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Porcine reproductive and respiratory syndrome (PRRS) is, arguably, the most impactful 
disease for the North American swine industry, due to its known considerable economic 
losses. The Swine Health Monitoring Project (SHMP) monitors and reports weekly new 
PRRS cases in 766 sow herds across the US. The time-dependent reproduction number 
(TD-R) is a measure of a pathogen’s transmissibility. It may serve to capture and report 
PRRS virus (PRRSV) spread at the regional and system levels. The primary objective 
of the study here was to estimate the TD-R values for PRRSV using regional and sys-
tem-level PRRS data, and to contrast it with commonly used metrics of disease, such as 
incidence estimates and space–time clusters. The second objective was to test whether 
the estimated TD-Rs were homogenous across four US regions. Retrospective monthly 
incidence data (2009–2016) were available from the SHMP. The dataset was divided 
into four regions based on location of participants, and demographic and environmental 
features, namely, South East (North Carolina), Upper Midwest East (UME, Minnesota/
Iowa), Upper Midwest West (Nebraska/South Dakota), and South (Oklahoma panhan-
dle). Generation time distributions were fit to incidence data for each region, and used to 
calculate the TD-Rs. The Kruskal–Wallis test was used to determine whether the median 
TD-Rs differed across the four areas. Furthermore, we used a space–time permutation 
model to assess spatial–temporal patterns for the four regions. Results showed TD-Rs 
were right skewed with median values close to “1” across all regions, confirming that 
PRRS has an overall endemic nature. Variation in the TD-R patterns was noted across 
regions and production systems. Statistically significant periods of PRRSV spread 
(TD-R > 1) were identified for all regions except UME. A minimum of three space–time 
clusters were detected for all regions considering the time period examined herein; and 
their overlap with “spreader events” identified by the TD-R method varied according to 
region. TD-Rs may help to measure PRRS spread to understand, in quantitative terms, 
disease spread, and, ultimately, support the design, implementation, and monitoring of 
interventions aimed at mitigating the impact of PRRSV spread in the US.

Keywords: time-dependent reproductive number, surveillance, porcine reproductive and respiratory syndrome, 
space–time clusters, porcine reproductive and respiratory syndrome incidence
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inTrODUcTiOn

Although porcine reproductive and respiratory syndrome 
(PRRS) is, arguably, one of the most important diseases of swine 
affecting the North American industry, aspects of its transmission 
within production systems and within regions are not completely 
understood (1). Even though PRRS is endemic in North America, 
recurrent emergence of new PRRS virus (PRRSV) strains results 
in an epidemiological dynamic that resembles an epidemic 
condition for the disease (2, 3). PRRSV epidemics impact the 
swine industry and commonly require prompt mobilization of 
resources for diagnostics (i.e., sequencing of the virus), thorough 
investigations to understand the origin of the emerging PRRSVs, 
and implementation of effective control measures.

Surveillance is an integral part of strategies for control and 
elimination of PRRSV. There are a number of surveillance activi-
ties currently in place in the US; however, because PRRS is not 
reportable, surveillance strategies vary dramatically according to 
factors such as region and production system. A few examples of 
such surveillance activities are ongoing monitoring in breeding 
herds and gilt development units, and passive surveillance trig-
gered by clinical symptoms.

The concept of near real-time disease surveillance is important 
in the context of emerging PRRSV strains given that rapid identi-
fication of an epidemic (i.e., emergence of novel PRRSV strains) 
will likely result in a reduction of outbreak duration due to timely 
implementation of prevention and control measures to decrease 
virus spread within and across geographical regions.

