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Typically, central milk recording data from dairy herds are recorded less than monthly.
Over-fitting early in lactation periods is a challenge, which we explored in different ways
by reducing the number of parameters needed to describe the milk yield and somatic cell
count of individual cows. Furthermore, we investigated how the parameters of lactation
models correlate between parities and from dam to offspring. The aim of the study was to
provide simple and robust models for cow level milk yield and somatic cell count for fitting
to sparse data to parameterize herd- and cow-specific simulation of dairy herds. Data
from 610 Danish Holstein herds were used to determine parity traits in milk production
regarding milk yield and somatic cell count of individual cows. Parity was stratified in first,
second, and third and higher for milk, and first to sixth and higher for somatic cell count.
Fitting of herd level parameters allowed for cow level lactation curves with three, two,
or one parameters per lactation. Correlations of milk yield and somatic cell count were
estimated between lactations and between dam and offspring. The shape of the lactation
curves varied markedly between farms. The correlation between lactations for milk yield
and somatic cell count was 0.2–0.6 and significant on more than 95% of farms. The
variation in the daily milk yield was observed to be a source of variation to the somatic
cell count, and the total somatic cell count was less correlated with the milk production
than somatic cells per milliliter. A positive correlation was found between relative levels
of the total somatic cell count and the milk yield. The variation of lactation and somatic
cell count curves between farms highlights the importance of a herd level approach. The
one-parameter per cow model using a herd level curve allows for estimating the cow
production level from first the recording in the parity, while a two-parameter model requires
more recordings for a credible estimate, but may more precisely predict persistence, and
given the independence of parameters, these can be easily drawn for use in simulation
models. We also conclude that using total somatic cell count may stabilize models, and
therefore, the dilution factor is of importance in Danish Holstein.

Keywords: milk yield, somatic cell count, dilution effect, production parameters, modeling, simulation, prediction,
lactation curve
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1. INTRODUCTION

Productivity of the individual dairy cow is of central importance
to dairy farmers: her milk production, reproductive performance,
and somatic cell count (SCC). Whether we want to model a
dairy farm or make accurate predictions of the future, an esti-
mation of these traits is necessary. Predictions are important for
making decisions on culling and replacements, and these have a
substantial influence on the economy of the farm (1).

The daily variation in milk yield and SCC can be large even for
healthy cows (2, 3). This large variation complicates certain future
predictions which are of the utmost importance when making
decisions on culling and replacement. It is, therefore, vital to
create a robust estimate of milk yield and SCC to make accurate
predictions. Longitudinal data with high variance have often been
modeled using Bayesian methods such as the Kalman filter (4, 5).
However, despite the modernization of the dairy industry by the
use of, for example, automatic milking systems, data from the
cow level in Denmark are most often recorded and stored on a
monthly basis in the commonmilk recording systems. This sparse
registration decreases the certainty of predictions, and it may,
therefore, be important to decrease the number of parameters and
the complexity of the methods describing the milk yield and SCC
per cow, in order to increase the robustness of predictions.

Some of the most widely used lactation models to describe
milk yield are by Wood (6) and Wilmink (7), and (in Denmark)
Enevoldsen lactation curves (8–10). Most parametric mathemati-
cal lactation curves, including those mentioned, have parameters
describing milk yield or energy corrected milk (ECM) as a func-
tion of days in milk (DIM), with an initial increase, a peak value
or level, followed by a final decrease in milk yield. At least three
parameters per lactation period are, therefore, required. Since the
number of milk recordings per cow is low and the daily variation
in yield is large (several kilos is not unusual), a robust fit of the
lactation curve is rarely possible before the end of the lactation
period. However, we hypothesize that the number of parameters
needed to describe a lactation curve could be reduced by including
information about all cows on the farm. When simulating a dairy
herd in the most realistic way possible, an individual lactation
curve must be assigned to every cow. Assigning an individual
lactation curve means that the parameters describing such a lac-
tation curve must be drawn from appropriate distributions (11).
However, the parameters of most lactation curves are correlated
(as we will demonstrate for the Wood curve). The solution can
be to use a model where the parameters have no correlation. In
this study, we derive two- and one-parameter models where the
parameters have no correlation, and implement them on milk
recordings.

