system (SMILES)
strings and quantitative structure activity relationship (QSAR)-
ready SMILES strings, for the EDSP UoC and AR model
substances (Judson et al., 2017; Mansouri et al., 2020) was
downloaded from EPA’s CompTox Chemicals Dashboard
(Williams et al., 2017). Separate ToxPrint fingerprint
representations (Yang et al., 2015) were created using the
SMILES and QSAR-ready SMILES strings for each substance in
the EDSP UoC and AR model set. The EDSP UoC substances were
clustered by calculating the Tanimoto distance (D) between every
pair of chemicals using the ToxPrint fingerprints created from the
SMILES strings. The Tanimoto coefficient ranges from 0 (no match
between fingerprints) to 1 (full match between fingerprints). Next,
Ward’s hierarchical clustering algorithm was used to create a
hierarchical cluster tree for the entire EDSP UoC. This
hierarchical tree was cut at the height of 1 to generate the final
chemical clusters. Once the clustering assignment of the EDSP UoC

was completed, chemicals in the AR model set were assigned one of
the EDSP clusters according to the k-nearest neighbors classification
algorithm, where k = 1.

2.2.2 Prediction of chemical activities
We investigated the 1,820 chemicals from Judson et al. (2020)

that had been tested in all 14 AR-related assays as part of the
ToxCast/Tox21 program. For these chemicals, a total of
16,368 subset models and the 14-assay AR model were evaluated.
A subset model calculated an AUC metric for each chemical in
agonist, antagonist, and interference pathways based upon the
assays present in the model. AUC predictions in the full agonist
pathway (R1) are associated with chemical activities in assays A1,
A2, A3, A4, A5, A6, A7, A8, A9, A10, and A11 [for assay endpoint
name definitions, see Table 1 in (Judson et al., 2020)]. AUC
predictions in the full antagonist pathway (R2) are associated
with chemical activities in assays A1, A2, A3, A4, A5, A6, A12,
A13, and A14. However, these pathways are truncated in subset
models depending on a particular combination of assays in the
subset model. For example, the subset model
A10000000001111 contains assays A1, A11, A12, A13, and A14.
Therefore, its agonist pathway is composed of only assays A1 and
A11. Similarly, its antagonist pathway contains only assays A1, A12,
A13, and A14. This article follows the same subset model
nomenclature as in Judson et al. (2020).

2.2.3 Binarization of agonist and antagonist
AUC values

Binarization of agonist and antagonist AUC values uses the
same schema as Judson et al. (2020). AUC values less than the cutoff
of 0.1 were set to 0 to denote inactive calls. AUC values at or above
0.1 were set to 1 to indicate active calls. According to Judson et al.
(2020), the cutoff of 0.1 matches the upper testing limit of ~200 µM
within the in vitro assays.

2.3 Minimizing the number of assays
for testing

2.3.1 Evaluation of subset models by comparing
them with the 14-assay model

Based on binarized AUC values, the results of the subset models
were compared with the 14-assay model using sensitivity and
specificity metrics. In our setup, sensitivity describes how well a
subset model detects true positives (TP) compared with all positives
identified by the 14-assay model [i.e., TP + false negatives (FN)].
Specificity describes how well a subset model detects true negatives
(TN) compared with all negatives determined by the 14-assay model
[i.e., TN + false positives (FP)] (Florkowski, 2008; Trevethan, 2017).
Sensitivity and specificity were expressed using their mathematical
definitions: sensitivity = TP/(TP + FN) and specificity = TN/(TN +
FP). They were calculated for each subset model across all chemicals.

2.3.2 Identification of subset models (assays)
suitable for AR prioritization

The approach optimizes the number of assays in the testing
battery by taking a union of the assays required for the best agonist
and antagonist models. The full set of assays used at each testing step
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will be referred to as the assay battery, whereas the set of assays used
for modeling agonist or antagonist activity will be referred to as a
subset model.

We considered 16,368 subset models using 1,820 chemicals from
Judson et al. (2020) to identify the optimal assay battery to test for
both agonism and antagonism. Although the NVS assays are no
longer available, they were included in the analysis as proxies for
future receptor-binding assays. The minimum criteria for a subset
model to be considered for the optimal assay battery were as follows:
sensitivity greater than 95% and specificity greater than 85% across
all chemicals for either AR agonism or antagonism prediction by the
subset model when compared against the prediction from the 14-
assay model. This produces two sets of subset models, one for
chemicals’ AR antagonism detection and the other for AR agonism
detection. Then, we identified the union of assays for every pair of
subset models from the two sets (i.e., AR agonism and antagonism).
In the next step, we kept pairs of subset models with the minimum
number of assays in the union for further analysis, and we removed
pairs of subset models with a higher number of assays in the battery.
This step is an optimization process that minimizes the number of
assays needed for combined AR agonism and antagonism
prioritization. In the final step, we identified the best subset
models for AR antagonism and agonism prioritization. Because
the optimal assay battery depends on the desired prioritization
strategy, multiple options corresponding to different
prioritization scenarios are discussed.

2.4 Evaluate prioritization options that
leverage chemical clusters

2.4.1 Identification of EDSP UoC clusters with
potential AR active chemicals

Not all clusters contain AR active chemicals. We used two
computational methods to estimate AR active chemicals: the 14-
assay AR model and CoMPARA QSAR executed from the OPEn
structure-activity/property Relationship App (OPERA) v2.7 suite
(Mansouri et al., 2020). Additionally, we wanted to remove
potentially volatile chemicals from consideration because
obtaining accurate screening results from these chemicals can be
difficult. Previously, EPA defined criteria for using the Henry’s law
constant to categorize chemicals into “high,” “moderate,” “slight,” or
“none” with regard to aqueous volatility within Resource
Conservation and Recovery Act wastes (U.S. EPA, 1985). We
used OPERA to calculate physico-chemical properties, including
the Henry’s law constant, for the 6,166 EDSP chemicals with QSAR-

ready SMILES strings that did not represent the chemical
component of an unknown, variable composition, complex
reaction products, or biological material (UVCB). Then, we
compared the predicted Henry’s law constant (i.e., the air-water
partition coefficient) from OPERA against the previously defined
aqueous volatilization rate categories (U.S. EPA, 1985) and assigned
each chemical to a volatilization category. After the categorization,
chemicals with a volatility categorization of “high” or “moderate”
were considered volatile and removed from the investigation.

We overlayed the 14-assay AR model and, separately, the
CoMPARA QSAR predictions over the EDSP UoC clustering to
identify clusters with potential AR activity. Clusters containing
chemicals with possible AR agonist effects were marked as
“agonist active clusters,” clusters containing chemicals with
potential AR antagonist effects were labeled “antagonist active
clusters,” clusters containing chemicals with both AR agonist and
antagonist effects were marked as “both effect clusters,” and clusters
in which chemicals did not show AR effects were labeled as “no
effect clusters.” Predictions from CoMPARA and the 14-assay AR
model are given side by side in the Supplementary Table S1.