In the absence of a regulatory framework, initiatives aimed 
at monitoring PRRS in North American swine farms are 
voluntary in nature. One example of an effort intended to 
coordinate surveillance efforts in the US at the national level 
is the Swine Health Monitoring Project (SHMP). The SHMP 
is a voluntary project that aims to monitor the incidence of 
PRRS; it currently enrolls approximately 42% of the US sow 
population distributed in 19 states in the country. Interpretation 
of collected data to participants and the swine industry currently 
focuses on incidence. Additionally, the number of new cases and 
spatial–temporal clustering have been previously investigated 
and reported to describe PRRS trends and to identify PRRS 
epidemics (4–6). However, the rate of new cases over time, 
referred to as incidence, serves as a proxy for risk but does not 
contribute as a metric for the epidemic progression or prediction 
of its evolution.

There are other methods, however, that could serve as 
proxy for disease progression and that have not been suf-
ficiently explored in measuring PRRS transmissibility. The 
basic reproductive number (R0) refers to the average number 
of secondary infections caused by a primary case and is 
commonly used to characterize the transmissibility potential 
of a disease in a completely susceptible population (7). In 
contrast, the effective reproductive number (Re) can be used 
to characterize transmissibility once a certain proportion of the 
population has been infected and is resistant (immune) (8), 
which would be an example for the case of PRRS in the US. The 
time-dependent reproduction number (TD-R) is a measure of 
disease transmissibility that can be estimated over the course of 

disease progression (9). The TD-R has been particularly useful 
for monitoring epidemic trends, identifying “super-spreader 
events,” measuring progress of interventions over time and for 
providing parameters for mathematical models (e.g., models to 
test interventions) (10).

The overall hypothesis of this study was that PRRS transmis-
sibility, as measured by the TD-R, would not differ between 
regions and swine production systems within the US. This result 
would indicate that epidemiological dynamics are somewhat 
synchronized across regions, either because of seasonal weather 
changes or high connectivity among regions due to animal 
movements, as opposed to each region experiencing distinct 
temporal dynamics. Thus, our primary objective was to estimate 
the TD-R values for PRRSV using regional and system-level 
PRRS data from across the US, and to contrast it to incidence 
estimates and commonly investigated space–time clusters. We 
hypothesized that the peaks on the TD-R, incidence, and the 
space–time clusters would overlap. Furthermore, the secondary 
objective was to test whether the estimated TD-R were homog-
enous across four US regions. For this objective, the hypothesis 
was that the TD-R would be homogenous across all regions. 
Ultimately, results presented here will contribute to support the 
design and implementation of strategies for PRRS surveillance 
and control in the US.

MaTerials anD MeThODs

Data source
Source of data for the study here was the SHMP, which includes a 
cohort of farms that voluntarily agree to share PRRS data weekly. 
The PRRS status captured in this dataset followed slightly modi-
fied guidelines described elsewhere (11). Briefly, status included 
categories 1, 2, 2fvi, 2vx, 3, and 4. Status 1 designates actively 
infected herds (in which pigs were shedding the virus), status 2 
indicates stable herds (no shedding detected in weaned pigs after 
following certain sample size requirements); 2fvi and 2vx refer to 
herds that were using live-virus exposure or modified live-virus 
vaccination as control strategies, respectively; status 3 defines 
herds that were provisionally negative (negative gilts introduced 
into the herd and remained negative); and status 4 denotes herds 
that were seronegative.

Four areas across the US were chosen, including farms located 
in the states of North Carolina [South East (SE)], Oklahoma 
[South (S)], Minnesota/Iowa [Upper Midwest East (UME)], 
and Nebraska/South Dakota [Upper Midwest West (UMW)], 
and some neighboring locations (Figure  1). Those regions 
represented areas within the US characterized by high (SE and 
UME) and low (S and UMW) swine density, as reflected by the 
FAO’s GeoNetwork data repository for global livestock densities 
(Figure 1).

estimation of TD-r
The TD-R was estimated over time for farms participating in 
the SHMP project. Values of TD-R >  1 were interpreted as an 
indication that the number of cases would increase over time 
(propagating phase of an epidemic), whereas values of TD-R < 1 
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FigUre 1 | Kernel smoothed density of swine sites used for this project overlaid on swine animal density as modeled by the FaO’s geonetwork data 
repository.
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served as an indication that the epidemic was fading out (8). The 
estimation of reproductive numbers is commonly considered an 
indirect process, because the parameters needed (e.g., contact 
rate and probability of transmission given contact) are usually 
difficult, if not impossible, to estimate. Here, data available to 
compute the TD-R included weekly number of cases reported 
from July 2009 through March 2016.