The somatic cell count (SCC) is an indicator of mastitis (12–14)
but is also influenced by other factors such as parity, breed,
and DIM, which has been subjected to a large number of dif-
ferent parameterizations and statistical methods to parameterize
(15–18). The SCC typically displays even larger variation than
milk yield (change in order ofmagnitude). To handle the skewness
of the variation and bring SCC to scale with milk yield, transfor-
mation of the measurement is required. Furthermore, the SCC is
inversely proportional to themilk yield over time and in the single

milk recording. This may be due to the dilution factor: the same
amount of cells will give a lower cell count if the volume of milk is
higher (19), and the fact that high yielding cows are more likely to
have mastitis (20).

The objective of this paper was to determine the simplest robust
models for cow level milk yield and SCC, so that fits can be
made on sparse data. Furthermore, we investigate how the param-
eters typically change between parities, as well as the correlation
between them. This information can be used to predict the most
likely future value of the cow and to initialize the simulation of a
dairy herd as realistically as possible given a typical dataset. To the
best of our knowledge, this is the first study to show how robust
predictions of milk production and SCC can be obtained using
lactation curves with reduced number of parameters, or using un-
correlated parameters for the lactation curves, which is useful in
case of sparse data.

2. MATERIALS AND METHODS

Data on milk production and SCC as well as demographic data
were obtained from the Danish Cattle database (www.seges.dk),
from which 610 herds with Holstein dairy cows were randomly
selected among the approximately 3,000 Danish herds partaking
in the regular milk recording. These herds were subjected to
regular milk recording of all animals 6 or 11 times per year,
including recording of milk yield, fat and protein content, and
SCC. The most common was 11 recordings per year (in 91%
of herds in the data set). All cows born before January 1, 2000
were excluded. The total data set included milk yield records
from 293,929 individual cows. Data were further subset to include
only the records collected between 6 and 305 (inclusive) days in
milk (DIM). The latter limit was chosen to fit a standard 305-day
lactation curve. The first 5 days were excluded due to a very large
variation in the measurements observed from 0 to 5 DIM (data
not shown). In total, 4,802,266 test day records with both milk
yield and SCC count for the individual cows were present in the
final data set. A minimum of 30 valid recordings per parity per
farm were imposed to do the fitting. Here, valid means a positive
number larger than 0, any recording notmeeting this requirement
on either milk or SCC was excluded. For milk, this reduced the
number of farms included to 600, 594, and 587 when fitting first,
second, and third and higher lactations. For the SCC, this reduced
the number of farms included to 600, 594, 581, 568, 546, and 408,
when fitting first to fifth and sixth and above lactations. The data
contained no information regarding selectiveness of the testing,
time of milking, production system, or number of milkings per
day (all recordings are pooled daily). Further descriptive statistics
can be found in Table 1.

In this paper, we speak generally of the SCC, but we use two
distinct measures. The first is the usual SCC given by number
per unit of milk per milliliter, which we will refer to as the unit
somatic cell count (uSCC), and the second is the total number
of somatic cells in the daily milk yield, which we refer to as total
somatic cell count (tSCC). This measure is used to test whether
the variation in milk yield accounts for some of the variation
in the SCC. Furthermore, we introduce rECM and rtSCC where
the “r” indicates that the measure is relative to a mean cow on a
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TABLE 1 | Summary statistics of herds included in the study.

Median Range (2.5–97.5%) Unit

Years of data 11.6 3.4–11.9 Years
Lactating cows per recording date 80 1–268 No.
Lactating cows total 442 5–1,362 No.
Cows in lac. period 1 341 3–1,031 No.
Cows in lac. period 2 229 3–697 No.
Cows in lac. period ≥3 131 3–408 No.
Avr. age of lactating cows 3.9 3.1–5.5 Years
Total ECM lac. period 1 9,224 7,920–9,392 kg
Total ECM lac. period 2 10,750 9,094–10,934 kg
Total ECM lac. period ≥3 10,350 9,248–10,777 kg
Total SCC lac. period 1 551 355–882 mio.
Total SCC lac. period 2 979 519–1,627 mio.
Total SCC lac. period 3 1,322 692–2,124 mio.
Total SCC lac. period 4 1,566 845–2,866 mio.
Total SCC lac. period 5 1,716 865–3,706 mio.
Total SCC lac. period 6 1,899 794–24,127 mio.