2.4.2 Multi-stage prioritization workflow
The multi-stage prioritization workflow is based on the

observation that AR agonist chemicals are present in similar
clusters. The method utilizes a 6-assay battery for the first stage.
This battery includes a 5-assay AR antagonism model, which
identifies AR antagonists with sensitivity >95% and
specificity >85%. It also includes a 3-assay AR agonist model,
which identifies AR agonists with sensitivity >70%. Although this
sensitivity is below our minimum criteria, it still picks up ~70% of
the agonist chemicals and the clusters in which they are located. All
identified AR agonist and antagonist chemicals in the first stage are
candidates for further investigation. However, to boost agonist
detection, the multi-stage prioritization workflow overlays
positive AR agonists onto EDSP UoC clusters and identifies
agonist-containing/enriched clusters. Then, a second
prioritization of the chemicals within these clusters is performed
using three additional assays, which, when combined with the six
assays from the first stage, comprise a 9-assay battery (with
sensitivity >95%). Finally, the best 9-assay subset model for AR
agonist detection is used to identify positive AR agonists missed in
the first run.

The results for the multi-stage workflow are based on a
simulation study designed to approximate the expected results
from a given submodel. For this simulation, the CoMPARA
results are considered to be confirmed agonist and antagonist

TABLE 1 Comparison between the Kleinstreuer 11-assay AR model and the 14-assay AR model.

Comparison Number of estimated chemicals

Antagonist Agonist

Both models estimate chemical activity 173 21

Both models estimate chemical inactivity 1,560 1,777

14-assay model estimates activity and the 11-assay model estimates inactivity 74 7

14-assay model estimates inactivity and the 11-assay model estimates activity 10 12
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designations, and chemicals are sampled based on the sensitivity and
specificity of the corresponding model. For example, the 3-assay
agonist model contained within the optimal 6-assay battery has a
sensitivity of 0.714, so we sampled this percentage of the chemicals
with positive CoMPARA agonist predictions for Stage 1. The
specificity of this 3-assay agonist model is 0.989, so we sampled
1.1% (1–0.989) of the chemicals with negative CoMPARA agonist
predictions as the false positives for Stage 1. Based on the active
chemicals (true positives and false positives) from Stage 1, the
clusters are selected for Stage 2, and all chemicals from those
clusters are sampled in Stage 2 using the sensitivity (0.96) and
specificity (0.977) values associated with the 6-assay agonist model
corresponding to the 9-assay battery.

3 Results and discussion

3.1 Comparison of the 14-assay AR model
with the 11-assay AR model

Results from our analysis using the 14-assay model from (Judson
et al., 2020) were compared with the original 11-assay model results
from (Kleinstreuer et al., 2017) (Supplementary Table S2).
Specifically, binarized activity calls based on the AUC values
from each model were compared for 1,817 chemicals in common
between the two datasets. The 14-assay model investigates potential
AR antagonism or agonism on a set of 1,820 chemicals, whereas the
original Kleinstreuer 11-assay model assesses 1,855 chemicals. Three
chemicals, SSR 103800 (1075752-90-7, DTXSID1047364), SAR
150640 (433212-21-6, DTXSID4047389), and SSR 240612
(464930-42-5, DTXSID2047351), from the 14-assay model were
not included in the original analysis using the Kleinstreuer 11-
assay model.

We analyzed the number of chemicals for which the two AR
models (Kleinstreuer 11-assay vs. 14-assay) agreed or disagreed on
predictions (Table 1). In total, the results between the two analyses
agree regarding antagonism activity for 1,733 out of 1,817 (>95%)
chemicals and regarding agonism activity for 1,798 out of 1,817
(>98.9%) chemicals. The majority of the chemicals where the two
models agree were predicted to be inactive, with 1,777 out of
1,798 chemicals predicted to be inactive in the agonist mode and
1,560 out of 1,733 chemicals predicted to be inactive in the
antagonist mode. However, there are 84 out of 1,817 (4.6%)
chemicals in the antagonist mode and 19 out of 1,817 (1%) in
the agonist mode, for which the 14-assay ARmodel and Kleinstreuer
11-assay AR model disagree. Of these disagreements, the 14-assay
AR model predicted antagonist activity for 74 out of 84 (88%)
chemicals and agonist activity for 7 out of 19 (36.8%) chemicals,
whereas the Kleinstreuer 11-assay model predicted inactivity. For
the remaining disagreements, the Kleinstreuer 11-assay AR model
predicted antagonist activity for 10 out of 84 (11.9%) chemicals and
agonist activity for 12 out of 19 (63.2%) chemicals, whereas the 14-
assay model predicted inactivity. This corresponded to a Matthews
correlation coefficient of 0.79 for antagonist predictions and 0.68 for
agonist predictions between the two models. The lower correlation
for the agonists is not surprising, given the smaller number of
agonists predicted by both models. In total, the 14-assay model is
more sensitive with respect to antagonism, whereas the original 11-

assay Kleinstreuer model predicts slightly more chemicals to
be agonists.

Most disagreements correspond to antagonist predictions from the
14-assay model, where the original Kleinstreuer analysis predicted
inactivity. Out of the 74 antagonist calls, the 14-assay battery
included a hit call in the new antagonist assay (UPITT_HCI_
U2OS_AR_TIF2_Nucleoli_Antagonist) for 70 chemicals, with an
additional three chemicals having a hit call in the other new assay
corresponding to nuclear translocation/coactivator interaction
(UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Agonist). This nuclear
translocation/coactivator interaction assay is one of the steps in
common between the agonist and antagonist pathways
(Supplementary Table S3). Of the 73 chemicals with activity in one
of the two new assays in the 14-assay model, the additional activity was
responsible for the change in antagonist prediction for 63 chemicals.

Figure 1 shows the AUC values for the remaining 11 chemicals
where the 11-assay model from our analysis agreed with the 14-assay
prediction and disagreed with the original Kleinstreuer prediction.
There were six chemicals where the original 11-assay Kleinstreuer
model AUC was slightly below the threshold (0.07<AUC≤0.1) and
the current 11-assay model was just above the threshold
(0.1<AUC<0.12). For the remaining five chemicals, the difference
between the current 11-assay model and the original 11-assay
Kleinstreuer model AUC was greater than the difference between
the current 11- and 14-assay models, suggesting that the main
difference is not primarily due to the two additional antagonist
assays. The antagonist AUC from the 14-assay model was still
higher than the 11-assay AUC for all chemicals except 17α-estradiol
(57-91-0, DTXSID8022377), which was flagged as both an agonist and
an antagonist by both the 11- and 14-assay models in the current
analysis, and C.I. Acid Red 114 (6459-94-5, DTXSID8021224). The
latter chemical was the only chemical that did not show activity in either
of the two new antagonist assays.

