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Intestinal barrier function is achieved primarily through regulating the synthesis of mucins 
and tight junction (TJ) proteins, which are critical for maintaining optimal gut health and 
animal performance. An aberrant expression of TJ proteins results in increased paracellu-
lar permeability, leading to intestinal and systemic disorders. As an essential component 
of innate immunity, host defense peptides (HDPs) play a critical role in mucosal defense. 
Besides broad-spectrum antimicrobial activities, HDPs promotes inflammation resolu-
tion, endotoxin neutralization, wound healing, and the development of adaptive immune 
response. Accumulating evidence has also indicated an emerging role of HDPs in barrier 
function and intestinal homeostasis. HDP deficiency in the intestinal tract is associated 
with barrier dysfunction and dysbiosis. Several HDPs were recently shown to enhance 
mucosal barrier function by directly inducing the expression of multiple mucins and TJ 
proteins. Consistently, dietary supplementation of HDPs often leads to an improvement 
in intestinal morphology, production performance, and feed efficiency in livestock ani-
mals. This review summarizes current advances on the regulation of epithelial integrity 
and homeostasis by HDPs. Major signaling pathways mediating HDP-induced mucin 
and TJ protein synthesis are also discussed. As an alternative strategy to antibiotics, 
supplementation of exogenous HDPs or modulation of endogenous HDP synthesis may 
have potential to improve intestinal barrier function and animal health and productivity.

Keywords: host defense peptides, barrier function, tight junction, gut health, innate immunity

iNTRODUCTiON

The gastrointestinal (GI) tract is lined by a single layer of epithelial cells that serve to facilitate diges-
tion and absorption of nutrients and also act as a barrier to invading microorganisms, toxins, and 
dietary antigens. Intestinal barrier function is achieved through coating of the epithelial cells with a 
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mucus layer and the formation of a selectively permeable barrier 
across and between epithelial cells (1). The mucus layer consists 
primarily of mucin glycoproteins that are secreted by goblet cells, 
functioning as a physical barrier between the luminal contents and 
the host and also to facilitate nutrient digestion and absorption 
(2). However, the primary barrier function of the GI tract resides 
with epithelial cells, which transport water, ions, and macromol-
ecules through either of two routes, i.e., the transcellular and 
paracellular pathways (1, 3, 4). The transcellular pathway refers to 
the movement of small molecules through epithelial cells either 
by active or passive transport, whereas the paracellular pathway 
refers to the diffusion of water, macromolecules, and immune 
cells between epithelial cells. In the presence of intact epithelial 
cells, the paracellular pathway dictates the intestinal permeability 
and is regulated by inter-epithelial connections known as tight 
junctions (TJs) (1, 3, 4).

Maintenance of mucin and TJ assembly ensures proper 
absorption and transport of nutrients, water, and electrolytes, 
while shielding the host from pathogens, toxins, intestinal micro-
biota, and dietary antigens. Disruption of the mucus layer and TJ 
complex, on the other hand, results in an increase in intestinal 
permeability, followed by heightened bacterial translocation, 
inflammation, and possibly the onset of various enteric and 
systemic disorders (1, 3, 4). In livestock production, impaired 
intestinal barrier function leads to reduced animal health and 
growth performance (5, 6). Therefore, it is critically important 
to understand how the intestinal barrier function is maintained 
and regulated in order to achieve optimal animal health and 
productivity.

Host defense peptides (HDPs), also known as antimicrobial 
peptides, are an important component of the animal innate 
immune system, and a majority of HDPs are expressed on 
mucosal surfaces, including the GI tract (7, 8). With potent 
antimicrobial and immunomodulatory activities, HDPs exert a 
pleiotropic effect on innate adaptive immune responses (9–11). 
Recent research has further shed light on the direct involvement 
of epithelial HDPs in regulating intestinal mucin and TJ protein 
expression and microbiota composition. The focus of this review 
is to summarize the latest advances regarding the emerging role 
of HDPs in maintaining intestinal barrier and homeostasis with a 
goal of exploring HDP-based therapies to improve gut health and 
performance of food-producing animals.

HOST DeFeNSe PePTiDeS: A CRiTiCAL 
COMPONeNT OF iNNATe iMMUNiTY

A variety of HDPs with direct antimicrobial activities are 
produced by host cells in response to infections. Among them 
are several major families found in vertebrate species such as 
defensins, cathelicidins, the S100 family, the RNase A super-
family, regenerating islet-derived III (REGIII) C-type lectins, 
and peptidoglycan-recognition proteins (12, 13). Defensins are 
primarily identified by three conserved disulfide bridges that 
form several antiparallel β-sheets due to the presence of multi-
ple cysteine residues (14). Based on the spacing pattern of six 
cysteines, vertebrate defensins are further categorized into three 

subfamilies, including α-, β-, and θ-defensins. While β-defensins 
are present in all vertebrate animals, α-defensins are found in 
most but not all mammals, and θ-defensins only exist in primates 
(14). Cathelicidins are structurally recognized by the highly 
conserved cathelin domain found in the precursor that is cleaved 
off to release the biologically active peptides adopting a variety of 
structures such as α-helix (15).

The S100 family proteins are 9–14  kDa in mass containing 
two highly conserved Ca2+-binding EF-hand domains that are 
separated by four α-helical domains with a variable C-terminal 
region (16, 17). The RNase A superfamily are characterized 
by the presence of 6–8 conserved cysteines forming distinct 
disulfide bridges, together with two invariantly spaced histidines 
and a lysine (18, 19). The REGIII family proteins are a group of 
soluble C-type lectins with a conserved carbohydrate-recognition 
domain that binds to sugars in a Ca2+-dependent manner (20). 
Peptidoglycan-recognition proteins constitute a family of phy-
logenetically conserved host defense molecules with a PGRP 
domain that binds to bacterial peptidoglycans through specific 
interactions with the muramyl-tripeptide fragments (21).

expression of HDPs
Six α-defensins (22) and a minimum of 39 β-defensins (23) have 
been reported in humans. The genomes of cattle and pigs encode 
at least 57 and 29 β-defensin genes, respectively (24, 25), while 
the chicken genome harbors a total of 14 β-defensin genes (26, 
27), with no α-defensins being found in cattle, pigs, or chickens. 
All β-defensin genes are located in tandem in a single genomic 
region in the chicken (26) and are expanded to 4–5 different 
clusters in humans, cattle, and pigs (23–25). Interestingly, all 
human α-defensin genes form a single cluster within a β-defensin 
gene cluster (22), suggesting that α-defensins likely diverged from 
β-defensins. While four human α-defensins (HNP1–4) are abun-
dantly present in neutrophil granules, the other two α-defensins 
(HD5 and HD6) are specific to Paneth cells in the crypts of the 
human small intestinal tract (14). On the other hand, a majority 
of β-defensins are expressed in a wide range of cell types, par-
ticularly the epithelial cells lining the skin, GI, respiratory, and 
urogenital tracts of all livestock species as well as humans (14).

