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Liver fluke infection causes serious disease (fasciolosis) in cattle and sheep in many 
regions of the world, resulting in production losses and additional economic conse-
quences due to condemnation of the liver at slaughter. Liver fluke depends on mud snails 
as an intermediate host and infect livestock when ingested through grazing. Therefore, 
environmental factors play important roles in infection risk and climate change is likely 
to modify this. Here, we demonstrate how slaughterhouse data can be integrated with 
other data, including animal movement and climate variables to identify environmental risk 
factors for liver fluke in cattle in Scotland. We fitted a generalized linear mixed model to 
the data, with exposure-weighted random and fixed effects, an approach which takes into 
account the amount of time cattle spent at different locations, exposed to different levels 
of risk. This enabled us to identify an increased risk of liver fluke with increased animal 
age, rainfall, and temperature and for farms located further to the West, in excess of the 
risk associated with a warmer, wetter climate. This model explained 45% of the variability 
in liver fluke between farms, suggesting that the unexplained 55% was due to factors 
not included in the model, such as differences in on-farm management and presence of 
wet habitats. This approach demonstrates the value of statistically integrating routinely 
recorded slaughterhouse data with other pre-existing data, creating a powerful approach 
to quantify disease risks in production animals. Furthermore, this approach can be used to 
better quantify the impact of projected climate change on liver fluke risk for future studies.

Keywords: liver fluke, Fasciola hepatica, fasciolosis, Galba truncatula, cattle, slaughterhouse, environment,  
risk factors

inTrODUcTiOn

Liver fluke, Fasciola hepatica, is a trematode flatworm parasite which causes serious disease  
(fasciolosis) in livestock, especially cattle and sheep, in many regions of the world. It is of widespread 
importance as it is a generalist parasite infecting not only cattle and sheep but also any mammal that 
ingests infective cysts, including pigs, donkeys (1), deer, rabbits, hares (2, 3), kangaroos (4), and even 
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humans (5, 6). Liver fluke infection imposes health and welfare 
costs on the animal, such as weight loss, anemia, and reduced 
productivity [e.g., Ref. (7, 8)] and, for some animals such as sheep, 
it can cause death (9, 10). Fasciolosis prevalence is often high, 
even over large geographic regions such as Western Europe. For 
example, in adult dairy cattle, recent fluke prevalence estimates 
have been reported to be between 72 and 80% in the UK (11, 12), 
61% in Spain, 50% in Germany, and 37% in Belgium (13–15). 
Liver fluke thus generates serious economic costs for livestock 
producers (16–18). For example, it has been estimated that liver 
fluke costs the UK dairy and beef industries approximately £23 
million each year (19).

Fasciola hepatica has several life stages and requires an inter-
mediate host: in the UK, this is most commonly the mud snail 
Galba truncatula (formerly Lymnaea truncatula) [see Ref. (10) 
for more detailed life cycle]. Fluke eggs excreted in livestock feces 
hatch out to release the first life stage, tiny miracidia that infect 
mud snails in which they develop into the next stage, cercaria. 
These cercariae are released from the snail where they swim until 
they encyst on vegetation as metacercariae, the infective stage 
(20). In cyst form, they are robust and can survive even in cool 
or dry conditions until ingested by grazing livestock where they 
emerge in the small intestine and migrate across the gut wall and 
into the liver. The juvenile flukes feed and move through the liver, 
causing destruction and hemorrhage of the liver tissue before 
eventual migration to the bile ducts where the flukes mature 
and lay eggs. This process causes illness or death in the infected 
animal and damage to the liver resulting in the liver being con-
demned at the slaughterhouse; approximately 30% of cattle livers 
were condemned in (rejected by) slaughterhouses in 2011–2012 
in Scotland at standard meat inspection due to the damage caused 
by liver fluke (10).

Fasciolosis is endemic in the UK and is also considered an 
emerging disease since the incidence of infection and geographic 
distribution has increased greatly in the last two decades (10). 
As well as factors such as the creation of wetland areas for the 
conservation of wading birds (21), a key reason for this increase 
is thought to be climate change, especially a warmer and wetter 
climate (12, 21–25).