Differences between the 11-assay model from our analysis and
the original 11-assay Kleinstreuer model could be due to either the
input data or alterations to the (pre-)processing introduced by
(Judson et al., 2020) when expanding to the 14-assay model. Our
analysis used data from ToxCast invitrodb v3.3, whereas the original
Kleinstreuer analysis used data from invitrodb v2 (U.S. EPA, 2017),
which was the active version in January 2017. There were many
updates to the ToxCast data processing pipeline during this time,
which could explain many of the discrepancies noted in our analysis
(Filer et al., 2016; Sheffield et al., 2022).

In addition, the newer implementation by Judson et al. (2020)
uses a different reference antagonist, mifepristone (84371-65-3,
DTXSID5023322), because the previous reference chemical
[hydroxyflutamide (52806-53-8, DTXSID8033562)] was not
tested in all the new assays (Judson et al., 2020).

There are seven chemicals where the 14-assay AR model predicts
agonist activity but the original 11-assay Kleinstreuer AR model
predicts inactivity (Figure 2). The 14-assay model has two additional
assays in the agonist pathway: UPITT_HCI_U2OS_AR_TIF2_
Nucleoli_Agonist assay and ACEA_AR_agonist_80h. In this case,
activity in the ACEA_AR_agonist_80h was responsible for the
difference for four chemicals (Supplementary Table S4), whereas the
remaining three chemicals also have agonist calls with the 11-assay
model in our current analysis (Figure 2) and are, therefore, likely due to
differences in the input data or normalization.
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For the 10 chemicals predicted to be antagonists byKleinstreuer et al.
(2017) and inactive in the current analysis, the 14-assay model AUCwas
just under the threshold (0.08<AUC<0.1), or the original 11-assay
Kleinstreuer model AUC was close to the threshold (0.1<AUC<0.12)
for all chemicals except fenbuconazole [DTXSID8032548 (Figure 3A)].
For the 12 chemicals predicted to be agonists by Kleinstreuer et al. (2017)
and inactive in the 14-assay model, the 14-assay model predicted
antagonism for six chemicals, including two where the original 11-
assay Kleinstreuer model predicted both agonism and antagonism
(Figure 3B). The 11-assay model from the current analysis agreed
with the original 11-assay Kleinstreuer model for five additional
chemicals, suggesting that the addition of the three new assays was
responsible rather than the impacts from input data or normalization.

For four of these chemicals, the 14-assaymodel agonist AUCwas close to
the threshold (0.08<AUC<0.1). The last chemical from this set was
AVE6324 (DTXSID0047377), which showed agonist activity in both 11-
assaymodels, but the 14-assay agonist AUCwas 0.05. The final chemical
was amiodarone hydrochloride, which was predicted to have both
agonist and antagonist activity by the original 11-assay Kleinstreuer
model but predicted to be inactive by both the 11- and 14-assay models
in the current analysis.

The lowest 25th percentile of AUC values associated with active
chemicals was approximately 0.14 (0.139 agonist, 0.143 antagonist)
for the 14-assay model and slightly higher (0.148 agonist,
0.162 antagonist) for the Kleinstreuer model. Of all the
discrepancies where the Kleinstreuer model predicted activity and

FIGURE 1
Comparison of antagonist AUC values from the Kleinstreuer and Judson models. These radial plots illustrate AUC values for chemicals where the
Kleinstreuer 11-assaymodel (shown in red) did notmeet the AUC threshold for antagonism, whereas the same 11-assaymodel (shown in green) or the 14-
assay model (shown in blue) from the current analysis did meet the AUC threshold. The AUC threshold of 0.1 is shown by the dashed line. Each plot is
limited to an AUC of 0.2 to increase legibility; AUCs exceeding the limit are labeledwith the actual value of the AUC. The antagonist model results are
on the left-hand side of each plot, and the agonist model results are on the right-hand side of each plot.
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the 14-assay model predicted inactivity, only six were above this
threshold (three antagonist and three agonist predictions), and in
four of those cases, the AUC from the 14-assay model was greater
than 0.09. The majority of the false positives from both models are
expected to fall within that lower quartile, which makes it impossible
at this stage to interpret the results in this range. Interpretation of the

agonist results is further complicated by the fact that none of the
reference chemicals to date have an AUC lower than 0.285 in either
model. As more data are collected for AR agonists, predictions for
these very weak agonists should improve. In the meantime,
chemicals that are likely to show strong AR activity should be
flagged by either model.

FIGURE 2
Comparison of agonist AUC values from the Kleinstreuer and Judson models. These radial plots illustrate AUC values for chemicals where the
Kleinstreuer 11-assay model (shown in red) did not meet the AUC threshold for agonism, whereas the same 11-assay model (shown in green) or the 14-
assay model (shown in blue) from the current analysis did meet the AUC threshold. The AUC threshold of 0.1 is shown by the dashed line. Each plot is
limited to an AUC of 0.2 to increase legibility; AUCs exceeding the limit are labeledwith the actual value of the AUC. The antagonist model results are
on the left-hand side of each plot, and the agonist model results are on the right-hand side of each plot.
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FIGURE 3
Evaluation of active chemicals from the Kleinstreuer model that were inactive in the Judson model. These radial plots illustrate AUC values for
chemicals where the Kleinstreuer 11-assay model (shown in red) did meet the AUC threshold for (A) antagonism and (B) agonism, whereas the same 11-
assaymodel (shown in green) or the 14-assaymodel (shown in blue) from the current analysis did notmeet the AUC threshold. The AUC threshold of 0.1 is
shown by the dashed line. Each plot is limited to an AUC of 0.2 to increase legibility; AUCs exceeding the limit are labeled with the actual value of the
AUC. The antagonist model results are on the left-hand side of each plot, and the agonist model results are on the right-hand side of each plot.
Amiodarone hydrochloride (DTXSID7037185) is included in both panels.
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3.2 Structural diversity of AR agonists and
antagonists

Of 1,820 chemicals in Judson et al. (2020), the 14-assay model
predicted 244 AR antagonists and 22 AR agonists. Six chemicals [tannic
acid (1401-55-4, DTXSID2026076), 4,4′,4″-Ethane-1,1,1-triyltriphenol
(27955-94-8, DTXSID2037712), melengestrol acetate (2919-66-6,

DTXSID5048184), cyproterone acetate (427-51-0, DTXSID5020366),
17α-ethinylestradiol (57-63-6, DTXSID5020576), and 17α-estradiol
(57-91-0, DTXSID8022377)] were predicted to produce both AR
agonism and antagonism. For the remaining 1,548 chemicals, the
14-assay AR model predicted no AR effect.