A single cathelicidin known as LL-37, CAMP, or hCAP-18 
is present in humans (28) and four cathelicidins are reported in 
chickens (29, 30). In cattle and pigs, 10 and 11 cathelicidins have 
been identified, respectively (31, 32). All cathelicidin genes are 
located in a syntenic chromosomal region in vertebrate species. 
Expressions of cathelicidins are widespread with abundant pres-
ence in neutrophil granules as well as various epithelial mucosal 
surfaces of cattle, pigs, and humans. Four chicken cathelicidins 
are similarly expressed in a broad range of tissues as well as in 
heterophils (29, 30, 33, 34), which are equivalent to neutrophils 
in mammals. Additionally, chicken cathelicidin-B1 is highly 
expressed in M cells of the bursa of Fabricius (30), a type of spe-
cialized epithelial cells involved primarily in antigen transporta-
tion from the intestinal lumen to submucosal immune cells (35).

The S100 family members have been found in all vertebrates 
(17). A total of 21 S100 proteins are present in humans, with 17 
members clustered in the same 2-Mb region on chromosome 
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1q21 (17). The tissue expression pattern of S100 proteins is unique 
and isoform specific (16). For example, S100A7 (also known as 
psoriasin) isolated initially from the skin of psoriatic patients 
is mainly expressed in the skin and breast tissues, whereas the 
heterodimer S100A8/S100A9, or calgranulin A/B, is expressed in 
keratinocytes, neutrophils, monocytes, and macrophages.

Biological Functions of HDPs
Host defense peptides are an integral part of the innate immune 
system. Historically, HDPs are known for their ability to func-
tion as natural antibiotics with broad-spectrum antimicrobial 
activities against Gram-negative and Gram-positive bacteria, 
fungi, viruses, protozoa, and even cancerous cells (7, 36). Human 
LL-37 and α- and β-defensins are all capable of killing a broad 
spectrum of pathogens (7, 36). All four chicken cathelicidins have 
been demonstrated to be active at low micromolar concentrations 
against both Gram-positive and Gram-negative bacteria, includ-
ing antibiotic-resistant strains (29, 30, 37–39). Several chicken 
β-defensins are also potent against a range of human and zoonotic 
pathogens (40–42). Similarly, β-defensins and cathelicidins in the 
cattle and pigs are broadly active against multiple pathogens as 
well (32).

Because of the cationic and amphipathic properties associated 
with a majority of HDPs, they kill bacteria primarily through 
disruption of cell membranes and/or interaction with intracel-
lular macromolecules (43). A net positive charge allows HDPs to 
bind to negatively charged phospholipid groups on the bacterial 
membrane through electrostatic interactions. The amphipathic 
nature of HDPs facilitates their insertion into target cellular 
membranes allowing them to disrupt its integrity. Multiple mod-
els of membrane disruption, such as “barrel-stave”, “carpet,” or 
“toroidal-pore” models, have been proposed (43). Intracellularly, 
certain HDPs are also capable of inhibiting protein, DNA and 
RNA synthesis, or binding to specific targets (43). Because of 
their primary membrane-lytic activities, HDPs are generally 
equally active among drug-resistant and -susceptible pathogens. 
It is conceivably more difficult for pathogens to develop resistance 
to HDPs, although certain bacteria have developed mechanisms 
to resist their action in order to infect and colonize the hosts 
(44). It appears that commensal bacteria are generally resistant to 
the action of the constitutively expressed HDPs, but sensitive to 
certain inducibly expressed HDPs in the human intestinal tract 
(45). However, the mechanism by which commensal and probi-
otic bacteria show a reduced sensitivity to HDPs remains elusive.

Besides their antimicrobial activity, HDPs are involved in 
the modulation of innate and adaptive immune responses 
(10, 11) (Figure  1). Many human HDPs have been shown to 
promote the recruitment of neutrophils or monocytes and 
suppress proinflammatory response. Human HDPs also induce 
the differentiation and activation of macrophages and dendritic 
cells. Additionally, human cathelicidin LL-37 facilitates the 
resolution of inflammation by promoting re-epithelialization 
and wound healing as well as autophagy and apoptosis (10, 
11). Three chicken cathelicidins known as fowlicidin 1–3 bind 
to bacterial lipopolysaccharides (LPS) directly with a strong 
capacity to neutralize LPS-induced production of inflammatory 
cytokines in macrophage cells (37–39). Furthermore, chicken 

fowlicidin-1 is chemotactic to neutrophils, but not monocytes 
or lymphocytes (46). Fowlicidin-1 also activates macrophages 
by inducing modest synthesis of inflammatory cytokines and 
chemokines and further potentiates the antibody response if 
co-administered with a model antigen (ovalbumin) in mice 
(46). Importantly, a single application of fowlicidin-1 is not only 
able to protect animals from an established infection (47) but 
also to prevent the disease beyond a 2- to 4-day window (46) in 
a murine model of methicillin-resistant Staphylococcus aureus 
(MRSA) infection (46).

Among 14 bovine β-defensins examined, three (BNBD3, 
BNBD9, and EBD) are chemotactic to immature monocyte-
derived dendritic cells (48). Porcine cathelicidin PR-39 is also 
capable of inhibiting phagocyte NADPH oxidase activity and 
attenuating myocardial ischemia–reperfusion injury (49) by 
blocking the assembly of the enzyme complex through binding 
to p47phox, a cytosolic component of the NADPH oxidase (50). 
PR-39 accelerates wound repair by inducing syndecans (51). 
Furthermore, PR-39 facilitates angiogenesis and formation of 
functional blood vessels by inhibiting the ubiquitin–proteasome-
dependent degradation of hypoxia-inducible factor (HIF)-1α 
(52). Several porcine cathelicidins also help with the update of 
bacterial DNA and subsequent activation of dendritic cells (53). 
HDPs with potent antimicrobial activity and the ability to modu-
late innate and adaptive immunity are, therefore, being actively 
exploited as novel antibiotics.

Additionally, recent emerging evidence has highlighted the 
beneficial effect of HDPs on mucosal barrier permeability by 
directly regulating mucin and TJ protein expression and shaping 
microbiota composition. This emerging role of HDPs in intestinal 
barrier function and homeostasis will be the focus of this review.

MUCUS LAYeR: A LAYeR OF iNTiMATe 
PROTeCTiON FOR MUCOSAL SURFACe

An intact mucus layer that is composed primarily of secreted 
mucins plays a critical role in maintaining the intestinal barrier 
function (54, 55). Mucins are large, highly glycosylated proteins 
ranging from 0.5 to 20 MDa. Synthesized and released by goblet 
cells, mucins function to coat the mucosal surface to facilitate the 
passage of substances, maintain proper cell hydration, act as a 
permeable barrier for the exchange of gas and nutrients, and also 
protect the epithelial cells from invading pathogens and toxins 
(54, 55). Structurally, a hallmark of all mucin protein backbones is 
the presence of 1–5 tandem repeat (TR) domains, which consist of 
an excessive number of identical or nearly identical TR sequences 
rich in serine, threonine, and proline residues (56) (Figure  2). 
The TR domain is heavily glycosylated because of attachment 
of oligosaccharides to serine and threonine through O-linked 
glycosylation, giving rise to 50–80% glycans in mass. Saturated 
sugar coating is beneficial to increase the water-holding capacity 
and the resistance of mucins to proteolytic cleavage.