Climate and local variation in weather between years both 
influence liver fluke infection because F. hepatica spends much of 
its life outside the host in the environment, with the intermediate 
host (mud snail) and the free-living stages of F. hepatica both 
requiring wet conditions. The influence of environmental factors 
on the risk of liver fluke infection has long been known: the first 
model of liver fluke risk with respect to weather conditions was 
developed in 1959 (26) and used to predict years when infection 
will be more prevalent. More recent modeling work relating liver 
fluke infection to environmental factors indicated that geography 
and climate data together may explain 70–76% of variation in 
fluke infection prevalence (27), while Howell et al. (12) found that 
rainfall alone explained 24% of variation in liver fluke between 
dairy herds.

To detect liver fluke infection and to provide estimates of 
infection prevalence, most studies use fecal egg counts [e.g., Ref. 
(28–30)] or the detection of antibodies in blood serum samples 
[e.g., Ref. (28, 30, 31)] or in bulk milk samples [e.g., Ref. (12, 28)]. 

These approaches all require dedicated sample collection and 
laboratory work. Some studies have used liver condemnation at 
slaughter as the outcome of interest [e.g., Ref. (32, 33)]. However, 
to the authors’ knowledge, no studies have used the complete life 
history of animals to attempt to determine the risk associated 
with each farm in that chain.

Slaughterhouses in the UK routinely record whether or not 
livers are condemned due to fasciolosis. Although not usually 
recorded, if each liver record is linked to an identified animal, 
because the UK has a cattle tracing scheme, data can be accessed 
that specify the period that each animal spent at every holding 
unit throughout its life. Our aim is to trial the use of slaughter-
house data on condemned livers as a novel approach to model the 
environmental risk factors influencing liver fluke infection. To do 
this, we combine liver data sourced from a single slaughterhouse 
in Scotland with each animal’s movement history (from the cattle 
tracing scheme) together with existing GIS-based environmental 
data for each location, using a novel variant of a generalized linear 
mixed model.

We aim to demonstrate that, using this modeling approach, 
slaughterhouse surveillance data, when linked to cattle tracing 
administrative data, can be used to quantify the environmental 
risk factors for liver fluke infection at the level of the individual 
animal. This has implications for future predictions of liver fluke 
risk at the regional or national scale due to climate change, as well 
as defining a methodology to facilitate further use of slaughter-
house surveillance data.

MaTerials anD MeThODs

slaughterhouse Data
We used data from 7,858 cattle slaughtered at J. M. Munroe’s 
abattoir in Dingwall, Scotland, between December 2007 and 
December 2009. Data included animal identification, whether or 
not the liver was condemned by the Meat Hygiene Service (MHS) 
inspector, age (all less than 30 months old), and sex. The recording  
and transcription of the assessment of the liver by the MHS 
inspector and the linkage of these data to the eartag number for 
the animal were done on a voluntary basis by arrangement with 
the individual staff concerned. These data would not normally 
have been recorded.

cattle life histories
Using the cattle identification and the UK cattle movement 
database (cattle tracing scheme), the movement history for 
each animal was identified, locating where, when, and for 
how long it had stayed on different farms. The cattle tracing 
scheme was set up in the UK in 1989, subsequent to the bovine 
spongiform encephalopathy epidemic to ensure that all cattle 
entering the food chain could be traced from their farm of birth 
through to slaughter. Since 2001, all movements are recorded in 
an electronic database. In total, 2,078 premises were involved in 
the raising of these animals, of which 2,068 unique addresses 
were identified (Figure  1). The number of farms on which 
a single animal had been reared varied from one to six. We 
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FigUre 1 | Map showing the geographic range of all 2,068 holding units at which the 7,858 cattle spent time before slaughter. Approximate locations 
only are shown, as all positions have been plotted with the addition of some random spatial noise to preserve anonymity while ensuring that the map still represents 
the broad distribution of cattle holding units used in our study across the UK.
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estimated the total number of “risk days” during which each 
animal was potentially at risk of infection on each farm. Most 
cattle in Scotland are housed in barns during the winter but 
are out on pastures for the rest of the year; even where cat-
tle are not housed indoors, low winter temperatures result in 
minimal levels of fluke transmission. Relatively low numbers 

of the intermediate snail host will be active, and those snails 
present will have low numbers of cercariae (34). Accordingly, 
we defined “risk days” as the number of days between 1st April 
and the 30th September that an animal spent at each location. 
We acknowledge that this assumption is a potential source 
of error in the model, because of variations in cattle housing 
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periods and winter temperatures. However, this assumption 
does not affect our aim of trialing the use of slaughterhouse 
data in a novel modeling approach.