The (Nelms et al., 2023) cluster assignments consist of
826 clusters with 7,954 EDSP UoC DTXSIDs. From the list of

TABLE 2 Summary of AR agonists and antagonists and the clusters containing them.

Agonism +
antagonisma

Only Inactives (no active chemicals
in cluster)

Antagonisma Agonism

Active chemicals based on the 14-
assay model

Number of
clusters

3 130 10 531 (425)

Number of
chemicals

5 232 22 1,492 (1,103)

Active chemicals based on
CoMPARA

Number of
clusters

33 263 20 619 (382)

Number of
chemicals

93 817 40 3,283 (2,095)

Readers should refer to Supplementary Table S1 for chemical predictions and cluster assignments. Note that a single cluster may be counted in more than one column.
aCoMPARA results exclude two chemicals for which the agonist prediction was not applicable.

FIGURE 4
Bar chart illustrating the results from the 14-assay ARmodel for chemicals in clusters containing at least one agonist (A) or antagonist (B). Chemicals
in each cluster are categorized by whether they are predicted to be an agonist, antagonist, both agonist and antagonist, or inactive.
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1,820 AR model chemicals in Judson et al. (2020), 69 did not have
SMILES strings in the CompTox dashboard; therefore, they were not
assigned to clusters. The remaining 1,751 chemicals with structural
information were assigned to 561 clusters based on structural
similarity, from which 371 clusters had more than one AR model
chemical. Out of 272 active chemicals, 259 (5 out of 6 agonists/
antagonists, 22 out of 22 agonists, and 232 out of 244 antagonists)
had the structural information required for a cluster assignment.

AR active chemicals based upon the 14-assay model are
distributed across 136 clusters. In 130 clusters, we identified
chemicals predicted as active AR antagonists by the 14-assay AR
model (Table 2). In 10 clusters, we identified chemicals predicted as
active AR agonists by the 14-assay AR model. In clusters 439, 534,
and 789, we identified five chemicals predicted to have both effects.
Tannic acid (1401-55-4, DTXSID2026076), which would be the
sixth chemical predicted as both an agonist and antagonist, is a
substance with a UVCB and hence no discrete chemical structure; as
such, it was not part of cluster analysis. No AR antagonist or agonist
effect was predicted for chemicals present in 425 clusters (Table 2).

The breakdown of all clusters containing at least one active
chemical is shown in Figure 4. The majority of the agonists fall
within clusters that also contain antagonists (Figure 4A). Each of the
six agonists that are not clustered with an antagonist falls within a
small cluster with only one active chemical, suggesting that some of
them may be false positives. Conversely, most of the antagonist
clusters do not contain any agonist chemicals (Figure 4B). Here
again, however, many of the clusters contain a single active chemical.
The structural similarities between the agonists and antagonists may

also explain why around 20% of the agonists were predicted to be
both agonists and antagonists (Table 2). The increased structural
diversity for antagonism is not surprising because these chemicals
need only prevent the AR from activating, which allows for a wide
array of receptor conformations, whereas an agonist must force the
receptor into an active conformation.

In addition, we submitted 7,954 EDSP DTXSIDs to CoMPARA
QSAR for AR activity estimations and obtained predictions for AR
agonism and antagonism. For molecules that did not have
appropriate structural information, “NaN” was returned with the
explanation of the error. Furthermore, CoMPARA did not return
AR agonism and antagonism predictions for C.I. acid red 186
(DTXSID2044688) and octasodium 4,4′-bis{[4-chloro-6-({6-[(1,5-
disulfonato-2-naphthalenyl)diazenyl]-5-hydroxy-7-sulfonato-2-
naphthalenyl}amino)-1,3,5-triazin-2-yl]amino}[biphenyl]-2,2′-
disulfonate (DTXSID00893611). Also, the result was missing for AR
agonism for fluorescein (DTXSID0038887) and fluorescein sodium
(DTXSID9025328). After removing volatile substances, which
would be difficult to screen, we obtained a set of 4,235 EDSP
molecules with CoMPARA results.

CoMPARA predicted 952 AR active chemicals, which were
assigned to 140 clusters. AR agonist chemicals (133) were
contained within 53 clusters (Table 2), of which 40 molecules
were predicted with only an AR agonist effect, and 93 chemicals
were predicted with both AR agonist and AR antagonist effects.
Comparison of the CoMPARA results with those from the 14-assay
AR model shows that the CoMPARA predictions are conservative,
with the majority of the discrepancies being false positives (Figures

FIGURE 5
Bar charts comparing the results from the 14-assay AR model to the predictions from the CoMPARA QSAR model for chemicals in clusters with an
(ant)agonist prediction in at least one of themodels. (A)Overall comparison of CoMPARA and ARmodel agonist predictions. (B)Comparison of CoMPARA
and AR model agonist predictions by cluster. (C) Overall comparison of CoMPARA and AR model antagonist predictions. (D) Comparison of CoMPARA
and AR model antagonist predictions by cluster. Predictions for all chemicals can be found in Supplementary Table S1.
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5A, C). In total, there were 22 cases (1 agonist, 21 antagonists) where
the 14-assay model predicted activity but CoMPARA did not,
compared with 152 (19 agonists, 133 antagonists) where
CoMPARA predicted activity but the 14-assay model did not.
For agonists, the agreement or disagreement between the models
was mostly consistent within a cluster, whereas with antagonists, the
results were mixed (Figures 5B, D).

3.3 Key assays for high-performing
subset models

A total of 16,368 subset models were generated using the
“ARminassaymodel” package. We identified 537 subset models
with AR antagonist specificity >85% and sensitivity >95% across
1,820 chemicals. In addition, for AR agonist prediction,
109 subset models were identified with specificity >85% and
sensitivity >95% across 1,820 chemicals. These are the subset
models we considered acceptable for AR agonist and antagonist
prediction.

To understand the importance of assays in subset model
predictivity, we calculated their occurrence in the 537 AR
antagonist subset models and 109 AR agonist subset models that
satisfied the specificity and sensitivity criteria (Figure 6). For
example, TOX21_AR_LUC_MDAKB2_Antagonist_0.5 nM_R1881

(far right bar in Figure 6) is present in 100% of the 537 antagonist
subset models that meet our minimum sensitivity and specificity
criteria. However, the same assay is present in only 43.12% (47 out of
109) of the subset models for agonism AR detection.