In humans, the mucin family consists of up to 20 members, 
including both secreted and membrane-bound forms. Secreted 
mucins form homo-oligomeric, gel-like structures constituting 
the mucosal layer, while the membrane-bound mucins are part 
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of the epithelial glycocalyx that are involved in cell signaling and 
interactions with the environment without forming gel or oli-
gomerization (57). Secreted human mucins include MUC2, -5AC, 
-5B, -6, -7, and -19, and the transmembrane mucins consist of 
MUC1, -3, -4, -12, -13, -15, -16, -17, and -20 (54, 55). Structurally, 
most secreted mucins are unique in the presence of multiple von 
Willebrand factor (VWF) domains and a C-terminal cysteine-
knot domain, while a majority of membrane-bound mucins 
specifically consist of a transmembrane domain, a cytoplasmic 
tail, 1–2 epidermal growth factor (EGF)-like domains, and a sea 
urchin sperm protein, enterokinase, and agrin (SEA) domain (56, 
58) (Figure 2). The VWF domains and cysteine-knot domain of 
secreted mucins are responsible for formation of higher-order 
structures through oligomerization, while the EGF-like and 
SEA domains of membrane-bound mucins mediate signaling 
transduction and cleavage of the extracellular portion of mucins, 
respectively (58). Among all secreted mucins, MUC2 is the most 
abundant in the human small intestine and colon, and MUC5AC 
is predominant in the stomach. Structurally, similar mucins have 
been found in most other vertebrate species, including cattle, 
pigs, and chickens (59–62).

The mucus layer formed by secreted mucins varies in compo-
sition along the GI tract. The stomach and large intestine consist 

FiGURe 1 | Multifunctional roles of host defense peptides (HDPs). Besides direct antimicrobial activities, HDPs actively participate in systemic and mucosal 
epithelial defense by modulating a range of host innate and adaptive immune responses as indicated. Recent accumulating evidence has highlighted a direct 
involvement of HDPs in improving intestinal and epidermal barrier function.

of two distinct mucus layers: a “loose” outer layer and a “thick” 
inner layer (2). The inner layer closest to epithelial cells is densely 
packed and holds firmly to the cells. The inner mucus layer is 
largely free of bacteria, providing a sterile protective environment 
for the epithelium. The outer mucus layer is much more soluble 
due to proteolytic cleavages that allow the mucus layer to expand 
without disrupting mucin polymers. This outer layer provides a 
habitat for commensal bacteria to bind via specific adhesins and 
to thrive via breaking down the mucin glycans as a food source. 
Specificity of bacteria for different glycans is speculated to be 
important for developing species-specific microbiota (2).

Altered expression or glycosylation of mucins is often associ-
ated with intestinal barrier dysfunction (57). For example, Muc2 
deficiency in mice causes increased permeability, gross bleeding, 
spontaneous development of inflammation in the GI tract, as well 
as severe growth retardation (63, 64). Muc1- or Muc2-deficient 
mice become more prone to infections with Campylobacter jejuni, 
Helicobacter pylori, Salmonella enterica serovar Typhimurium, 
and Citrobacter rodentium (64–67). Moreover, mice lacking the 
enzyme, β1,3-N-acetylglucosaminyltransferase that synthesizes 
O-glycans on mucins, exhibit a thinner mucus layer showing an 
enhanced susceptibility to enteric bacterial infections (67) and 
dextran sodium sulfate (DSS)-induced colitis (68). Additionally, 
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FiGURe 2 | Schematic diagrams of glycosylated mucin monomers. Representative membrane-bound and secreted mucins are exemplified by mucin 1 
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sperm protein, enterokinase, and agrin (SEA) domain are unique to most membrane-bound mucins, whereas the presence of several von Willebrand factor (VWF) 
domains and a C-terminal cysteine-knot domain is specific to a majority of secreted mucins. The diagrams were modified primarily from reference (56).
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significantly reduced expressions of multiple mucins such as 
MUC1, MUC3, MUC4, and MUC5B are observed in ileal 
mucosa of Crohn’s disease (CD) patients (69), although the 
expression changes of mucins are less clear in ulcerative colitis 
(UC) patients (70).

TiGHT JUNCTiONS: GATe GUARDS FOR 
BORDeR PROTeCTiON

The intestinal epithelium is made up of several different cell types 
organized into crypts and villi. These include intestinal epithelial 
stem cells, enterocytes, and secretory cells, such as Paneth, goblet, 
and enteroendocrine cells (71). Intestinal stem cells give rise to 
all other epithelial cell types, while enterocytes primarily function 
in nutrient absorption with the ability to synthesize and release 
HDPs and mucins. Paneth and goblet cells are major producers 
of HDPs and mucins, respectively, while enteroendocrine cells 
have a primary role of secreting numerous hormones that act 
as regulators of digestive function (71). All intestinal epithelial 
cells are linked at lateral membranes through formation of 
three major types of junctional complexes, i.e., TJs, adherens 
junctions, and desmosomes (1, 3, 72). Collectively, they form 
a virtually impermeable seal to the paracellular space. Besides 
the barrier function, these junctional complexes maintain cell 
polarity by separating the apical from basolateral membranes. 
TJs are multi-protein complexes located at the most apical end 
of the lateral membrane. The TJ assembly is composed of both 
transmembrane and cytoplasmic plaque proteins that interact 
directly with the cytoskeleton (Figure 3). Among all three major 
junctional complexes, only TJs have the ability to control the 

selective paracellular permeability for ions, water, and other small 
molecules (1, 3, 72). Therefore, TJs are the major determinant of 
mucosal epithelial permeability.

Tight Junction Structures
Among the proteins involved in TJ assembly, claudins, occludin, 
junctional adhesion molecules (JAM), and tricellulin are the 
major transmembrane proteins that constitute a selective para-
cellular barrier, whereas zonula occludens (ZO) and cingulin are 
the main cytoplasmic plaque proteins located at the peripheral 
membrane (1, 3, 72). All TJ proteins are highly conserved in 
vertebrate species. Claudins are a large family of small proteins of 
21–34 kDa that make up the backbone of the TJ structure, with 
at least 26 members reported in humans (73). Remarkably, each 
claudin shows a unique tissue expression pattern with varied 
levels of expression in different segments of the GI tract. Occludin 
(65 kDa) was the first transmembrane TJ protein identified (74), 
with no homologs being found (75). On the other hand, the JAM 
family is comprised of three classical members (JAM-1, -2, and 
-3) and four related molecules (JAM-4, JAM-L, CAR, and ESAM) 
at ~40  kDa each (76). Tricellulin is a 64-kDa protein located 
preferentially at tricellular junctions, although it is also present 
in bicellular junctions (77). Tricellulin shares 32% identity in the 
amino acid sequence with the C-terminal tail of occludin. ZO 
proteins belong to the family of membrane-associated guanylate 
kinase (GUK) homologs that include three members, i.e., ZO-1 
(~220  kDa), ZO-2 (~160  kDa), and ZO-3 (~130  kDa) (78), 
whereas cingulin is an ~140-kDa protein that links ZO proteins 
to the actin cytoskeleton (79).