Total ECM (Energy Corrected Milk) and SCC (Somatic Cell Count) were found by
summation of day to day estimates of ECM and tSCC (total Somatic Cell Count), which
are calculated based on the one-parameter estimates, using a double log transformation
for tSCC, over the 300-day period from days 6 to 305. The number of lactating animals is
taken from the latest milking date.
mio., million; lac., lactation.

given farm. These measures express the relative value of milk or
SCC compared to the average cow in a herd in the same stage of
lactation and same parity. The relative measure is also equivalent
to relative residuals of the fits to lactation and SCC curves.

2.1. Milk Yield
Milk yield was described as energy corrected milk (ECM) (21),
which is defined as:

ECM = milk(0.122 fat + 0.077 protein + 0.249) (1)

wheremilk is milk in kilos, protein is protein in %, and fat is fat in
%. A 305-day milk yield was fit to the standard three-parameter
Wood’s curve for the first, second, and third lactation periods (6):

f ECM
ijk (DIM) = aijkDIMbijk exp(−exp(cijk)DIM) (2)

where parameter a is a scaling factor to represent yield at the
beginning of lactation, and parameters b and c are factors associ-
ated with the inclining and declining slopes of the lactation curve,
respectively, specific to lactation j of cow i on farm k. The c factor
is exponentiated to achieve better scaling of the parameter when
fitting and plotting. The Wood’s curve was selected because it
displays consistently good performance with the fewest number of
parameters (22), and it does not give negative values of milk yield
for positive values of DIM. Parameters describing lactations were
fitted for lactation periods 1, 2, and ≥3, as parameters typically do
not changewhen fitting for higher lactations. For fitting individual
Wood’s curves per cow, it was decided that at least six milk
recordings were required per lactation per cow in order to initiate
the fit. This requirement did not change the number of farms
included per lactation, the number of individual cows included
per farm can be found in Table 1.

The fitted parameters from equation (2) are plotted against
each other for a single farm in Figure 1, which display correlation

FIGURE 1 | Intercorrelation of Wood curve parameters. The parameters
of the Wood lactation curve [equation (2)] fitted to individual cows plotted
against each other. Data from lactation one in one random farm.

between the parameters of the lactation curves. From Figure 1,
it was decided to use b as the predictor variable, because nei-
ther a∼ c nor c∼ a had a clear monotone correlation. These
correlations can be parameterized as:

f ajk(bij) = θa1jk exp(−θa2jkbij) (3)
f cjk(bij) = θc1jk exp(−θc2jkbij) + θc3jk (4)

where f a and f c are functions that describe the a and c parameters
of the Wood curve as a function of b describing lactation j of cow
i on farm k, given the five herd parameters θa1 , θa2 , θc1, θc2, and θc3.
This allows us to describe each cow with two parameters instead
of three:

f ECM
ij (DIM, αij, βij) = αijNjk(βij)f ajk(βij)DIMβij

exp(−exp(f cjk(βij))DIM) (5)

Njk(β) =

∑i in jk
i

∑305
D̂IM=6 aijkD̂IM

bijk exp(−exp(cijk)D̂IM)∑305
D̂IM=6 f ajk(β)D̂IM

β
exp(−exp(f cjk(β))D̂IM)

(6)

where βij is the shape parameter of lactation j of cow i, given
information about all cows at farm k, Njk(βij) is a normalizing
function where the double sum in the numerator is equivalent to
the farm average milk production in the given lactation, so that
when fitting αij and βij in equation (5), the αij becomes the milk
level of the individual cow i compared to the average 305-day
lactation yield on farm k in lactation j.

Fitting the θ parameters in functions f a(b) and f c(b) included
comparing the area under curve (AUC) of Wood’s curve using
the parameters b, f a(b), and f c(b) to the AUC calculated from
the originally fitted a, b, and c parameters per cow. Implemented
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by writing a custom made function that calculates the sum of
squared relative residuals of equations (3) and (4) and the AUC.
This function was minimized over the θs using nlminb in the
statistical open source program R version 3.1.1 (23). The fitting of
the α and β was done thereafter using the nls function also in R.

A one-parameter model per cow can be described as:

f̂
ECM
ij (DIM, αM

ij ) = αM
ij âjkDIMb̂jkexp(−exp(̂cjk)DIM) (7)

where each cow, i, is defined by a milk yield level αM
ij that is

proportional to the average cow in lactation j on farm k, given the
parameters âjk, b̂jk, and ĉjk. The superscript M refers to the milk
yield, later we shall introduce the superscript C which refers to
the SCC.