Not surprisingly, all three antagonist-specific assays (UPITT_
HCI_U2OS_AR_TIF2_Nucleoli_Antagonist, TOX21_AR_BLA_
Antagonist_ratio, and TOX21_AR_LUC_MDAKB2_Antagonist_
0.5 nM_R1881) are present in 100% of the high-performing
submodels for antagonism (Figure 6), so these would be strong
candidates for inclusion in any prioritization strategy focused on AR
antagonism. The other two assays that are present in a large number
of the successful AR antagonism subset models are OT_AR_
ARSRC1_0960 (>94%) and NVS_NR_cAR (>81%). Of note, OT_
AR_ARSRC1_0960 is one of the nuclear translocation/coactivator
interaction assays, and NVS_NR_cAR is one of the AR-binding
assays. Together, these two assays cover the different biological steps
that are common to both agonism and antagonism, so their
inclusion adds additional plausibility to our data-driven
selection strategy.

There were two assays (TOX21_AR_BLA_Agonist_ratio and
ACEA_AR_agonist_80h) in 100% of subset models for AR agonist
prioritization (Figure 6). Without these two assays, none of the
subset models meet our AR agonist sensitivity and specificity
criteria. As expected, both assays are specific to the agonist-only
set of assays. The next most-prevalent assay within the subset

FIGURE 6
Percentage of assays in subset models with specificity >85% and sensitivity >95%.
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models for AR agonism (ATG_AR_TRANS_up, 97.25%) was also
an agonist-only assay. Collectively, these top three assays cover the
three different biological components associated with agonism
(RNA transcription, protein production, cell proliferation). As
seen with the antagonists, there was one highly prevalent assay
from both the AR binding set (NVS_NR_rAR, 95.41%) and the
nuclear translocation/coactivator interaction set (OT_AR_
ARSRC1_0960, 88.07%). Although our data-driven approach aids
in selecting the optimal assay from each biologically equivalent set,
the results are entirely consistent with what would be expected from
an expert-driven approach focused on comprehensively covering the
biological steps.

A complementary analysis is to check the sensitivity of the 13-
assay subset model after removal of a single assay to determine the
impact of that individual assay. If an assay is essential for detecting
AR active chemicals, its removal will substantially drop the
sensitivity metric in the resulting 13-assay model; conversely, if
an assay is less critical, the sensitivity will remain high or close to
100%. Table 3 shows the maximum sensitivity of subset models
without 1 of 14 assays. Subset models without any one of the
antagonism-specific assays (UPITT_HCI_U2OS_AR_TIF2_
Nucleoli_Antagonist, TOX21_AR_BLA_Antagonist_ratio, or
TOX21_AR_LUC_MDAKB2_Antagonist_0.5 nM_R1881) cannot
reach our minimum sensitivity threshold of 95%, with maximum
antagonist sensitivities of 83.6%, 93.2%, and 92%, respectively.

AR agonist sensitivity across all subset models is influenced by
only the TOX21_AR_BLA_Agonist_ratio and ACEA_AR_agonist_
80h assays. If either of these two assays is absent, the remaining

subset models will have a maximum agonist sensitivity of 89.3%
(Table 3). Both assays are exclusive to the agonist pathway in the AR
model. Although removing no individual receptor-binding assay
greatly impacts agonist sensitivity (i.e., sensitivity remains ≥95%),
the elimination of all three binding assays reduces agonist sensitivity
to 89.3%, which indicates that receptor binding is essential for
meeting the agonist prioritization criteria. The impact on
antagonism prediction is not as great, with the removal of all
three binding assays still having a sensitivity greater than 95%.

3.4 Minimal assay requirements for
prioritization based upon agonism and
antagonism

From Judson et al. (2020), the smallest subset model that
could simultaneously predict both agonism and antagonism
consisted of 13 assays, with two different models satisfying the
minimum criteria: A11111011111111 and A11101111111111.
From a practical perspective, however, the difference between
running 13 or 14 assays is negligible. As shown in the previous
section, the assays important for agonist vs. antagonist prediction
are largely distinct based on the original model design. As a
result, the inclusion of agonist-specific assays when modeling
antagonism and vice versa likely reduces the performance of the
model via the inclusion of non-informative assays. Therefore, we
looked for the smallest assay battery that contains at least one
subset model for agonism and one subset model for antagonism

TABLE 3 Maximum sensitivity performance of all remaining subset models after an assay exclusion.

Assay ID Absence of assay endpoint Max sensitivity

Antagonist Agonist

A1, A2, and A3 All receptor-binding assays (antagonist and agonist pathway) 95.6 89.3

A1 Receptor-binding assay NVS_NR_hAR (antagonist and agonist pathway) 97.2 96.4

A2 Receptor-binding assay NVS_NR_cAR (antagonist and agonist pathway) 97.2 100

A3 Receptor-binding assay NVS_NR_rAR (antagonist and agonist pathway) 98 96.4

A4 Coregulator recruitment assay OT_AR_ARSRC1_0480 (antagonist and agonist pathway) 97.6 100

A5 Coregulator recruitment assay OT_AR_ARSRC1_0960 (antagonist and agonist pathway) 97.2 96.4

A6 Nuclear translocation assay UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Agonist (antagonist and
agonist pathway)

98 100

A7 RNA reporter gene assays (ATG_AR_TRANS_up) (agonist pathway) 100 96.4

A8 Reporter gene assay OT_AR_ARELUC_AG_1440 (agonist pathway) 100 96.4

A9 Reporter gene assay TOX21_AR_BLA_Agonist_ratio (agonist pathway) 100 89.3

A10 Reporter gene assay TOX21_AR_LUC_MDAKB2_Agonist (agonist pathway) 100 96.4

A11 Real-time impedance assay (ACEA_AR_agonist_80h) (agonist pathway) 100 89.3

A12 Nuclear translocation assay UPITT_HCI_U2OS_AR_TIF2_Nucleoli_Antagonist (antagonist
pathway)

83.6 100

A13 Reporter gene assay TOX21_AR_BLA_Antagonist_ratio (antagonist pathway) 93.2 100

A14 Reporter gene assay TOX21_AR_LUC_MDAKB2_Antagonist_0.5 nM_R1881 (antagonist
pathway)

92 100

The “Max sensitivity” columns consider all remaining subset models.

Frontiers in Toxicology frontiersin.org12

Bever et al. 10.3389/ftox.2024.1347364

https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org
https://doi.org/10.3389/ftox.2024.1347364


that meet our minimum sensitivity and specificity criteria for
both modes.

For every pair of subset models where one predicts agonism and
the other predicts antagonism and both meet our minimum criteria,
we calculated the number of assays in the union. In total,
58,533 pairs of subset models were evaluated and the difference
in assay content between the models was calculated (i.e., the
Hamming distance). The result is available in Supplementary
Table S5. A battery of nine assays is the smallest set of assays
from which subset models can be created to simultaneously satisfy
our defined performance criteria for the chemicals’ AR agonism and
antagonism detection.