environmental Data
Using data in a Geographic Information System [ArcMap; (35)], 
we extracted environmental variables associated with each farm 
location on a digital map (36). The locations of the cattle were 
assumed to be within 2 km of the farm location so a 2-km radius 
circle was generated around each point location using the ArcMap 
(35) buffer function. The Hawth’s Tools (37) Zonal Statistics tool 
was used to calculate the mean value (within each circle) for 
the raster maps for temperature and rainfall parameters. These 
parameters were the annual average of the daily mean temperature 
(in degrees Celsius) and the annual average of the daily rainfall (in 
millimeters). Again, while this assumption is a potential source 
of error, since a minority of farms may keep cattle outside this 
zone, any errors in temperature and rainfall covariates will be 
small compared to inter-regional or across-Scotland differences 
in climate.

statistical Model to assess risk Factors
The data were statistically challenging because of the need to 
identify environmental risk factors for liver fluke when the 
animals have moved around the country spending periods of 
time in different locations with different environmental and 
geographical characteristics. We therefore developed a variant 
of a generalized linear mixed model to estimate the effect on 
the probability of liver condemnation at an individual level of 
different risk factors, some of which operate at the farm level, 
with these latter effects being linearly weighted by how long 
each animal spent, at risk, on each farm. This approach allowed 
us to model multiple potential risk factors (age, sex, location, 
temperature, and rainfall) as fixed and random effects, at both 
the individual animal and farm levels.

If the ingestion of fluke metacercaria is thought of as a non-
homogeneous Poisson process, and subsequent development 
into an adult fluke, and observation at slaughter are treated as 
random Bernoulli events, the total number of fluke observable 
within an animal’s liver at any point in time would be expected 
to be a random variable following a Poisson distribution where 
λ, the mean number of fluke, is an integral of the historic 
instantaneous risk over the animal’s lifetime, scaled in some way 
for non-development and non-observation. Indeed, almost all 
parasite burden count data do exhibit a Poisson distribution (38). 
From the properties of the Poisson distribution, the probability 
of observing no fluke is therefore e−λ. Such an animal would be 
recorded as not having its liver condemned. A model of this type 
was first formulated by Fisher (39). We assume that λ increases 
with all the animal-associated risk factors and all the daily risks 
encountered by an animal throughout its life. The way that the 
various risk factors over the life time of animal affect the prob-
ability of its liver being condemned at slaughter can be expressed 
mathematically as follows:
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Yi is a random variate which is the outcome of a Bernoulli 
trial (condemnation of the liver) with probability of “success” 
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and ln denotes the natural logarithm (log to the base e); αj is the 
fixed effect coefficient associated with the jth animal-level covari-
ate for animal i; xij is the jth animal-level covariate for animal i; 
βl is the fixed effect coefficient associated with the lth farm-level 
covariate; Wik is a weight which depends upon the length of time 
that animal i spent on farm k, Wik  ≡ 0 when animal i has spent no 
time on farm k; fkl is the lth farm-level covariate for farm k; and 
γkm is the mth random effect for farm k.

The observation of condemned or non-condemned livers 
provides sufficient information for us to make inference about 
the parameters contributing to the means λi across the population 
of animals.

We can use the above mathematical model of liver condem-
nation to produce a linear relationship between the observed 
outcome (condemnation or non-condemnation of the liver) and 
explanatory variables as follows:
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This is similar to a standard generalized linear model with 
complementary-log–log link function (40) but with the crucial 
difference that this model weights the farm-level effects (both 
fixed and random effects) by the number of risk days that the 
animal spent on each farm. Hence, parameters βl  and γm are 
estimated as rates, since they enter the model as products with 
the numbers of days at risk. It is assumed that the risk associ-
ated with farm-level covariates accrues linearly with risk days. In 
addition, importantly, this model allows an animal not only to be 
influenced by different covariates but also to be affected by differ-
ent realizations of a covariate during its lifetime, as it moves from 
farm to farm. This allows us to make inference across the whole 
of an animal’s lifetime, resulting in less uncertainty in farm-based 
fixed and random effects.

In our model, the response variable was whether or not the 
liver was condemned due to liver fluke. The model can be thought 
of as apportioning the risk of condemnation of a liver into risk 
factors specific to an animal (animal-level fixed effects) and risk 
attributable to those farms on which the animal has spent time 
(farm-level fixed and random effects).