A relative lifetime yield for each cow relative to the farm average
cowwas calculated by taking all milk recordings per cow and takes
the mean of the values of these relative to the average cow [equa-
tion (7) with α= 1]. The relative lifetime yield was then com-
pared between generations (dams and offspring) by correlation
analysis.

2.2. Somatic Cell Count
We tested two different transformations on both uSCC and tSCC,
to best model the SCC. This consisted of two count transforma-
tions: a log and double log transformation of the count data; each
observing either the SCC per ml (uSCC) or the total amount of
cells delivered by the cow during milking (tSCC), which is given
as: tSCC= uSCC · kg.milk.

After transformations, the data were fitted using a Wilmink
style curve (7). SCC was chosen to be parameterized as a Wilmink
style curve, because SCC typically starts high and quickly goes
toward lower values, after which it becomes constant or slowly
rising. These properties are inherent to the Wilmink curve, but
for lactation curves the parameters have the opposite sign:

T(uSCC·t+∆T)(DIM) = ãjk+b̃jkDIM+exp(−exp(̃cjk)DIM)d̃jk
(8)

where ã, b̃, c̃, and d̃ are the parameters describing the SCC of
lactation j on farm k, and T represents either a log or a log–log
transformation, with the corresponding offset ∆T being 1 for the
log transformor exp(1) for the double log transform, and t is either
1 for the unit uSCC or kg.milk for the tSCC.

When fitting a one-parameter model of the SCC we used:

log(log(tSCC + exp(1)))(DIM, αC
ij ) = αC

ij

(
ãjk + b̃jkDIM

+ exp(−exp(̃cjk)DIM)d̃jk
)

(9)

where αC
ij is the level of somatic cells produced for each cow i

relative to the log–log transformed average in lactation j on farm k.
A relative lifetime SCC for each cow relative to the farm average

cowwas calculated by taking all SCC recordings per cow and takes
the mean of the values of these relative to the average cow [equa-
tion (9) with αC = 1]. The relative lifetime SCC was then com-
pared between generations (dams and offspring) by correlation
analysis.

The normality of residuals for the SCC was assessed visually by
Quantile–Quantile (Q–Q) plots. The variance was found accord-
ing to the statistical definition, it is also approximately equal to the
slope of the lines plotted in the Q–Q plot.

2.3. Correlations
Correlation and linear dependency between fitted parameters
were tested using the cor.test() and lm() functions in the sta-
tistical open source program R version 3.1.1 “Sock It to Me” (23).
Local Polynomial Regression Fitting was done using loess()
also in R.

3. RESULTS

The data generally showed large variances in milk yield and SCC
across animals and farms (see Figures 1–4; Tables 1–3), and
a large variation around the milk or SCC predicted levels (i.e.,
Figure 5).

3.1. Milk Yield
Fitting standard Wood lactation curves to all lactation periods of
all cows resulted in correlation structures which are exemplified in
Figure 1. From this, we observed that parameter b had the most
consistent correlation structure with a and c, and this was then
parameterized using equations (3) and (4).

The fitted correlation structure for all farms in the data set
gave the derived parameters θ (Figure 2), which are normally
distributed within farms and stable over lactation periods, except
for θa1 which seemingly accounts for most of the difference inmilk
yield across lactations.

The five farm parameters, θ, can then be used to inform a
two-parameter model for each cow [equation (5)], the results
of which can be seen in Figure 3. Milk yield levels, α, were
normally distributed. The β estimates have a large proportion of
zeros, which correspond to a straight-line lactation curve with
no initial increase. The β estimates were fitted to an exponential
distribution giving a (mean) rateλ of 6.74. Themedian parameters
of θ are listed in Table 2.

The one-parameter model, with one lactation curve per lacta-
tion per farm described by three parameters each and one scale
parameter per cow, shows large differences in the parametrization
between farms (Figure 4), while the scale parameters for each cow
around the average per farm are normally distributed (not shown).

3.2. Somatic Cell Count
Figure 5 displays the Q–Q plot of relative residuals when fitting
the SCC using four combinations of transformations. The resid-
uals are close to a straight line indicating a good fit. The similar
curvature of the Q–Q plots indicates that the transformations are
of similar goodness.