Table 4 shows the different pairs of subset models that combine
to give nine assays total. There is a single subset model for AR
agonism (A00101011101000) and 13 different AR antagonism
subset models. The AR agonism subset model contained six

assays and excluded the three antagonism assays. In contrast,
all antagonism models included the three antagonism-specific
assays combined with anywhere from two to six additional
assays that were also included in the 6-assay agonist model.
The sensitivity for all antagonist models was 0.952, and the
specificity ranged from 0.934 to 0.959 (Table 4). The fact all
13 antagonist subset models chosen had the same sensitivity
appears to be driven (at least in part) by the threshold criteria
where a subset model was required to have a sensitivity of at least
95%, with each of these antagonist subset models having the
minimum number of chemicals with a true positive prediction
to have a sensitivity greater than 95%. For example, each of these
models have 238 chemicals with a true positive prediction and
12 chemicals with a false negative (238/250 = 0.952). Although a
single model to predict agonism and antagonism eliminates only
7% (1 out of 14) of the required assays, the use of two subset models

TABLE 4Union of assays between antagonist and agonist AR subsetmodels. The sensitivity of 0.952 across all antagonist subsetmodels appears to be driven
by the threshold we placed on the minimum sensitivity criterion (i.e., >95%). NB: the sensitivity and specificity for the single AR agonist model used here is
0.964 and 0.977, respectively.

Subset model Assays in union (#) Hamming distance Antagonist subset model

Agonist Antagonist Sensitivity Specificity

A00101011101000 A00101000000111 9 7 0.952 0.952

A00101011101000 A00001010000111 9 7 0.952 0.934

A00101011101000 A00001000001111 9 7 0.952 0.934

A00101011101000 A00001001000111 9 7 0.952 0.934

A00101011101000 A00101000001111 9 6 0.952 0.955

A00101011101000 A00101010000111 9 6 0.952 0.954

A00101011101000 A00001001001111 9 6 0.952 0.936

A00101011101000 A00001011000111 9 6 0.952 0.936

A00101011101000 A00001010001111 9 6 0.952 0.934

A00101011101000 A00101010001111 9 5 0.952 0.955

A00101011101000 A00001011001111 9 5 0.952 0.936

A00101011101000 A00101010101111 9 4 0.952 0.957

A00101011101000 A00101011101111 9 3 0.952 0.959

TABLE 5 Minimal assay batteries containing a subset model meeting the minimal criteria for antagonism, which also contains the best-performing agonist
subset model.

Assay battery Model Percentage (%)

Antagonists Agonists

Antagonist Agonist Sensitivity Specificity Sensitivity Specificity

5 assays 5 assays A00001000001111 2 assays A00000000001001 >95 >93 64.30 92.60

6 assays 6 assays A00001011000111 3 assays A00001011000000 >95 >93 71.40 98.90

7 assays 7 assays A00001011001111 5 assays A00001011001001 >95 >93 71.40 99.00

8 assays 8 assays A00101010101111 7 assays A00101010101101 >95 >95 85 99

9 assays 9 assays A00101011101111 6 assays A00101011101000 >95 >95 96 97.70
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tailored to predict either agonism or antagonism can reduce the
resources required by 36% (5 out of 14) while still meeting the
minimum sensitivity and specificity criteria.

As we saw when looking at the key assays, the subset models
corresponding to the 9-assay battery tend to couple individual assays
from the two shared biological events with multiple assays
specifically targeting agonism or antagonism. For example, the
agonist assay contains one AR-binding assay, one nuclear
translocation/coactivator interaction assay, and four out of five
agonist-specific assays. Conversely, the antagonism subset models
all included the three antagonist-specific assays and at least one
assay for AR binding or nuclear translocation/coactivator
interaction. Once again, our data-driven approach is entirely
consistent with the biology underlying the different assays.

3.5 Optimizing the use of high-throughput
assays for AR prioritization

To simultaneously achieve specificity >85% and
sensitivity >95% for both antagonist and agonist predictions
requires a 9-assay battery, but as few as five assays can achieve
these minimum criteria for predicting antagonism. Because almost
90% of the active calls from the 14-assay model are antagonist
predictions, the five assays important for predicting antagonism are
much more valuable than the four needed to meet the minimum

sensitivity threshold for agonism. Given this, are there different
prioritization scenarios that could further reduce the resources
required for AR activity predictions?

We considered all possible assay batteries of five to eight total
assays that include an antagonism subset model meeting our
minimum criteria (Table 4). Table 5 shows the best-performing
pairs of subset models and highlights the maximum agonist
sensitivity that can be achieved with fewer than nine total assays
in the battery. Because all antagonist submodels meeting the
minimum criteria include all three antagonist-specific assays, this
leaves anywhere from two to five agonist-relevant assays in the
battery. The addition of one assay to the five needed for acceptable
antagonist predictions results in a 6-assay battery, from which a 5-
assay AR antagonist model (antagonist sensitivity >95%) and a 3-
assay AR agonist model (agonist sensitivity 71%) can be used for
predicting potential AR activity. To improve performance further
requires eight assays, which is not substantially different from the 9-
assay battery that meets the minimum criteria.

If we assume that 90% of the active chemicals are antagonists
and further assume 95% sensitivity for antagonism and 70%
sensitivity for agonism, then our 6-assay battery could provide an
overall sensitivity of ~92.5% (95% * 0.9 + 70% * 0.1). Because the 6-
assay battery reduces the resources required by a third compared
with the 9-assay battery, this small decrease in overall sensitivity is
offset by a substantial savings in resources. Overall, the 6-assay
battery would reduce the total resources required by 57% (8 out of

FIGURE 7
General approach to (1) selection of assays for AR prioritization and (2) application. The selection of assays for AR testing is shown in the blue box. In
step 4, color schema and assay nomenclature follow Figure 1 in Judson, Houck et al. (2020). Assays identified in the union break out according to the
assay design. Assays inmagenta (A3 and A5) are the upstream assays present in bothmodes. Assays in blue (agonism-specific A7, A8, A9, and A11) are good
in the detection of agonism effects. Assays represented in red (antagonism-specific A12, A13, and A14) are good for the detection of antagonist
effects. Step 5 is an optimization step that minimizes the number of required assays for AR testing. Themiddle green box shows the selection of assays for
chemical testing based on information from cheminformatics tools. In step 8, the 14-assay AR model and CoMPARA QSAR were used to estimate
chemicals’ AR agonism. These chemicals were assigned to the clusters. Clusters that contain AR agonists are referred to as “agonist clusters.” The right
green panel proposes an approach to boost the detection of agonists by performing two rounds of testing. We refer to this approach as multi-
stage testing.
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14) while missing our overall minimum sensitivity
threshold by 2.5%.