Effective time-dependent reproductive numbers were esti-
mated from observed incidence data using a likelihood-based 
procedure described elsewhere (8) and implemented through 
the R package “R0” in R v.3.2.3 (9). In summary, the TD-R was 
calculated based on averaging over all transmission networks 
compatible with the observed cases (9).

Firstly, incidence data were aggregated at the monthly level 
to reduce the prevalence of time intervals with 0 values in the 
time series. For months in which no cases were reported, the 
count of new cases was set to 1 with the assumption that at least 
one outbreak was missed, which is a reasonable assumption for 
PRRS, because sow herds have different levels of immunity due to 
variable management strategies, and these can impact detection 
of disease. Secondly, the generation time distribution that best 
fit the observed occurrence of cases was estimated. This refers to 
the time between detection of a primary case and detection of a 
secondary case (8), and in our case, we considered the time lag 
between consecutive reported outbreaks and estimated its mean 
and SD from the observed epidemic curve using a function in 

R (9). Thirdly, the number of secondary cases for each case was 
estimated by averaging over all transmission chains compatible 
with the epidemic curves during the course of epidemics. This 
was done in two steps (8):

First, the probability that a certain reported outbreak i (that 
occurred at a certain time) was infected by another reported 
outbreak j (occurring at a previous time) was calculated by pij = 
w(ti − tj)/∑i≠kw(ti − tk); where w corresponds to the generation 
time distribution, and ti − tk corresponds to the difference in time 
of recording of outbreaks i and j.

Second, the TD-R for reported outbreak j was calculated by 
the sum over all outbreaks i weighted by the likelihood that out-
break i was infected by outbreak j: Rj = ∑ipij; and this was finally 
averaged considering all reported outbreaks with the same date 
of recording (9): 1/Nt∑{tj=t}Rj.

Confidence intervals (CIs) were obtained by simulation; and 
statistically significant periods of PRRS spreading were defined 
as periods [month(s)] for which the TD-R’s 95% CI did not 
include 1.

Time-dependent reproductive numbers were described sepa-
rately for the four investigated geographical areas, as well as for 
each participating production system (20 systems represented by 
letters A–T). A production system was defined as two or more 
swine sites with a common owner or management structure. 
The Kruskal–Wallis test was used to determine whether the 
median TD-Rs differed across the four areas. Furthermore, the 
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Table 1 | basic regional descriptors and description of time-dependent reproduction number (TD-r) values calculated in the study for porcine 
reproductive and respiratory syndrome (Prrs) transmissibility between swine sites located across four different regions of the Us.

region N sitesa Period 
(months)b

N casesc Mediand Mean (sD)d Max [95% confidence 
interval (ci)]d

Prrs status before outbreake (% of sites 
reporting an outbreak)

1 2 2fvi 2vx 3 4

SE 72 81 104 0.99 1.14 (0.73) 5.42 (2.00, 9.00) 25.0 17.3 2.9 18.3 4.8 31.7
S 42 76 74 1.0 1.14 (0.54) 3.22 (1.00, 6.00) 0 4.0 0 85.1 0 10.8
UME 218 81 324 1.12 1.30 (0.68) 2.22 (0.45, 4.47) 5.4 8.8 39.3 20.5 7.7 18.3
UMW 38 76 84 1.002 1.10 (0.52) 2.80 (1.00, 5.00) 8.3 7.1 26.2 14.3 17.9 26.2