Figure 6 displays the fitted values to equation (9) for each of the
farms that met the inclusion criteria (30 recordings per parity).
The parameters of the tSCC do not intercorrelate (not shown).
The median values were used to make Figure 7, which show how
the predicted tSCC increased with parity. The SD of αC, which
describes cows’ tSCC level compared to the average cow on a farm
was 0.051.
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FIGURE 2 | Histograms of parameters describing the correlation between Wood curve parameters. Using equations (3) and (4), the θ parameters
describing the correlation seen in Figure 1 are fitted for the farms. (The labels in the figure correspond to the parameters in the equations as such: aa = θa1,
bb = θa2, cc = θc1, dd = θc2, ee = θc3.) Abbreviation: lac., lactation.

FIGURE 3 | Histogram of α and β describing the two-parameter lactation curve. Using equations (3) and (5), lactation curves with only two parameters per
cow were fitted for all cows for lactations 1, 2, and ≥3. Abbreviation: lac., lactation.

Figure 8 shows local polynomial regression fitting of relative
residuals when predicting ECM and SCC using both the tSCC and
uSCC. The figure shows that there is stronger correlation between
the relative residuals of uSCC and ECM, than between tSCC and
ECM. This leads to two different interpretations: the uSCC curve
indicates that higher SCC reduces the milk yield, and the rtSCC
curve indicates no correlation when the increase happens above
the average. Figure 8 displays the log transform of tSCC, but the

log–log transformation gives identical results within the 95% data
interval (not shown).

3.3. Correlations
The correlation of relativemilk yield levels,αM, between lactations
was above 0.3 when using the one-parameter model on all cows
(see Table 3). The variation in correlations on farm level was
generally low.
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FIGURE 4 | Histogram of Wood curve parameters fitted per lactation per farm. Parameters describing the average lactation curve per lactation per farm
[equation (7)]. Abbreviation: lac., lactation.

TABLE 2 |Median herd parameters of lactation and tSCC (total Somatic Cell
Count).

tSCC ã b̃ c̃ d̃ –

Lac. 1 1.99 1.13e−04 −2.18 0.211
Lac. 2 2.08 6.65e−05 −1.87 0.171
Lac. 3 2.12 4.58e−05 −1.55 0.233
Lac. 4 2.14 2.49e−05 −1.35 0.305
Lac. 5 2.15 1.32e−05 −1.27 0.333
Lac. 6 2.16 7.11e−06 −1.35 0.290

Lactation curves θ1
a θ2

a θ1
c θ2

c θ3
c

Lac. 1 30.3 3.66 −2.43 3.24 −4.94
Lac. 2 39.8 3.44 −1.79 3.69 −4.87
Lac. ≥3 42.5 3.38 −1.68 3.58 −4.84

From equations (3), (4), and (9) depicted in Figures 2 and 6.
lac., lactation.

TABLE 3 |Correlation coefficients of ECM (Energy CorrectedMilk) and tSCC
(total Somatic Cell Count).

Direction
(i–j)a

Correlation P value Range
(2.5–97.5%)

ECM 1–2 0.44 <0.001 0.23–0.64
ECM 2–3 0.42 <0.001 0.12–0.62
ECM 1–3 0.31 <0.001 0.09–0.54
ECM dam–offspring L–L 0.11 <0.001 −0.06 to 0.30

tSCC 1–2 0.39 <0.001 0.22–0.57
tSCC 2–3 0.40 <0.001 0.21–0.62
tSCC 1–3 0.27 <0.001 0.10–0.47
tSCC dam–offspring L–L 0.14 <0.001 −0.03 to 0.31

aDirection (i–j) refers to the correlation between lactation number i and j (i.e., 1−2 refers
to the correlation of the levels between the first and the second lactation), subscript L
refers to relative lifetime value. Correlation values are global values, while ranges are for
the individual farms.

FIGURE 5 | Comparison of SCC models. Q–Q plot of the relative residuals
after using two different transformations (log or log–log) combined with the
total (tSCC) or per ml SCC (uSCC) [equation (9)]. Broken lines are Q–Q lines
using the 95% range.

The overall correlation in lifetime production of ECM between
dams and their offspring compared to the farm average was 0.11
(P< 0.001). This hereditary trait was, however, not found to be
significant on all farms (Table 3).

The correlations of the tSCC showed almost identical numbers
to the correlations of the ECM (Table 3).

The level of the αC for tSCC as function of αM for ECM for
first lactation animals has an overall correlation of 0.18 when
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FIGURE 6 | Histograms of the parameters describing the tSCC. Using equation (9), the tSCC was fitted independently for each farm for lactation 1–6.
Abbreviation: lac., lactation.

considering all values, but only 0.02 when considering the 50%
of cows producing milk around the average (Table 3).