There is potential for further performance improvement by adjusting
the testing strategy for chemicals that are more or less likely to be AR
agonists (Figure 7). One approach would be to use the full set of nine
assays for chemicals that are more likely to be agonists and the 5-assay
battery for all other chemicals (middle box in Figure 7). Across the
1,820 substances from Judson et al. (2020), there are 11 clusters in which
some chemicals are predicted to be AR agonists. If CoMPARA
predictions are used, 46 clusters contain at least one predicted
agonist. When considering all clusters having an agonist prediction
from either model, there are 50 clusters containing 387 chemicals. In
this scenario, one would use the 5-assay model for all substances within
clusters that do not contain any chemical with an agonist prediction.
Meanwhile, the 9-assay battery would be used for chemicals assigned to a
cluster where at least one chemical has an agonist prediction.

An alternative approach would be to set up a two-step prioritization
strategy where all chemicals are tested using the 6-assay battery identified
earlier (right box in Figure 7). This step should pick up ~70% of the real
agonists, including those in clusters not covered by the original
1,820 substances tested with the 14-assay battery. A second round of
prioritization with the three additional assays from the 9-assay battery
could then be performed on all chemicals contained in clusters where an
agonist was identified in the first stage. Both of these options would be
expected to increase the overall sensitivity above the 92.5% expected with
the 6-assay battery alone while still substantially decreasing the resources
required to run all chemicals through the 9-assay model.

Because the last two options involve testing subsets of chemicals
through different numbers of assays, the onlyway to compare the options
is by considering a hypothetical testing scenario and comparing the total
number of chemical-assay pairs (i.e., Stage 1 chemicals * Stage 1 assays +
Stage 2 chemicals * Stage 2 assays). All options are summarized in Table 6
using the 4,235 chemicals having CoMPARA predictions as the basis for
the calculations. For the first three options, this is simply the number of
chemicals multiplied by the number of assays in the battery (i.e., no Stage
2 chemicals or assays).

For the cluster-based prioritization strategy, 50 clusters contain
at least one chemical predicted to be an agonist either by CoMPARA
or the 14-assay model. The 387 chemicals contained within those
clusters are multiplied by nine assays, whereas the remaining
3,848 chemicals are multiplied by the 5-assay battery. This
reduces the total resources by an additional 5% compared with
testing all chemicals via the 6-assay battery. Because the overall
sensitivity for this option is dependent on the accuracy of the
existing agonist predictions, there is no simple way to estimate it.
However, because the CoMPARA predictions seem to have a high
negative predictive value for positives from the 14-assay model, this
could represent a promising approach and would result in the fewest
resources compared with all other options.

For the multi-stage prioritization strategy, the total number of
chemical-assay pairs was estimated by simulating the staged testing
procedure for the agonist chemicals and taking the average of
1,000 runs. The sensitivity and specificity for each stage are assumed
to match those provided in Table 5 for the 6- and 9-assay batteries
(i.e., Stage 1 is assumed tomatch the 3-assay agonistmodel, and Stage 2 is
assumed to match the 6-assay agonist model). The mean number of
chemicals that carried forward into the second stage was 988 (median =
986, range = 810–1,174), so the total number of chemical-assay pairs was
calculated as six assays * 4,235 + three assays * 988. The agonist
predictions were simulated by sampling from the CoMPARA dataset
using the sensitivity and specificity values from Table 5. The average
sensitivity for agonist detection in this simulation was 0.936 (median =
0.940, range = 0.872–1.0). The overall sensitivity was then calculated to be
~95% (95 * 0.9 + 93.6 * 0.1).

By reducing the resources required for the initial testing, it is
possible to test all chemicals more quickly and efficiently. Because the
agonists and antagonists that are missed by the smaller subset models
tend to have weaker effects, any compounds missed in the first round
of testing would be highly unlikely to be prioritized for subsequent,
labor-intensive screening steps in the near term. With the additional
data collected from the initial testing, the cheminformatics approaches
will become better able to predict these weaker agonists, which could

TABLE 6 Summary of resources required and anticipated performance of different testing scenarios.

Testing scenario Model(s) Chemical-assay
pairs

Percentage (%)

Antagonist Agonist Maximum Overall
sensitivity

13 assays (2 possible batteries):
antagonist model = agonist model

A11111011111111,
A11101111111111

A11111011111111,
A11101111111111

55,055 93 >95

9 assay battery: 9-assay antagonist
model, 6-assay agonist model

A00101011101111 A00101011101000 38,115 64 >95

6 assay battery: 5-assay antagonist
model, 3-assay agonist model

A00001000001111 A00001011000000 25,410 43 ~92.5

Cluster-based testing: 9-assay battery
for 387 chemicals from 50 agonist-
containing clusters, 5-assay battery
for remaining 3,848 chemicals

A00101011101111,
A00001000001111

A00101011101000,
A00000000001001

22,723 38 Unknown

Multi-stage testing: 6-assay battery
for stage 1, 9-assay battery for stage 2

A00001000001111,
A00101011101111

A00001011000000,
A00101011101000

<28,400 48 ~95

The number of chemical-assay pairs is based upon hypothetical testing of 4,235 compounds using the testing scenario described in column 1. Rows 1–3 are the product of the number of assays in

the battery and the number of compounds (4,235). The last two rows are estimated via simulation as described in the text. The computational models used to predict antagonism and agonism

are in columns 2 and 3. Note that not all assays from the battery are necessarily included in each model. The percentage in column 5 is based upon testing 4,235 compounds through all 14 AR

assays from the full Judson model. The overall sensitivity is estimated as described in the text.
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either eliminate the need for further high-throughput testing or aid in
the design of more efficient prioritization strategies for identifying the
weaker agonists and antagonists.

3.6 Performance of subset models without
receptor-binding assays for detection of AR
antagonism and agonism

As noted previously, removal of all NVS receptor-binding assays
does not dramatically influence sensitivity of subset models for AR
antagonism, but the lack of any receptor-binding assay limits the
sensitivity to 89.3% for AR agonism (Table 3). When testing

chemicals for AR antagonism, there are four 5-assay subset models
(A00001000001111, A00001000010111, A00001001000111, and
A00001010000111) with antagonist sensitivity above 95% and
antagonist specificity above 93% (Figure 8). The agonist specificity
of these four 5-assay subset models is >99.5%; however, their agonist
sensitivity ranges between 39% and 50%. Therefore, these subsetmodels
are suitable for the testing of AR antagonism, but they do not meet our
minimum criteria for defining AR agonism.

Without receptor-binding assays, the best agonist sensitivity is
available for an 8-assay subset model (A00001001111111) with
antagonist sensitivity >94.4% and agonist sensitivity >82% (Figure 8).
The 8-assay model contains all assays present in the first three 5-assay
subset models except A7 (ATG_AR_TRANS_up), which is present in

FIGURE 8
Sensitivity and specificity performance of subsetmodels without receptor-binding assays for detecting chemicals with AR antagonism and agonism.