SE, South East (North Carolina); S, South (Oklahoma); UME, Upper Midwest East (Minnesota/Iowa); UMW, Upper Midwest West (Nebraska/South Dakota).
aNumber of swine sites.
bNumber of months the region contributed with data.
cNumber of incident cases from 2009 to 2016.
dMedian, mean (SD), and maximum (95% CI) for TD-R values calculated in this study.
eStatus is according to AASV guidelines: status 1 designates actively infected herds (in which pigs were shedding the virus); status 2 indicates stable herds (no shedding detected 
in weaned pigs after following certain sample size requirements); 2fvi and 2vx refer to herds that were using live-virus exposure or modified live-virus vaccination as control 
strategies, respectively; status 3 defines herds that were provisionally negative (negative gilts introduced into the herd and remained negative); and status 4 denotes herds that were 
seronegative.
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Dunn’s test of multiple comparisons (12) was applied, adjust-
ing for multiple comparisons using the Bonferroni correction 
method. All statistical analyses were performed using STATA/
IC version 14.1.

space–Time Permutation Model
Clustering of cases in space and time was explored using the 
permutation model of the scan statistic (13) implemented using 
the SaTScan™v.9.4.2 software (14). Briefly, the permutation 
model of the scan statistic compares the number of observed 
cases in any candidate cluster to the number of cases that 
would had been expected if the spatial and temporal location 
of all outbreaks were evenly distributed so that no space–time 
dependency occurred. The scan statistic has been proposed 
(15) as a surveillance tool to track clusters of disease, and it is 
especially useful because it does not require information on 
the background population at risk (16). Statistically significant 
clusters were declared when P < 0.05.

resUlTs

The number of outbreaks varied according to region, with SE 
and UME (North Carolina and Minnesota/Iowa), the most swine 
densely populated regions of the country, reporting the highest 
number of outbreaks over the 2009–2016 period (Table  1). A 
given swine site may have had more than one outbreak through 
the study period; the number of outbreak per site reporting an 
outbreak was higher for the S and UMW regions (1.76 and 2.21 
outbreaks per site, respectively) when compared to SE and UME 
(1.44 and 1.48 outbreaks per site, respectively). Those two last 
areas, however, did contribute with a larger number of months 
of data (Table 1).

The generation time distribution followed a lognormal 
distribution for the regions of SE (mean 1.30 months, SD: 1.26),  
S (mean: 1.09 months, SD: 1.01), UME (mean: 7.93 months, SD: 
7.76) and UMW (mean months: 1.30, SD: 1.23).

The median and mean values for TD-R were similar across all 
regions and oscillated around 1.0, which is expected for endemic 

diseases. Interestingly, even though the mean and median values 
were close to 1 for all regions, incidence peaks and temporal 
variation in TD-R appeared remarkably different (Figure  2). 
A difference was observed in regards to the maximum number 
of TD-R values observed across regions; specifically, the TD-R 
was highest for SE, followed by S, UMW, and UME (Table 1). 
There were also remarkable differences in PRRS immune sta-
tus classification for sites reporting outbreaks across the four 
regions (Table  1): of note; for the S region, the vast majority 
of sites reporting outbreaks were vaccinating the herd prior 
to the outbreak, which was not observed in such proportion 
for other regions. The SE region had a higher proportion of 
sites breaking that were classified as status 1 (active infection) 
when compared to sites that reported outbreaks from other 
regions (Table 1).

Between-region difference on median TD-R values was 
evident on the Kruskal–Wallis test, which showed that at least 
one of the regions had a different median (P =  0.03). Further 
post  hoc pairwise comparison showed that the UME region 
was only statistically significant from the SE and UMW regions 
(Table  2).

It has been previously reported that PRRS has an evident 
seasonal pattern, showing high incidence during fall and winter 
(October through January), and low during spring and summer 
[February through September (5)]. Surprisingly, after stratifying 
the data by geographical region, there was no obvious visual 
indication of predictable yearly patterns for any of the regions 
besides Minnesota/Iowa (Figure 2).