Claudins, occludin, and tricellulin are all membrane proteins 
with four transmembrane domains, one intracellular and two 
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FiGURe 3 | Schematic drawing of tight junction structures at the apicolateral membranes of the paracellular space. Tight junctions are comprised of 
transmembrane proteins such as claudins, occludin, junctional adhesion molecules (JAM), and tricellulin as well as cytoplasmic plaque proteins such as three zonula 
occludens (ZO) proteins and cingulin. Claudins, occludin, and tricellulin consist of four transmembrane domains, while JAMs have a single transmembrane domain. 
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cytoskeleton to control the opening of paracellular pores.
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extracellular loops, and two cytoplasmic tails, whereas the JAM 
proteins are single-pass transmembrane proteins consisting of 
two extracellular immunoglobulin (Ig)-like domains, a single 
transmembrane domain, and a short intercellular C-terminal 
tail (72) (Figure 4). While the N-terminal tail is generally short, 
the longer C-terminal tail of claudins consists of a post-synaptic 
density 95, disk-large, and zonula occludens (PDZ)-binding 
motif that interacts with the first PDZ domain of ZO-1 (73). The 
crystal structure of claudins as exemplified by mouse claudin-15 
indicates that the four transmembrane segments form a tight 
four-helix bundle with parts of the two extracellular loops form-
ing a “palm-shaped” structure (80). A model for the architecture 
of claudin-formed TJ strands in the membrane has been proposed 
based on the results of crosslinking experiments and electron 
microscopy (81). In this model, claudins show an antiparallel, 
double-layer arrangement (Figures  5A,B). The association of 
claudin double layers in neighboring lateral membranes results in 
the formation of multiple extracellular β-barrel-like pores parallel 
with the membrane plane to allow the passage of ions through the 
paracellular space (Figure 5C).

As for occludin, its two extracellular loops mediate homophilic 
interactions and permeability to macromolecules. The occludin–
ELL domain in the C-terminal tail of occludin is responsible 
for interacting with the GUK domain of ZO proteins, while 

the N-terminal tail lacks a defined function (75) (Figure 4). In 
comparison with claudins and occludin, tricellulin consists of two 
long tails, with the C-terminal tail containing an occludin–ELL 
domain that is likely to interact with the GUK domain of ZO 
proteins (82). JAM proteins also contain a cytoplasmic tail with 
a PDZ-binding motif that interacts with the third PDZ domain 
of ZO-1 (83) (Figure  4). The extracellular Ig-like domains of 
JAM proteins are responsible for homophilic and heterophilic 
interactions.

The cytoplasmic ZO proteins contain three PDZ domains, a Src 
homology-3 (SH3) domain, and a GUK domain (78). As stated 
above, ZO-1 directly interacts with claudins, ZO-2, and JAM-1 
through the first, second, and third PDZ domain, respectively. 
The GUK domain of ZO proteins is known to associate with 
occludin, while the C-terminal actin-binding region is respon-
sible for bridging with actin, raising the possibility of forming 
a large protein complex through simultaneous interactions of 
many TJ proteins with ZO-1 (78). Cingulin is another intracel-
lular plaque protein that is predicted to form a homodimer with 
globular head and tail at both ends connected by a coiled-coil 
“rod” domain in the central region. The head of cingulin is known 
to bind to ZO proteins and the coiled-coil domain interacts with 
myosin (79). The interactions between the TJ protein complex 
and cytoskeleton are critical in maintaining and regulating the TJ 
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FiGURe 4 | Domain structures of primary tight junction proteins and their interactions. Claudins consist of four transmembrane domains with a PDZ-
binding motif at the C-terminal tail, which interacts with the first PDZ domain (in yellow) of zonula occludens (ZO)-1. The GUK domain (in blue) of ZO-1 binds to the 
occludin–ELL domain at the C-terminal tail of occludin and possibly tricellulin as well. Junctional adhesion molecules (JAM) contain a single transmembrane domain, 
two immunoglobulin (Ig)-like domains in the extracellular region, and a PDZ-binding motif at the C-terminal tail that interacts with the third PDZ domain of ZO-1. ZO 
molecules form heterodimers through interactions at their second PDZ domain. The C-terminal segment of ZO proteins binds directly to actin filaments as well as 
the globular head of cingulin that interacts with myosin through its rod domain. The globular head of cingulin also binds to the C-terminal occludin and actin 
filaments. Phosphorylation of myosin light chain by myosin light chain kinase (MLCK) will cause contraction of the perijunctional actomyosin ring and opening of the 
tight junction channels.
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structure and function, as the mucosal permeability is regulated 
heavily by the phosphorylation status of myosin light chain, 
which can be modified by the kinases such as myosin light chain 
kinase (MLCK) (72, 73) (Figure 4).

Tight Junctions’ Function in Selective 
Permeability
Tight junctions are distributed at the apical surface of epithelial 
and endothelial cells throughout the body in vertebrate animals, 
including the skin, GI, respiratory, and urogenital tracts as well as 
the blood vessels (72). TJs are the major determinant of mucosal 
barrier permeability. Ions, water, and macromolecules pass TJs 
through either of the two major types of pores. The non-restrictive 
pathway, also known as the “leak” pathway, allows the transport 
of macromolecules through large pores with no charge selectivity, 
while the restrictive or “pore” pathway is only permeable to small 
ions through pores of ~4 Å in radius with charge selectivity (1, 
3, 4). Claudins are mainly responsible for the “pore” pathway, 
and the two extracellular loops work as an “electrostatic selective 
filter” to select the size and charge for small pores (Figure 5). The 
charge selectivity of individual claudins is determined by the net 
charge of the amino acid residues in the first extracellular loop. 
For example, claudin-1 is selective for anions, while claudin-2 
prefers cations. In the intestinal tract, claudin-1, -3, -4, -5, -8, -9, 
-11, and -14 decrease paracellular permeability and are regarded 

as barrier-forming claudins, while claudin-2, -7, -12, and -15 are 
to increase permeability and generally referred as pore-forming 
claudins (72, 73).

The non-restrictive “leak” pathway is primarily dependent 
on occludin as evidenced by an increase in paracellular flux of 
macromolecules without a noticeable effect on transepithelial 
electrical resistance (TEER) both in vitro and in vivo after occlu-
din knock-down (84). JAM proteins also enhance the TJ function 
by decreasing permeability and facilitating the assembly of occlu-
din to the TJ complex (83). In addition, JAMs can regulate the 
paracellular barrier for the transmigration of leukocytes from the 
blood vessel to inflamed sites in response to inflammation (76). 
It is noteworthy that paracellular water permeability is mainly 
dictated by claudin-2.

Modulation of Paracellular Permeability
A number of agents such as cytokines, growth factors, pathogens, 
probiotics, nutrients, and phytochemicals have been found to 
impact TJ permeability and mucosal barrier functions through 
transcriptional regulation and posttranslational modification of 
TJ proteins (72, 73). Increased expressions of barrier-forming 
claudins, occludin, and JAM proteins are commonly associated 
with reduced paracellular permeability and improved barrier 
function, whereas an elevation in the expression of pore-
forming claudins often leads to barrier dysfunction. For example, 

http://www.frontiersin.org/Veterinary_Science/archive
http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org


November 2015 | Volume 2 | Article 578

Robinson et al. HDP Regulation of Barrier Functions

Frontiers in Veterinary Science | www.frontiersin.org

transforming growth factor (TGF)-β enhances barrier integrity 
of intestinal epithelial cells by augmenting claudin-1 and -4 
expression, while IL-1β, IL-6, and TNF-α increase intestinal cell 
permeability by increasing claudin-2 expression and/or reducing 
occludin and ZO-1 expression (72).