The fixed effects examined were, at the animal level, those 
associated with age and sex and, at the farm level, those associated 
with rainfall in millimeters (the average daily rainfall at the farm 
site), temperature in degrees (the average daily temperature at 
the farm site), and geographic location as kilometers North and 
kilometers East of the Ordnance Survey grid origin point. Farm 
covariates were weighted by the estimated number of days at risk. 
Variables were deemed non-significant if they had a 95% credible 
interval that included 0, and such fixed effects were removed from 
the initial model. An exception to this protocol was that if either 
the easting or northing was significant, both would be kept in the 
model. The fixed effect of farm location accounts for linear spatial 
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FigUre 2 | stacked frequency distribution of the numbers of cattle livers that were condemned (red) and not condemned (blue) due to liver fluke as 
a function of age (in months) at slaughter. The plot summarizes the raw data unadjusted by the model.
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effects. Since North and East are arbitrary directions, both are 
retained in the model to account for any first-order spatial effect 
that does not exactly align with either direction.

The farm-level random effects measure risk associated with 
unmeasured local area effects such as region-specific farm-
ing practices or contagion (estimated by the spatially smooth 
random effect) and unmeasured farm-specific effects such as 
farm-specific housing periods, habitat, or drainage (this is the 
site-specific residual risk). These effects are modeled as being 
independent of one another. The geographical locations of all 
farms were used to fit a smooth random field, modeling how risk 
might vary across space; the field interacted with the statistical 
model via the random realization of the field at each farm loca-
tion. In addition, farm identification number was fitted as a dis-
crete random effect to represent any potential unrecorded farm 
management effects. Essentially, these are residual farm-level 
random effects, fitted once all other farm-level fixed and spatially 
smooth random effects have been estimated. The consistent 
handling of farm locations in the spatially smooth random field 
gives us more confidence that these residual random effects will 
be able to account for localized farm-level variability whether 
associated with any unrecorded environmental factors or site-
specific farming practices. In Section “Results,” each part of the 
model is considered separately.

The generalized linear mixed model was fitted using integrated, 
nested Laplace approximation (INLA) using the R-INLA package 
in R (41–44). The spatially smooth random effect of farm location 
was fitted using the “spde” model. A triangular mesh was defined 
on the area containing the observations. This mesh includes 
data points (locations of the farms) as vertices; in consequence, 
the resulting realizations at each farm location have consistent 
statistical properties. Formally, a Gaussian Markov random field 
was fitted, with stochastic partial differential equations used to 
incorporate spatial correlation between points. Within the frame-
work of the overall model, the realizations of the field at farm 

locations are spatially smooth random effects. A more complete 
description of this method and of the form taken by the spatially 
smooth surface can be found in Ref. (45).

The ability of the final model to describe the variability seen in 
the data was evaluated by comparing the hyper-parameter in the 
final model that captured the variability in the residual, discrete 
farm-level random effects with the equivalent hyper-parameter in 
a null model (a baseline model where only an intercept and the 
residual, discrete farm-level random effects were estimated). The 
hyper-parameter in this case is analogous to the variance com-
ponent associated with a random effect in a generalized linear 
mixed model. It is not possible to estimate excess variability at 
the lowest stratum of the model (the individual animal) because 
the response at this stratum is binary (liver condemned or not 
condemned). Hence, the farm-specific residual effect summa-
rizes any excess of variability in the data relative to the model. 
Therefore, a comparison of the hyper-parameters that describe 
these random effects in the final and null models is equivalent to 
comparing the residual variance of a model to the total variance 
seen in the data.

resUlTs

Cattle ages in this study ranged from 9 to 30  months old and 
4,798 (61%) animals were male. Although all the cattle in our 
dataset were slaughtered in Dingwall, they had spent periods of 
time at locations over much of Scotland, and even some locations 
in England (Figure 1). Of the 7,858 cattle livers recorded, 1,751 
(22%) were condemned due to liver fluke infection. However, the 
prevalence varied with age of the animal increasing steadily from 
15% infection in cattle less than 12 months old to over 35% at 
30 months (Figure 2).