The TD-R description showed variation according to geo-
graphical region, a phenomenon similar to the one previously 
described for the incidence estimate (Figure 2). The TD-R values 
showed statistically significant peaks before the incidence peaked 
for SE, S, and UMW (Figure 2). Interestingly, when comparing 
raw number of new cases or incidence with the TD-R estimates, 
all statistically significant peaks of TD-R (P < 0.05) preceded a 
meaningful increase in the number of cases (>2) for the regions 
of SE and S, showing the potential the tool has for early signal-
ing outbreaks (Figure  2). The TD-R and the incidence peaks 
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FigUre 2 | regional graphs showing time-dependent reproduction number (TD-r) and incidence for porcine reproductive and respiratory 
syndrome. The Y axis corresponds to TD-R with 95% upper and lower confidence intervals (CIs) (red) and number of new cases (yellow; represented after replacing 
0 counts with “1’s” as described in Section “Materials and Methods”). Stars (*) represent peaks on TD-R in which the 95% CI did not include 1; region Upper 
Midwest East (UME) has a zoom-out on the TD-R values to improve visualization.

Table 2 | Multiple pairwise comparisons for Kruskal–Wallis test using 
Dunn’s test of multiple comparisons, showing the estimate (P-value), 
with applied bonferroni correction.

region south east south (s) Upper Midwest east 
(UMe)

S −0.99 (0.96) – –
UME −3.38 (0.002)* −2.35 (0.0565) –
Upper Midwest 
West

−0.42 (1.0) 0.56 (1.0) 2.91 (0.0107)

*Statistically significant difference.
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occurred at approximately the same time for the UMW region, 
and there were no statistically significant TD-R peaks for the 
region of MN/IA (Figure 2). For instances in which the TD-R 
peaks preceded the incidence peak, the lag time between peaks 

varied between 1 and 2  months. Likewise, indications that the 
epidemic was waning (TD-R  <  1) occurred 2  months earlier 
than declines in incidence for SE and S (March 2015 versus May 
2015 and November 2013 versus January 2014, respectively), and 
1 month earlier for UMW.

Finally, the 20 systems examined contributed with a popula-
tion at risk of on average 35 farms (min: 7, max: 83) per system. 
The average number of outbreaks per farm reporting at least one 
outbreak was 48.15 (min: 12, max: 189). Separate system-specific 
TD-R appeared to vary (Table  3; Figure  3), even for systems 
located within the same geographical region. Four systems were 
selected to illustrate differences between TD-R and incidence 
curves (systems A–D, Figure 3). Systems C and D, for example, 
were located within the same geographical region and showed 
one peak within the same time period (February 2015), even 
though the TD-R peak was not significant for system D. System 
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Table 3 | Time-dependent reproduction number summary estimates for 
each system enrolled in the shMP project.

system N monthsa Mean Median sD Min Max

A 80 1.21 1.09 0.53 0.34 2.60
B 34 1.36 1.28 0.78 0.29 3.55
C 80 1.12 1.00 0.61 0.20 4.31
D 22 1.19 1.18 0.58 0.45 2.77
E 80 1.09 1.00 0.41 0.32 2.10
F 80 1.04 1.00 0.31 0.33 3.00
G 80 1.19 1.00 0.63 0.32 3.62
H 80 1.04 1.00 0.31 0.25 2.42
I 80 1.04 1.00 0.29 0.25 2.42
J 80 1.15 1.00 0.62 0.28 3.97
K 80 1.02 1.00 0.23 0.33 2.93
L 80 1.03 1.00 0.32 0.33 2.99
M 53 1.07 1.00 0.58 0.24 5.00
N 80 1.01 1.00 0.22 0.5 2.00
O 80 1.07 1.00 0.47 0.33 3.52
P 80 1.05 1.00 0.37 0.38 2.80
Q 45 1.07 1.00 0.44 0.41 2.72
R 57 1.11 1.00 0.53 0.27 3.98
S 36 1.14 1.00 0.84 0.23 5.81
T 45 1.06 1.00 0.42 0.41 2.72

aNumber of months the systems are participating in the SHMP.
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A showed no significant peaks on TD-R, but it showed frequent 
increases in incidence; and system B showed a peak in TD-R not 
observed when farms are aggregated at the region level.