Tight junction barrier integrity is also affected by post-
translational modifications of transmembrane and cytoplasmic 
proteins and associated regulatory proteins. Phosphorylation, 
glycosylation, and/or ubiquitination of the TJ proteins have a 
profound impact on barrier permeability. For example,  claudin-1 
is phosphorylated by atypical protein kinase C (aPKC), protein 

FiGURe 5 | A model of paracellular claudin-based tight junction 
channels. Putative β-barrel-like channels are formed by the extracellular 
domains (in magenta) of double-layered claudins, whose transmembrane 
helices are depicted in cyan. The tight junction complex is shown in parallel 
(A) and perpendicular (B) views, respectively, from the apical surface of the 
cells. (C) A schematic drawing of claudin-based tight junction channels. The 
paracellular pores are colored in magenta and double-layered claudins are 
represented by cyan blocks. Two gray plates indicate two neighboring cell 
membranes, and the arrows indicate the directions of ions passing through 
the tight junction channels. The graphs are adopted from the open-access 
reference (81).

kinase A (PKA), and mitogen-activated protein kinases (MAPK) 
and dephosphorylated by protein phosphatase 2A (72, 73). 
Phosphorylation of claudins generally promotes their assembly 
into the TJ, whereas dephosphorylation often results in the 
dissociation of claudins from the TJ (72, 73). Similarly, phos-
phorylation of occludin enhances the barrier function, while 
dephosphorylation delays the TJ assembly resulting in barrier 
dysfunction (72, 75).

Besides those proteins involved directly in the TJ assembly, 
paracellular permeability is also heavily influenced by actin– 
myosin filaments that are linked to the TJ proteins. It is well 
known that up-regulation of MLCK is linked to an increase in 
the TJ permeability by catalyzing the phosphorylation of myosin 
light chain, which in turn induces the contraction of actin–myo-
sin filaments and opening of the TJ barrier (85). Both IL-1β and 
TNF-α are strong inducers of the MLCK gene transcription and 
activation, resulting increased myosin light chain phosphoryla-
tion and TJ barrier permeability (86, 87).

The expression and posttranslational modifications of TJ 
proteins are influenced by a complicated network of signaling 
pathways that intertwine with each other. Activation of nuclear 
factor (NF)-κB signaling by pathogens, pathogen-associated 
molecular patterns (PAMPs), and proinflammatory cytokines 
often causes an increase in intestinal epithelial permeability 
through induction of pore-forming claudin-2 and suppression of 
barrier-forming claudins such as claudin-1, -3, -4, -5, -7, and -8. 
On the other hand, activation of TGF-β/SMAD and PPAR-α/γ 
signaling are generally barrier protective by enhancing claudin-1 
and -4 expressions while downregulating claudin-2 (73).

implication of Tight Junction Dysfunction 
in Disease Pathogenesis
The intestinal barrier helps to maintain homeostasis between gut 
microbiota and the immune system. TJ dysfunction is associated 
with many enteric disorders such as CD, UC, and celiac disease (3, 
72). In CD patients, the expressions of barrier-forming claudin-3, 
-5, -8, occludin, and JAM-1 are decreased, while pore-forming 
claudin-2 is significantly increased; and in UC patients, a down-
regulation of claudin-1, -4, and JAM-1, and up-regulation of clau-
din-2, is observed (3, 72). Moreover, increased MLCK expression 
and activity are evident in both CD and UC patients (85). These 
factors collectively exacerbate the intestinal paracellular perme-
ability leading to a “leaky gut syndrome.” However, many of these 
clinical conditions are also accompanied with increase synthesis 
of proinflammatory cytokines, which are known to cause barrier 
dysfunction. Thus, it is difficult to determine whether barrier 
dysfunction is a cause or effect of many of these diseases.

Several enteric pathogens such as Vibrio cholera, enteropathic 
Escherichia coli, Clostridium perfringens are known to cause 
diarrhea mainly through disruption of the intestinal barrier 
function by secretion of exotoxins (72). For example, claudin-3 
and -4 are receptors for C. perfringens enterotoxin, and the bind-
ing of enterotoxin to the extracellular loops of claudins causes 
internalization of claudins and disintegration of the TJ assembly 
(88). Early weaning (<3  weeks of age) is known to impair the 
development of intestinal barrier functions of pigs leading to 
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more pronounced diarrhea (89), and was recently found to lead 
to reduced expressions of occludin, claudin-1, and ZO-1 in the 
jejunum (90).

ReGULATiON OF TiGHT JUNCTiON AND 
MUCiN PRODUCTiON BY HOST DeFeNSe 
PePTiDeS

Association of HDP expression with 
Barrier Dysfunction
Along with decreased TJ protein expression, aberrant HDP 
expression is common in CD and UC patients (91). The expres-
sion of Paneth cell α-defensins (HD5 and HD6) is significantly 
reduced in ileal CD patients, but unaffected in colonic CD patients 
Z (92). Instead, a reduced expression of HBD-1 and HBD-2 is 
observed in colonic CD (93). Moreover, induction of cathelicidin 
LL-37 and HBD-2, -3, and -4 is also reduced in colonic CD rela-
tive to healthy subjects (94–97). This lack of HDP induction in 
CD patients is thought to play a key role in CD pathogenesis as 
it indicates a lack of intestinal immune response. A deficiency in 
HD5 and HD6 synthesis is even more pronounced in patients car-
rying a mutation in the intracellular NOD2 receptor (98), which 
is expressed by Paneth cells. Consistently, NOD2-knockout mice 
show a diminished expression of Paneth cell α-defensins known 
as cryptdins in mice (99). In contrast to CD patients, UC patients 
display unchanged HD5 and HD6 expressions (92), while LL-37, 
HBD-2, -3, and -4 are upregulated (94–97). A thin or even absent 
mucus layer is evident in UC intestinal segments, which causes 
intestinal inflammation due to direct adhesion and invasion of 
bacteria to mucosal epithelial cells. Although UC patients pro-
duce HDPs, these peptides are not retained in the intestinal tract. 
Perhaps the most convincing evidence linking the positive role of 
HDPs in barrier function comes from the studies with cathelicidin 
(CRAMP)-deficient mice. These mice show delayed recovery of 
barrier permeability in response to acute disruption of epidermal 
barrier, albeit with subtle barrier abnormalities in the epidermis 
(100). Collectively, these lines of evidence suggest a direct impact 
of HDPs on intestinal barrier function and homeostasis.