4. DISCUSSION

The parameters provided in this paper describe milk yield and
SCC-specific traits of Danish Holstein cows required for mod-
eling a functional dairy farm. We have specifically opted to
fit our functions, so that we can include the variation in a
simulation model. Variance is an important factor given that
we wish to make decisions based on the differences between
individual cows.

Results of simulation models are often prone to considerable
variation due to the use of a large number of parameters depicted
from stochastic distributions (24). This large variation may affect
how willing farmers, veterinarians, and/or decision makers are in
accepting these results, and hence limit their practical application
in the field. It is, therefore, important to seek ways of reducing

this variation by, for instance, increasing the precision of the
parameters. This will hopefully increase the confidence in model
results and motivate farmers to apply recommendations based on
these results.

4.1. Milk Yield
We have here tested two new ways of parameterizing the lacta-
tion curve of dairy cows with a reduced number of parameters.
Both methods are farm specific, and the results clearly show
large variation in the yield and the shape of lactation curves
between farms. It is, therefore, always prudent to adjust for the
effect of each farm when modeling across a population. Our two
parameterizations include three or five parameters per farm per
lactation period describing the herd, which enables the number of
parameters describing the milk yield level of the individual cow to
be reduced to one or two values, respectively. The fewer the cow
level parameters the earlier in a lactation a fit of lactation curve
can be performed. However, if the shape is of importance (i.e., to

Frontiers in Veterinary Science | www.frontiersin.org December 2016 | Volume 3 | Article 1157

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


Græsbøll et al. Milk Yield and SCC Models

make inference about the persistence) two parameters per cow are
a minimum.

Reducing the number of lactation curve parameters allows
for fitting of parameters in early lactation for individual cows,
when few measurements have been made. Furthermore, we can
introduce parameters that are directly relevant to culling and
replacement decisions, such as the milk yield level relative to
the farm average (α and αM) or the shape factor (β) describing
the shape of the curve. The type of models presented in this

FIGURE 7 | Total SCC as per the median parameters fitted per farm.
Median of parameters from Figure 6. Notice that this value must be divided
by the daily milk yield if it is to be compared to a SCC measured in counts per
ml. The unit is million counts.

manuscript further has the advantage of a unique form of the
lactation curve for each parity on each farm compared to, i.e., fixed
and random effects models where the effect is only on the total
yield. The differences in the shape of the curves are likely due to
both genetic differences and management practices, but as we do
not have access to these data, using unique lactation curves per
farm is a possible way of capturing the effects of these unknown
parameters.

Several different lactation curves have previously been
described and used [for a recent comparison see, e.g., Ref. (22)].
However, to the best of our knowledge, this is the first time
that lactation curves with a reduced number of parameters have
been used to eliminate correlations between parameters of the
lactation curves. Reducing the number of parameters allows
for prediction with fewer milk recordings per cow (e.g., early
in lactation), as some information is already obtained by fitting
herd level parameters. Eliminating correlation of parameters
allows for sampling from independent distributions when
simulating cows.

Negative values of β would result in high milk yields at low
and high DIM (i.e., an inverse lactation curve). When fitting, β
can then be pushed toward a negative value for certain combina-
tions of milk recordings in the early lactation. To avoid this, we
restricted β to be positive or zero. This restriction is likely not
necessary when working with daily milk yield recordings (e.g.,
milking robot data). Preliminary results from a small sample of
robot data indicate that the β parameter may be more normally
distributed around a positive non-zero value when sufficient data
are present (data not shown).

We also performed a parameterization similar to equation (7)
using a Wilmink lactation curve (7) (results not shown), but the
Wilmink curve does not perform well when the lactation curve
is close to a straight line. In this case, two of the four parameters
will become completely indeterminable, with only their sumbeing
fixed. For this reason, an average or median parameter cannot
be established, as the value of these parameters depends on the
specific fitting algorithm and starting values used.

FIGURE 8 | Correlations of relative residuals rECM and ruSCC/rtSCC. Loess smoothing of the relative residuals [i.e., observed ECM/predicted ECM and
log(observed SCC/predicted SCC)]. Showing the correlations of ECM and SCC. Vertical dashed lines represent the interval wherein 95% of data resides.