The spatial–temporal model showed statistically significant 
clusters for all examined regions (Table 4). There were 3 clusters 
in space and time for the SE region, 3 clusters for the S region, 10 
clusters for UME, and 4 clusters for UMW.

DiscUssiOn

The study here is the first to investigate and report the use of 
the time-dependent reproductive number for PRRS reporting 
purposes, and to contrast it with commonly used methods for 
describing PRRS epidemics (i.e., number of cases and spatial–
temporal cluster detection). Strengths of this study include the 
availability of monthly PRRS incidence data from a large number 
of US swine herds spread across different geographical regions, 
as well as the inclusion of a large number of swine production 
systems.

Results support the observation that region-level insights 
cannot be provided by using data that are aggregated from large 
national projects. Furthermore, regional-level control and pre-
vention strategies should not be made based on the assumption 
that PRRS transmission dynamics are the same across geographi-
cal regions of the same country. Stratification of data would be 
able to provide a better estimate on which control and prevention 
measures, if any, would work best and provide the best benefit for 
specific regions.

Comparison of PRRS transmissibility across regions and pro-
duction systems has not been previously reported for PRRS, and 
the statistical differences among TD-R estimates between regions 
were somewhat surprising, given that it is commonly believed 
that all regions have similar PRRS transmissibility patterns. Some 

reasons that might explain the observed differences include 
climatic factors (e.g., temperature variation), demographic and 
biosecurity factors (e.g., presence of filtered farms), swine density, 
the presence of different production systems in the areas, and the 
potential introduction of PRRS strains in differing instances.

The commonly expected predictable yearly increase pattern 
for PRRS was not visually evident for all geographical regions 
across years, nor was the time periods in which PRRS was spread-
ing (defined as the TD-R 95% CI did not include 1; Figure 2). 
Interestingly, even though both the SE and UME regions are 
known to have high swine density, the patterns of PRRS trans-
mission between them were different (Figure 2). However, PRRS 
management strategies within these two regions are known to dif-
fer, which may partially explain the findings: first, the immunity 
status of swine sites is anecdotally observed to be different among 
areas. For example, among high swine dense areas (SE and UME), 
it is believed that a certain amount of herd immunity exists in the 
SE region compared to the UME because producers in the latter 
area are more willing to attempt PRRS elimination from herds. 
In contrast, producers from the SE region are commonly using 
vaccination or live-virus inoculation strategies to mitigate PRRS 
impact (SHMP data not shown). However, it was observed that, 
even when certain amount of underlying immunity existed for 
the SE region, spreading events still occurred. This is also anec-
dotally observed from field veterinarians and producers. Another 
difference between the areas might be the use of farm filtration as 
a preventive measure for PRRS outbreaks, with the SE area being 
characterized by lower frequency of filtered farms compared to 
the UME area. Data gather on these and other management and 
biosecurity factors for future projects might help elucidating 
regional differences described herein.