For simplification of presentation, we describe the three 
classes of effect (fixed, spatial random, and non-spatial random) 
separately, but it should be stressed that the model fits them 
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Table 1 | estimates of fixed effects in the final fitted model of liver 
condemnations due to liver fluke.

covariate Mean value Median value 95% credible interval

age of animal (days) 0.0026 0.0026 0.0017–0.0035
eastinga (1,000 km) −0.0293 −0.0292 −0.0360 to −0.0292
Northinga (1,000 km) 0.0002 0.0001 −0.0028 to 0.0032
rainfalla (mm) 0.0011 0.0011 0.0008–0.0015
Temperaturea (°) 0.0003 0.0003 0.0001–0.0006

Text in bold reports effects where the 95% credible interval does not include 0.
aAll farm-level effects are weighted by (multiplied by) the animal’s number of at risk days 
for which it was present on that farm. Therefore, the coefficients should be considered 
as per day, for example the coefficient associated with Easting should be considered as 
per day at risk per 1,000 km.
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simultaneously, and hence, all estimated effects are conditioned 
on the rest of the model. Therefore, for example, we should think 
of the spatially smooth random effect as describing the influences 
which make neighboring farms similar, once the model has 
accounted for farm-level fixed effects and site-specific residual 
effects.

The final fitted model, including fixed effects, and random field 
and discrete spatial random effects explained 45% of the observed 
variability in liver condemnation probabilities between farms.

Fixed effects
Prevalence in females was 25.2% and in males was 20.4%, but 
after adjusting for other factors, the 95% credible interval for 
the difference included 0, and sex was therefore removed from 
the final model. The final model indicated a significantly higher 
probability of liver fluke-associated liver condemnation for ani-
mals spending more time at risk in areas that had higher average 
annual rainfall, had warmer climates, were further West, and for 
older animals (Table 1).

Figure 3 summarizes the summed effect of all the farm-level 
fixed effects in the model (East–West and South–North clines, 
and using long-term average rainfall and long-term average 
temperature) on the estimated mean on-farm risk. In general, 
farms in the East have lower risk than those on the West, but the 
risk in the East is particularly low at the coast. The latter property 
is associated with the effect of local temperature and rainfall. The 
larger scale East–West effect is statistically significant even after 
taking into account climatic variables, indicating the influence 
of further, unobserved, geographic-associated factors on higher 
fluke risks in the West.

spatially smooth random effect
The mesh used to fit the data to the model is presented in 
Figure 4A. After allowing for fixed effects (rainfall, temperature, 
northings, and eastings), the model spatially smooth random 
effect generated the mean daily risk rates plotted in Figure 4B. 
The associated standard errors, however, were high, such that 
all spatial estimates had a 95% credible interval that included 0 
(i.e., there is no strong statistical evidence of any localized spatial 
effects beyond those described by the East–West cline and local 

climate as shown in Figure 3). The spatially smooth field was kept 
in the model, however, to ensure that the site-specific residual 
effect contained no element attributable to regional location, 
since in areas with few farms the power to formally detect such 
an effect is small.

site-specific residual risk
Figure  5 summarizes the estimated site-specific residual effect 
(unobserved farm effects such as farm-specific housing periods, 
habitat, micro-climate, or drainage) once the spatially smooth 
random effect and all fixed effects have been fitted. Figure 5 indi-
cates that most farms had residual liver fluke daily risk rates that 
did not differ significantly from the average (0). The map shows, 
however, the approximate location of farms where daily risk rates 
were higher than expected and those where the risk was lower 
than expected, given all other factors in the model. The relatively 
extreme high or low risk at these farms is, therefore, most likely to 
be due to farm-specific effects such as housing, local management 
(drainage, fencing off wet areas, etc.), or the presence of habitat 
that affects snail populations.

DiscUssiOn

By combining, for the first time, existing data on (i) condemned 
livers from a Scottish slaughterhouse, (ii) cattle movements, and 
(iii) climate, we have developed a model that identifies the risk 
factors for liver fluke infection in cattle. This is novel in using 
slaughterhouse surveillance data and in developing a statistical 
model which takes into account all the locations at which an ani-
mal had spent time. This approach indicates a higher probability 
of infection in the West of Scotland, independent of this part of 
the country being warmer and wetter. There is generally lower 
risk in the East of Scotland, where it is drier and cooler due to a 
weaker oceanic influence. As well as climatic and geographic risk 
factors, we also found a higher probability of liver fluke infection 
in older cattle. This is to be expected as, the longer an animal 
lives, on average, the more risk of exposure it is likely to have had, 
and any fluke in the liver will have had more time to cause visible 
damage, leading to liver condemnation in the slaughterhouse. 
These are similar to risk factors identified in previous studies that 
used different modeling approaches and different data (from a 
variety of regions), e.g., fecal egg counts or antibodies in serum 
or bulk milk [e.g., Ref. (12, 26, 27, 46, 47)], suggesting that the 
use of data on condemned livers through slaughterhouse sur-
veillance is robust and applicable to other regions and livestock 
systems. Other authors using slaughterhouse records (32, 33) 
found spatial differences in farm risk as well as an association 
with wet areas.