Transcriptional Regulation of Mucins and 
TJ Proteins by HDPs
Accumulating pieces of evidence suggest a direct involvement of 
HDPs in regulating the synthesis of mucins and TJ proteins in 
the intestinal tract. HBD-2 upregulates MUC2, MUC3, but not 
MUC1 or MUC5AC in human HT-29 colonic epithelial cells (101). 
MUC2 expression is also enhanced in human Caco-2 colonic 
epithelial cells in response to HBD-2 (101), and upregulated 
MUC2 in turn promotes HBD-2 expression (102), suggestive of a 
positive feedback mechanism between MUC2 and HBD-2. LL-37 
also enhances MUC1, MUC2, and MUC3 expressions in HT-29 
cells (103, 104) and MUC3 expression only in Caco-2 cells (104). 
Buforin II, a 21-amino acid HDP isolated from the stomach of an 
Asian toad (Bufo bufo garagriozans), improves intestinal barrier 
function in weaned piglets challenged with three enterotoxigenic 
E. coli (ETEC) strains (105). Oral administration (twice daily) of 
buforin II leads to an increase in claudin-1, occludin, and ZO-1 

expression in the jejunal segments of E. coli-challenged piglets 
(105). Importantly, buforin II also improves intestinal morphol-
ogy and growth performance and reduced bacterial shedding in 
fecal swabs (105). Additionally, administration of a banded krait 
HDP known as cathelicidin-BF induces ZO-1 expression in the 
jejunum of healthy mice and also restores LPS-mediated impair-
ment of ZO-1 and intestinal barrier function (106). Furthermore, 
porcine β-defensin-2 (PBD-2) is capable of restoring the expres-
sion of MUC1, MUC2, claudin-1, ZO-1, and ZO-2 as well as the 
barrier integrity of the colon of DSS-treated mice (107).

Besides direct regulation of the intestinal paracellular perme-
ability, several HDPs also positively influence the barrier effect 
of the respiratory tract and the skin. LL-37 induces MUC5AC in 
human NCI-H292 airway epithelial cells (108). LL-37, HBD-3, 
and S100A7/psoriasin are all able to augment the expression 
of TJ proteins in human skin keratinocytes (109–111). HBD-3 
induces the expressions of all 14 claudins examined, but not 
occludin or ZO 1–3 in human keratinocytes (110). Similarly, 
LL-37 dose-dependently enhances the expressions of 11 claudins 
and occludin in skin keratinocytes, but not JAM 1–3 or ZO 1–3 
(109). S100A7 also promotes the expressions of multiple claudins 
and occludin, but not JAM 1–3 or ZO 1–3 in human keratinocytes 
(111). Multiple signaling pathways are involved in HDP-induced 
barrier protein synthesis as detailed below.

MOLeCULAR MeCHANiSMS OF HDP 
ReGULATiON OF BARRieR FUNCTiONS

A number of extracellular and intracellular receptors have been 
reported to be responsible for a range of physiological functions 
of cathelicidins and defensins in humans and mice. LL-37 and 
the mouse ortholog (CRAMP) are ligands for P2X purinergic 
receptor 7 (P2X7), formyl peptide receptor-like (FPRL) 1/2, glyc-
eraldehyde 3-phosphate dehydrogenase, and sequestosome-1/
p62, whereas several human and mouse β-defensins bind to CC 
chemokine receptor 2 (CCR2), CCR6, CXC chemokine receptor 
2 (CXCR2), and toll-like receptor 1/2/4 (112, 113). The receptors 
and signaling pathways by which HDPs induce the expression 
of mucins and TJ proteins have been studied, but remain elusive 
in most cases. It is worth noting that, although most published 
mechanistic studies were based on skin keratinocytes, the 
following overall conclusions are believed to be applicable to 
intestinal epithelia as well: (1) HDPs vary greatly in their ability 
to modulate barrier function, albeit with structural similarities, 
(2) mucins and TJ proteins are differentially regulated by HDPs, 
(3) multiple signaling pathways are employed by the same HDP, 
and (4) receptors appear to be differentially engaged in mediating 
the induction of mucins and TJ proteins by different HDPs. The 
current findings are summarized below.

Signaling Mechanisms of HDP-Mediated 
Mucin induction
LL-37-induced MUC5AC expression in lung epithelial 
cells appears to be mediated mainly through transactiva-
tion of the EGF receptor (EGFR) (108), although EGFR is 
not a direct receptor for LL-37 (Figure 6A). Initially, LL-37 
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FiGURe 6 | Host defense peptide-mediated signaling pathways to induce mucins and tight junction proteins in epidermal and intestinal epithelial 
cells. (A) LL-37 primarily utilizes purinergic receptor P2X7 and transactivates EGFR to mediate MUC2 and MUC5AC induction. (B) LL-37 induces the synthesis of 
multiple claudins and occludin in skin keratinocytes mainly through PI3K-GSK-3α/β and Rac1-aPKCζ/λ pathways; however, the receptor that mediates the effect is 
currently unknown. (C) HBD-3 mainly engages CCR6 to induce claudin synthesis in skin keratinocytes through the PI3K-GSK-3α/β and Rac1-aPKCζ/λ pathways. 
(D) S100A7 enhances the synthesis of claudins and occludin through PI3K-GSK-3α/β and three canonical MAPK pathways. S100A7 also triggers phosphorylation 
of β-catenin and E-cadherin to enhance the adherens junction. A solid arrow indicates a direct effect, whereas a dashed arrow refers to an indirect action. It is noted 
that cross-talks among different signaling pathways likely exist, but they have not been reported.
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triggers the activation of TNF-α-converting enzyme, which 
in turn cleaves the membrane-bound form of TGF-α, but not 
heparin binding-EGF. Released TGF-α subsequently interacts 
with and phosphorylates its receptor, EGFR, which induces 
MUC5AC gene expression through activation of multiple 
signaling pathways (108). For LL-37 to induce MUC2 and 
MUC3 expression in human intestinal epithelial cells, both 
EGFR and P2X7, but not G-protein-coupled receptors, are 
involved (104). HBD-2-induced mucin expression in human 
intestinal epithelial cells is shown to be partially mediated 
through CCR6 (101). The p38 MAPK, but not extracellular 
signal-regulated kinase (ERK) or PI3K, is involved in medi-
ating P2X7- and EGFR-activation of MUC2 production in 
human Caco-2 cells (104).

LL-37-Mediated TJ Protein induction
Rac1, aPKCζ/λ, glycogen synthase kinase (GSK)-3α/β, and PI3K 
are all phosphorylated and activated in human skin keratinocytes 
in response to LL-37, and blockage of any enzyme with a specific 
inhibitor results in a substantial reduction in the TEER and a 
significant increase in the permeability to FITC-dextran (109) 
(Figure  6B). Rac1 is a small GTPase that functions upstream 
of aPKCζ/λ as part of the Par3/Par6/aPKCζ/λ polarity complex, 
which in turn phosphorylates the C-terminal domain of occludin 
(114) or JAM-1 (115), promoting its assembly into the TJ complex 
and enhancing the barrier function (116). GSK-3α/β is involved 
in a number of signaling pathways (117) and is required for 
induction of occludin and claudin-1 in intestinal and kidney epi-
thelial cells (118). Consistently, LL-37 triggers phosphorylation 
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and activation of GSK-3α/β at Tyr 216 and Tyr 279 in human 
keratinocytes at 1–2 h after exposure, leading to the improvement 
of epidermal barrier function (109).