Porcine reproductive and respiratory syndrome epidemic 
events were recognized by the TD-R method for all regions 
except for the UME. These events possibly reflected the introduc-
tion of new or previously undetected PRRSV strains in the SE, 
S, and UMW areas (10, 17). Overall, the TD-R appeared to be 
particularly useful for areas where the occurrence of outbreaks is 
sporadic, perhaps resembling an epidemic nature. In such cases, 
the TD-R appeared to flag outbreaks of new strains earlier when 
compared to the crude increase in the number of cases (Figure 2), 
which could be valuable for near real-time disease surveillance 
in the context of commonly emerging PRRSV strains. The use of 
TD-R could aid in the rapid detection of these episodes, which, 
combined with communication and mobilization with key 
industry stakeholders, could result in faster control of disease in 
a region. For areas where PRRS can be characterized mostly as 
having endemic nature, the use of the TD-R might still be useful 
for signaling epidemic progression, characterizing transmissibil-
ity over time, and identifying the occurrence of “super-spreader” 
events.

The relatively large number of spatial–temporal clusters was 
not surprising. Analysis of data from a regional control project 
in Minnesota reported that, despite an overall decrease in PRRS 
incidence from 2012 to 2015, significant spatial–temporal clus-
ters of disease incidence over 3-week periods and 3-km radii 
were found (5). The occurrence of spatiotemporal cluster did not 
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FigUre 3 | (a) System-specific graphs showing time-dependent reproduction number (TD-R) and incidence for porcine reproductive and respiratory syndrome. 
TD-R with 95% upper and lower confidence intervals (CIs) are shown in red, and incidence curves (after replacing 0 counts with “1’s” as described in Section 
“Materials and Methods”) are shown in yellow. Stars (*) represent peaks on TD-R in which the 95% CI did not include 1. (b) Box plot showing TD-R distribution for 
four different systems of the US.
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Table 4 | super-spreader events and clusters found for the four regions 
by three different methods [time-dependent reproduction number (TD-r)  
estimation, purely temporal cluster detection, and spatial–temporal 
cluster detection].

areaa TD-rb spatiotemporal 
cluster detectionc

radius 
of cluster 

(km)

Od ed P-value

SE 12/2014–
01/2015

02/2015–07/2015 89 47 17.2 <0.001

02/2012–07/2013 15 26 9.5 <0.001
11/2010–12/2010 3.6 5 0.3 0.007

S 12/2015 08/2014–11/2014 42 10 1.9 <0.001
10/2013 02/2014–05/2014 96 12 2.9 0.002

11/2009–06/2012 7 4 0.1 0.007

UME 09/2015 4.3 22 1.7 <0.001
07/2015–11/2015 44 35 9.7 <0.001
01/2015–03/2015 22 12 0.6 <0.001
04/2013–05/2013 44 15 0.7 <0.001
09/2012 23 10 0.6 <0.001
03/2012–05/2012 132 26 4.39 <0.001
10/2011 3 15 1.52 <0.001
07/2011–08/2011 65 13 0.7 <0.001
05/2010–11/2010 94 47 13 <0.001
01/2010–02/2010 7 31 6.5 <0.001

UMW 11/2012 06/2015–11/2015 42 15 1.9 <0.001
05/2012–10/2012 31 10 1.6 <0.001
06/2011 2 8 0.9 <0.001
02/2010 28 14 3.9 0.01

aArea 1 corresponds to North Carolina, area 2 corresponds to Oklahoma panhandle, 
area 3 corresponds to Minnesota/Iowa, and area 4 corresponds to Nebraska/South 
Dakota.
bEpidemic events as defined by TD-R (8); 95% confidence interval does not include 1.
cSpatial–temporal cluster detection using the spatial–temporal permutation model (14).
dObserved (O) and expected (E) number of cases.
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overlap with the detection of peaks in TD-R as expected (Table 4) 
but usually was recognized later than the first. At times, these 
clusters were quite frequent and lasted for a long period of time, 
which raises the point to whether the alarms they may trigger 
would be of concern or not.