Frontiers in Veterinary Science | www.frontiersin.org December 2016 | Volume 3 | Article 1158

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


Græsbøll et al. Milk Yield and SCC Models

4.2. Somatic Cell Count
Parameters describing SCC were fitted per farm and for parity
1, 2, . . ., ≥6, as parameters typically do not change when fitting
for higher parities (data not shown).

We have shown that using the total count of somatic cells in the
milk is less correlatedwith themilk yield compared to themeasure
of SCC per milliliter. This indicates that for healthy milking cows,
the production of somatic cells in the udder may be detached of
the daily milk production. The observed drop in uSCC may be
attributed to the dilution effect also reported by Green et al. (19).
The dilution effect causes high-yielding cows to have lower SCC
per ml than low-yielding animals in the same herd and with the
same infection status. The use of total SCC would be most robust
as it may prevent premature culling of lower-yielding cows due
to their presumed high SCC. However, other studies have found
no effect of dilution (25). Indeed, various results are reported in
literature; most report some form of negative correlation between
milk yield and SCC, but many only above a certain cut-off (10,
13–17, 26–28). The association between milk yield and SCC in
this manuscript concerns mainly healthy cows with normal SCC
levels. We speculate that the dilution factor is of importance to
cows with SCC below a cutoff, which might indicate some form of
disease, likely mastitis.

A few observations call for a note. We have not excluded cows
based on possible (subclinical) mastitis status, so an increase in
the prevalence of mastitis in later parities may be the reason for
the increase seen in Figure 7. However, there is no discernable
separation of the αC levels into two groups (results not shown).
Extreme values in Figures 5 and 8 represent very low SCC values
(approximately<5,000 cells/ml). These values account for around
0.1% of the data. It is not common to have cowswith such low SCC
and most importantly, SCC will not be the reason for culling such
cows.

4.3. Correlations
Correlation structures of milk yield and SCC are important in
order to build realistic simulationmodels of dairy herds. If all cows
were the same, any small reduction of production parameters in a
cow resulting from, e.g., disease may mark this cow for culling.
Including individual cow parameters makes it possible to assess
the value at which a cow becomes less worth than their herdmates
and should hence be replaced. Such a model will not only be
cow specific but also herd specific, and decisions can be made on
individual cows in specific herds.

The correlations that we observe are consistent regardless of
the transformation chosen, meaning that we are free to choose
whichever transformation of the tested that best fulfills our
assumptions of a good model.

The correlation structures that we observe in Figure 8 reveal
that a higher milk yield compared to the average cow on a
farm leads to a decrease in uSCC production, which is a clear
indication of a dilution effect. In comparison, the tSCC is less
correlated. When performing the local polynomial smoothing
(loess) on the ECM as a function of SCC, the effect of increased
tSCC is negligible for residual values above the predicted value.
For values below the mean, the linear correlation comes from
number of cells being low, and the tSCC is then driven by milk

production, which gives the linear correlation between rECM and
rtSCC.

We have not investigated the effect of sire on the milk yield,
which is beyond the scope of the project at this stage. We have
previously investigated the effect of sex of the offspring, which
was found to be small compared to between farm effects (29).
There exists a large body of literature on hereditary effects in
dairy cows, in which correlation structures between cow-specific
traits are studied [e.g., Ref. (30–33)]. However, we have mainly
concerned this paper with the correlations between parities of the
same cow, so that we in simulations and predictivemodels have an
estimate for how current knowledge may translate to future pro-
duction. Health related parameters are scarcely registered in the
national registry and require proper evaluation before inclusion
in predictive models.

5. CONCLUSION

We have presented two new ways of reducing the number of
parameters to describe the lactation curves for the individual cow.
These methods were developed with a robust prediction tool in
mind, so that estimations can be carried out with as few data
points as possible, and therefore as early as possible in the lactation
period. We observed that in addition to the amount of ECM
produced per year, the shape of the lactation curves also varied
significantly between herds, which may be of great importance
when predicting future yields.

Furthermore, we demonstrated that the SCCwas less correlated
with milk production when using the total production of cells per
day. This emphasizes that the dilution factor is of importance, and
we recommend that future predictions be based on the tSCC.

Finally, we presented correlation structures for ECM and tSCC
between lactations. Overall milk and tSCC were highly correlated
between lactations of the individual cow, both on the individual
farm and on average over all farms, which makes predictions of
future values possible.
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