PI3K functions upstream of GSK-3, and the PI3K signal-
ing cascade has been implicated in both the degradation and 
stimulation of TJ barrier function depending on the stimulating 
agent (119). PI3K is quickly phosphorylated within 30  min in 
human keratinocytes upon stimulation with LL-37 (109). In 
intestinal cells, PI3K plays a key role in directing proper occludin 
localization and subsequent tightening of epithelial barrier func-
tion in response to prostaglandins (120). Inhibition of PI3K in 
porcine ischemia-injured ileal mucosa attenuates the ability of 
prostaglandin to recover proper barrier function. In rat Con8 
mammary epithelial cells, glucocorticoid recruits Ras and the p85 
subunit of PI3K to the TJ complex and increases barrier function 
(121). However, the specific cellular receptor(s) mediating LL-37-
induced TJ protein expression remain unknown and warrant 
further investigation.

HBD-3-Mediated TJ Protein induction
Although HBD-2 is capable of inducing mucin expression (101), 
only HBD-3 triggers the synthesis of multiple TJ proteins (110). 
CCR6 has been shown to be primarily responsible for HBD-3-
induced enhancement of barrier integrity in epidermis (110). 
Similar to LL-37, HBD-3 is also capable of phosphorylating 
and activating Rac1, aPKCζ/λ, PI3K, and GSK-3α/β in similar 
kinetics in human skin keratinocytes (110) (Figure 6C). Of note, 
toll-like receptors, PKA, and MAPK pathways are not involved in 
mediating HBD-3-induced barrier function improvement (110). 
Although HBD-1, HBD-2, and HBD-4 fail to alter the epidermal 
permeability, they also have weak activities in activating Rac1, 
aPKC, GSK-3, and PI3K (110), suggesting those pathways may 
not be solely devoted to the TJ functions. It is important to note 
that, although similar in the tertiary structure, only HBD-3, but 
not HBD-1, -2 or -4, has the ability to trigger the induction of TJ 
proteins (115).

S100A7-Mediated TJ Protein induction
The role of GSK-3α/β and MAPK in human epidermal barrier 
function mediated by S100A7 has been studied (111) (Figure 6D). 
GSK-3α/β is phosphorylated and activated at Tyr 216 and Tyr 
279 within 30 min following exposure of human keratinocytes 
to S100A7/psoriasin. Specific inhibition of GSK-3 activation 
abolishes induction of claudins and epidermal TEER by S100A7 
(111). Because β-catenin is regulated directly by GSK-3 (117), 
S100A7 is revealed to phosphorylate and activate β-catenin, 
which is vital to the assembly of adherens junctions. E-cadherin, 
another essential component of the adherens junction complex, is 
also phosphorylated by S100A7 (111), suggesting that, besides the 
TJs, S100A7 also improves the assembly of adherens junctions.

The MAPK pathway includes three canonical signaling cas-
cades that consist of ERK, c-Jun N-terminal kinase (JNK), and 
p38 (122). Collectively, they are critical to many important physi-
ological processes ranging from cell division and differentiation to 
stress and immune responses. Unlike HBD-3, S100A7 is capable 
of activating all three canonical MAPK cascades (111). ERK is 

quickly phosphorylated in 2  min in human skin keratinocytes 
following exposure to S100A7, while JNK and p38 MAPK are also 
phosphorylated in 30 min. Inhibition of individual MAPK signal-
ing cascades leads to a substantial reduction in claudin induction 
and epidermal TEER (111), implying that all three major MAPK 
pathways are required. However, the involvement of any specific 
receptors or other signaling pathways remains to be studied.

ROLe OF HDPs iN iNTeSTiNAL MUCOSAL 
HOMeOSTASiS, iMMUNe DeFeNSe, AND 
GROwTH PeRFORMANCe

One of the major functions of the intestinal epithelium is to act 
as a barrier against the invasion of microorganisms. This task 
is especially difficult considering that the intestinal mucosa is 
colonized by over 1013 microorganisms (123), with the majority 
being commensal bacteria that are beneficial to the host through 
their ability to improve digestion, absorption, and vitamin 
synthesis while also limiting pathogen growth (124). The two 
most dominant bacterial phyla present in the intestinal tract of 
humans and mice are Gram-negative Bacteriodetes and Gram-
positive Firmicutes, which together comprise about 70–80% of 
the total bacteria present (125). Commensal bacteria are vital to 
the development of normal intestinal morphology and immune 
system (126, 127). While commensal bacteria are beneficial to 
the host under homeostatic conditions, a state of dysbiosis, or 
imbalance of the microbial community, leads to inflammation 
and disturbed epithelial homeostasis. This is particularly seen 
in the CD patients in which the host immune system displays 
increased activation against commensal microbiota.

The intestinal epithelium continuously monitors resident 
microbes through interactions between pattern recognition 
receptors (PRRs) and microbe-associated molecular patterns 
(MAMPs). Activation of PRRs stimulates the synthesis and 
release of HDPs and mucins from intestinal cells (126, 127). A 
large amount of HDPs secreted from Paneth cells and entero-
cytes are retained in the mucus layer to create a strong barrier 
against bacterial invasion (128). Studies with HDP-knockout 
and  -transgenic mice have illuminated the role of HDPs in 
intestinal homeostasis and immune defense. Knockout of the 
mouse cathelicidin CRAMP gene causes exaggerated colitis in 
the colon of mice, and the disease symptoms are further exacer-
bated following DSS treatment (129). Adoptive transfer of bone 
marrow cells from the wild-type mice to CRAMP-knockout 
mice alleviates DSS-induced colitis (129). Mice carrying the 
transgene for HD5 show an augmented ability to fight off orally 
challenged S. enterica serovar Typhimurium (130). Conversely, 
matrix metalloproteinase 7 (MMP7)-knockout mice with a defi-
ciency in producing biologically active enteric defensins display 
reduced capacity to clear enteric pathogens (131). Furthermore, 
a comparison between those two complementary mouse models 
has revealed dramatic defensin-dependent reciprocal shifts in the 
intestinal bacterial composition. In comparison with wild-type 
mice, Firmicutes are reduced and Bacteriodes are increased in 
small intestine of HD5-transgenic mice, while the opposite is true 
with MMP7-deficient mice (125, 132). Moreover, overexpression 
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of HD5 in mice causes a significant loss of segmented filamentous 
bacteria in the distal small intestine and a reduced presence of 
Th17 cells in the lamina propria (132), suggesting clearly that 
enteric HDPs represent a critical factor in shaping the microbiota 
composition and inflammatory status of the GI tract.