Finally, system-specific estimates of TD-R showed recogniz-
able peaks for systems C and D (Figure 3). These peaks corre-
sponded to a known incursion of an emerging strain for the area. 
In addition, for system C, there is empirical evidence that intense 
breaks occur every 3 years, which was evidenced by our analysis. 
System A was characterized by multiple outbreaks over time, 
even though statistically significant PRRS spread periods were 
not detected. Predictable yearly increase patterns were visually 
suggestive for this area, except for the most recent years. Finally, 
system B appeared to have had a large outbreak in the end of 
November of 2013, which once more is anecdotally thought to 
be due to the incursion of an emerging strain in the region. The 
authors hypothesize that the reason why no further considerable 
outbreaks were observed after these is a combination between 
control measures being taken after the epidemic event, and the 
existence of a certain level of immunity in the herd after infection. 
For future studies, collection of such information is important to 
allow for testing of these and other hypotheses. We also recognize 
that, at time of writing of this manuscript, peer-reviewed publica-
tions on this matter are largely lacking; therefore, it is challenging 

to compare our study results with previous work done in PRRS or 
any other swine infectious disease.

This study has some limitations. First, it is important to high-
light that our source population corresponded to sow sites only 
and did not include growing pig sites. Even though growing pig 
sites are responsible for adding “infection pressure” at a regional 
level, one could argue that this population is somewhat distinct 
from the sow farm population in terms of disease management. 
Infection of sow herds results in more dramatic consequences due 
to the fact that pigs produced in such facilities are commonly 
transported to other sites, and therefore decisions in regards to 
disease prevention and control are markedly different between 
these distinct animal populations. On a similar note, our analysis 
included data from voluntary participants only. Therefore, results 
do not necessarily apply to the overall population of swine sites in 
the US. The impact of this issue is hard to predict and assess, given 
that the representativeness of participating producers is not well 
documented; thus, the authors recommend results to be taken 
with caution.

Second, underreporting could have affected results, espe-
cially for systems and regions that have underlying immunity 
for PRRS. To the knowledge of the authors, there are no 
published methods for TD-R calculations that can account 
for such issue, but the authors believe the underreporting to 
be constant in time, thus not dramatically affecting results. 
Another methodology-related issue is the fact that in our case 
the epidemic was not observed from the first case onward; with 
results in overestimation of the initial reproductive numbers 
(9). For this reason, the authors decided not to consider initial 
estimated TD-R numbers (first 4 months) when summarizing 
these data. Finally, although the prevalence of intervals with 0 
values was not high, padding the time series, by replacing the 0 
values with 1’s (a common practice in the time series analysis) 
resulted in a well-fitted distribution for the generation time, 
which subsequently increased the computation efficiency of the 
TD-R values. That said, this practice might have resulted in 
over or under estimation of the TD-R values in small regions 
with underreported outbreaks. However, as described above, 
the disease is endemic, and the assumption of at least one 
outbreak occurred in the small production region is biologi-
cally plausible in the context of epidemiology of PRRSV in the 
US. The authors also recognize that the CIs estimated using 
the time-dependent method could have been wide because 
few cases were observed at times. However, the authors are 
unaware of a method available (at time of publication) that 
would allow for better estimation of a transmission parameter 
in endemic settings.

In conclusion, this study showed the utility that TD-R esti-
mates may have in monitoring and early signaling epidemics for 
PRRS, and its benefits will likely vary according to geographical 
region and production system. The TD-R is a promising com-
plementary measure for incidence, because the latter is limited 
to measuring the amount of cases per unit of time but does not 
provide insights on the epidemic progression or effectiveness of 
control measures, which can be accomplished with the calcula-
tion of the former. The use of the TD-R may be complemented by 
other tools, such as, for example, the use of sequential Bayesian 

http://www.frontiersin.org/Veterinary_Science
http://www.frontiersin.org
http://www.frontiersin.org/Veterinary_Science/archive


9

Arruda et al. TD-Rs for PRRS

Frontiers in Veterinary Science | www.frontiersin.org April 2017 | Volume 4 | Article 46

R0 for prediction of increases in the incidence as well as signaling 
the end of epidemics (18).
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