TABLE 7 Performance of 13 antagonist subsetmodels and one agonist subsetmodel (A00101011101000) from the 9-assay battery on three sets of reference
chemicals.

Percentage (%) Agonist/Antagonist In vitro/In vivo References

Sensitivity Specificity

min 95.2 78.3 Antagonist In vitro Kleinstreuer et al. (2017)

max 95.2 87.0 Antagonist In vitro Kleinstreuer et al. (2017)

100.0 97.2 Agonist In vitro Kleinstreuer et al. (2017)

min 95.2 79.2 Antagonist In vitro Judson et al. (2020)

max 95.2 87.5 Antagonist In vitro Judson et al. (2020)

100.0 97.2 Agonist In vitro Judson et al. (2020)

100.0 85.2 Antagonist In vivo Judson et al. (2020)

100.0 100.0 Agonist In vivo Judson et al. (2020)
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only one subset model. Interestingly, four subset models
(A00001011111111, A00001010111111, A00001011101111,
A00001001111111) with agonist sensitivity above 78% contain OT_
AR_ARSRC1_0960, TOX21_AR_BLA_Agonist_ratio, and ACEA_AR_
agonist_80h, which cover three out of the four steps in the agonist
pathway outside of receptor binding. The other three assays that are
always present are all antagonist assays (UPITT_HCI_U2OS_AR_
TIF2_Nucleoli_Antagonist, TOX21_AR_BLA_Antagonist_ratio, and
TOX21_AR_LUC_MDAKB2_Antagonist_0.5 nM_R1881), which
further supports the need for binding assays to fully captureAR agonism.

3.7 Subset models and detection of the
reference chemicals’ AR activity

We evaluated sensitivity and specificity for all subset models from
Table 4 using three different sets of reference chemicals (Table 7). The
first reference set is from Kleinstreuer et al. (2017). It contains 54 in vitro
reference chemicals; however, only 44 are present in the set of 1,820 from
Judson et al. (2020). The 13 antagonist subset models had specificities
between 78.3% and 87%, with >95% sensitivity for antagonism detection,
whereas the agonist model (A00101011101000) showed 100% sensitivity
and >97% specificity for agonism detection.

The second set of reference chemicals are in vitro reference chemicals
(45 out of 46 total) from Judson et al. (2020). The agonist model had the
same performance as in the case of the Kleinstreuer et al. (2017) reference
chemicals, but the 13 subset models had a slightly higher prediction for
antagonist specificity (79.2%–87.5%). Finally, we used the in vivo
reference chemicals (39) from Judson et al. (2020) to test antagonism
detection in 13 subset models and agonism detection in
A00101011101000. Antagonism sensitivity and specificity of the in
vivo reference chemicals were 100% and 85.2%, respectively. Both
agonism sensitivity and specificity were 100%. Predictions of each
subset model across each set of reference chemicals are provided in
the (Supplementary Table S6).

4 Conclusion

We have found that the original 11-assay model (Kleinstreuer et al.,
2017) and the 14-assay model (Judson et al., 2020) agree on the
prediction of activity and inactivity for 1,733 out of 1,817 (>95%)
chemicals in antagonist mode and 1,798 out of 1,817 (>98.9%)
chemicals in agonist mode. The high level of agreement for agonist
predictions is driven primarily by the inactive calls, whereas the models
disagree regarding 19 chemicals and agree regarding 21 chemicals when
considering only active predictions in at least one of the models. It is
difficult to interpret the impact of the discrepancies because the AUC
value from the in vitro models in these cases is lower than the AUC for
any of the agonist reference chemicals. Hence, it is impossible to
determine whether the differences are primarily due to false-positive
or false-negative predictions. Further testing of these chemicals would
increase the confidence in agonist predictions for weaker agonists and
allow a better determination of the relative performance of the two
models. In the short term, the agreement between the models for
chemicals with higher AUC values is high, which suggests that
chemicals most likely to be prioritized for Tier 1 screening would be
identified using both models.

We confirmed that the agonist- and antagonist-specific assays were
important for predicting agonism and antagonism, respectively. In fact,
our data-driven assay selection process perfectly matched the theoretical
expectations, with agonist-specific assays being highly prevalent in subset
models with high agonist sensitivity and antagonist-specific assays
required for high antagonist sensitivity (Figure 6). Assays
corresponding to upstream processes shared between agonists and
antagonists were equally prevalent in both types of models, which
again met expectations. We also demonstrated that models containing
assays covering the different biological events generally performed better.

We identified an optimal battery of nine assays for chemical
prioritization that contains subset models for antagonism and
agonism that achieve sensitivity >95% and specificity >85%. Five
assays are sufficient for predicting AR antagonism and six assays for
AR agonism prediction, with two assays in common. To further optimize
the number of chemical-assay pairs during testing, we proposed two
scenarios that tailor the number of assays used based on the a priori
likelihood that a chemical could be an AR agonist; one is based on
cheminformatics predictions of AR agonism, and the other utilizes two-
stage testing. Both approaches utilize the EDSP chemical clustering
performed by Nelms et al. (2023). This method of screening may be
applicable to other minimal assay models as well.

Future studies will necessarily include different assays from those used
for these analyses because some of the original assays are no longer
available and newer methods are continually being developed (Judson
et al., 2020; U.S. EPA, 2023). Based on our findings, in vitro batteries that
substitute assays that interrogate the same biological endpoint should
behave similarly to the simulations performed herein. For additional
confidence, the new assays could be tested using the original ToxCast
chemicals and results comparedwith the corresponding assayswith regard
to sensitivity, specificity, and variability. As new data are collected, this
workflow could be used to optimize testing strategies using the currently
available assays. Furthermore, as additional activity data are collected and
more reference chemicals are identified, the in silico tools should become
more reliable and eliminate the need for in vitro testing at the
prioritization stage.

These analyses demonstrate the importance of using chemical
clustering to aid the efficiency of screening approaches and
demonstrate adequate coverage of the EDSP UoC. The methods
described here provide an approach for finding an optimal subset
assay battery from a larger set of assays in order to minimize the
number of assays needed when screening for both AR antagonism and
agonism.What was done in this approach to optimize screening efficiency
of theARpathwaymodelmay also be used for othermolecular targets that
begin with a comprehensive evaluation of many endpoints in order to
determine which endpoints or assays are critical for optimal performance.
This case study demonstrated the importance of evaluating both agonists
and antagonists in aworkflow that allowed optimal efficiency in screening.
These results also show how information regarding chemical structure can
be combined with preliminary data from high-throughput screening to
help select chemicals for further screening.
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