Multiple studies have highlighted the beneficial effects of direct 
feeding of HDPs on growth, intestinal morphology, and immune 
status in pigs (133, 134). Dietary supplementation of an E. coli-
producing bacteriocin, colicin E1, significantly improved weight 
gain and feed efficiency of ETEC-challenged weanling pigs in a 
4-day trial, relative to the control pigs (135). Colicin E1 inclusion 
also reduced the E. coli titers in both the fecal and ileal samples 
as well as the incidence and severity of diarrhea (135). Moreover, 
the  expression levels of proinflammatory cytokines (IL-1β and 
TNF-α) were reduced in the ileum of pigs in response to colicin 
E1 feeding (135). Similarly, feeding a recombinant silkworm HDP, 
cecropin A/D, improved growth and feed efficiency and reduced 
diarrhea incidence in ETEC-challenged weanling pigs, without 
an obvious impact on intestinal morphology or nitrogen/energy 
utilization over a period of 6 days (136). Dietary inclusion of a 
recombinant fusion HDP derived from bovine lactoferrin also 
enhanced growth performance and decreased the incidence of 
diarrhea in ETEC-challenged piglets over a 21-day period (137). 
Across five different commercial farms, feeding a mixture of four 
recombinant HDPs, including lactoferrin, cecropin, defensin, 
and plectasin resulted in an enhancement of growth and feed 
efficiency and a reduction in diarrhea incidence in normally 
reared weanling pigs (138). Parallel to the studies above, sup-
plementation of a synthetic HDP (AMP-A3 or P5) improved 
nutrient digestibility, intestinal morphology, and growth perfor-
mance of normally reared weanling pigs in a 4-week trial, without 
affecting serum concentrations of IgA, IgG, or IgM (139, 140). 
Additionally, AMP-A3 and P5 appeared to reduce the titers of 
potentially harmful Clostridium spp. and coliforms in the ileum, 
cecum, and feces (140). Feeding a combination of two HDPs and 
a probiotic yeast led to an improvement in intestinal morphology 
and feed efficiency of piglets challenged with deoxynivalenol, 
a mycotoxin commonly found in grains (141, 142). In most 
trials above, HDPs performed indistinguishably with in-feed 
antibiotics in promoting growth, feed efficiency, and intestinal 
morphology (133).

The beneficial effects of direct feeding of HDPs are not limited 
to pigs. Supplementation of AMP-A3 to broiler chickens resulted 
in an increase in weight gain and feed efficiency over control 
birds, which was comparable to the birds fed avilamycin, an in-
feed antibiotic (143). Intestinal morphology was also improved 
in broilers as measured by increased villus heights and villus 
height:crypt depth ratios in the small intestine (143). Similar 
to the results in pigs, broilers also displayed an improvement 
in nutrient utilization and a reduction in Clostridium spp. and 
coliforms in the intestinal tract (143). Supplementation of a yeast 
broth containing recombinant cecropin A/D improved intestinal 
morphology and nutrient utilization, with a tendency to enhance 
growth performance of broiler chickens in a 4-week trial (144). 
Cecropin A/D inclusion also reduced the total aerobic bacte-
rial counts in both the jejunal and cecal contents of 42-day-old 
chickens (144). Collectively, these animal results have suggested 

the beneficial effects of HDP feeding, justifying dietary supple-
mentation of HDPs as an antibiotic-alternative strategy in growth 
promotion and disease control.

However, because of HDP’s proneness to enzymatic degra-
dation and high production costs with either the synthetic or 
recombinant form, it may not be biologically efficient and eco-
nomically effective for direct supplementation of HDPs in animal 
diets. Recently, several classes of small-molecule compounds, 
such as butyrate, have been found to induce HDP synthesis and 
enhance bacterial clearance in humans, chickens, pigs, and cattle 
without triggering inflammatory response (145–151). Dietary 
supplementation of these simple HDP-inducing compounds or 
their combinations may prove to be an alternative, cost-effective 
approach to antibiotics for livestock applications (152). However, 
the efficacy of these HDP-inducing compounds in promoting 
growth, intestinal health, and microbiota balance is yet to be 
demonstrated in animal trials.

CONCLUDiNG ReMARKS

A comprehensive understanding of intestinal barrier function 
and its regulation is paramount to ensuring the sustainability of 
the food animal industry because disruption of the barrier results 
in disease states and decreased production efficiency (6). With 
potent antimicrobial and immunomodulatory properties, HDPs 
are further revealed to hold a new capacity to directly regulate 
barrier function. Aberrant synthesis of epithelial HDPs often 
leads to barrier dysfunction, and the diseases with impaired 
barrier integrity are commonly associated with reduced HDP 
synthesis, raising the possibility of treating barrier dysfunction 
with HDPs. However, a number of questions remain before HDP-
based therapies can be devised for augmentation of intestinal 
barrier function, animal health, and production efficiency.

On the one hand, several structurally diverse HDPs (e.g., 
cathelicidins, defensins, and S100A7) have a similar ability to 
induce the expression of mucins and TJ proteins in both epi-
dermal and intestinal epithelial cells. On the other hand, certain 
structurally similar HDPs (e.g., HBD-3 vs. HBD-1, -2, and -4) 
behave quite differently in their capacity to induce TJ proteins. 
Only HBD-3, but not other HBDs, has the capacity to enhance 
the barrier effect (110). Structure–activity relationship studies of 
HDPs may reveal whether there is an optimal physicochemical 
or structural feature for maximal induction of mucins and TJ 
proteins.

A number of different extracellular and intracellular receptors 
have been identified for human HDPs to mediate different physi-
ological functions. However, the identities of the receptors utilized 
by different classes of HDPs to regulate paracellular permeability 
remain largely unclear in most cases. There are a number of 
questions on the signaling mechanisms of HDP-mediated barrier 
function that need to be answered. For example, what are the 
major receptors involved in HDP-induced synthesis of mucins 
and TJ proteins in humans? Do the same set of receptors that are 
utilized by human HDPs work similarly in the livestock species? 
Are there any new, unidentified receptors specific for regulation 
of barrier function? Besides the Rac1-aPKC, PI3K-GSK-3, and 
MAPK pathways, what are other major signaling pathways that 
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mediate the barrier effect? How do these pathways cross-talk 
with each other? What are those major transcription factors that 
are required for induction of different mucin and TJ proteins? 
How and whether are mucins and TJ proteins differentially 
regulated? Do epithelial cells on epidermis, GI, respiratory, and 
genitourinary tracts engage in different receptors and signaling 
pathways?

Besides the abundance of TJ proteins, both posttranslational 
modifications of TJ proteins and the status of associated actomyo-
sin ring have a strong impact on barrier permeability. Many agents 
are shown to alter the barrier function through phosphorylation 
of certain TJ proteins or through activation of MLCK, which in 
turn phosphorylates myosin light chain and causes contraction of 
the perijunctional actomyosin ring and opening of the paracellu-
lar pores. It will be important to examine whether and how HDPs 
influence posttranslational modifications of TJ proteins as well as 
the transcription and activity of MLCK.

Nevertheless, it is exciting to reveal a direct involvement of 
HDPs in barrier function and the potential of HDPs in enhancing 

gut health and animal performance. Additional studies along 
this line may someday turn the HDP-based therapies into reality. 
Although administration of synthetic peptides may be feasible in 
human medicine, it is cost-prohibitive in the livestock industry. 
Supplementation of exogenous recombinant HDPs or dietary 
compounds with the capacity to induce the synthesis of HDPs in 
the GI tract has emerged as a cost-effective strategy in antimicro-
bial therapy and may have potential to replace antibiotics in food 
animal production.
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