Exploring different aspects of spatial patterns in the data, a 
geographical covariate (the East–West cline) was found to be 
statistically significant as a fixed effect in explaining pattern in the 
data. After allowing for these high-level trends, the smooth ran-
dom field showed no evidence for localized regional differences. 
However, at the finest spatial scale, there was some evidence of 
individual farms having higher or lower probabilities of infection 
than average.
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FigUre 3 | Map showing the influence of farm-level fixed effects (temperature, rainfall, northings, and eastings) in the model by plotting the mean 
value, summing across these effects, for each farm in the data set. Farms plotted in red have the highest risk, those in blue the lowest risk, and farms in pink 
(high–medium) and purple (medium–low) intermediate risk.
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FigUre 4 | Maps illustrating the spatially smooth random effect. (a) The mesh used to fit the model, which included the observed farms as vertices. Blue 
lines are construction lines used by the algorithm in creating the mesh appropriately. (b) The mean local risk surface inferred by the model, plotted across the areas 
for which data were available. Areas shaded in red are areas of high local risk. Areas shaded in blue are areas of low local risk. Although variations can be seen, 
these fluctuations are small when compared to the uncertainty associated with the estimates; there is no evidence that any areas have either statistically significantly 
higher or lower localized risks than average, once spatial clines and local climate have been fitted to the model.
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Since liver fluke risk is higher in warmer and wetter areas, 
the warmer and wetter climate predicted for Scotland by cur-
rent climate change models is likely to increase the severity 
of the risk and to expand the range of areas that are most 
at risk across Scotland [and other countries where studies 
have identified similar risk factors, e.g., England, Wales, and 
Belgium (12, 26, 27, 46, 47)]. Our modeling approach, by 
quantifying the effect of climatic variables on fluke risk, has 
potential to develop predictive models and generate quantita-
tive risk maps for liver fluke under different climate change 
projections.

Our model, including the effects of cattle age, climate, animal 
history, and geographic location explained 45% of the variation in 
observed risk of liver fluke condemnations in animals at slaughter 
between farms. The variation in liver fluke condemnation risk 
that remained unexplained was 55% and may be largely due to 
unrecorded on-farm effects that influence the risk of liver fluke 
infection (12, 46, 48). Previous studies have identified such on-
farm risk factors as the presence of snail habitat (wet areas) on 

pastures, herd size, length of the grazing season, and proportion of 
grazed grass in the diet (31, 46, 49). A model by Howell et al. (12),  
using data on antibodies in bulk milk samples, indicated that 
such on-farm factors explained 21% of the observed variation 
in liver fluke infection between dairy herds in Scotland. There 
are many potential reasons why studies differ in their estimates 
of the contributions to liver fluke risk of such on-farm effects. 
Apart from differences in what constitutes an “on-farm effect” 
(e.g., management practices versus local habitat and climate), 
there may also be systematic disparity in quantitative outputs 
between studies because of differences between dairy cattle and 
cattle sold for beef, and in differences in the response variable 
used: liver condemnation compared to milk antibody level or 
fecal egg count.

There are both advantages and disadvantages in our approach 
for identifying liver fluke risk factors. The slaughterhouse 
surveillance data provided to us represent a relatively minor 
increase in effort by the meat inspectors and required no dedi-
cated sampling or laboratory work; also, data are recorded in a 
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FigUre 5 | Map showing the estimated site-specific residual risk for each of the modeled cattle holding units. Positions plotted in gray are those where 
the 95% credible interval includes 0; the risk at these farms does not significantly differ from the average. Positions plotted in red are those where the 95% credible 
interval is entirely greater than 0 (higher risk than the average farm), and those in blue are where the 95% credible interval is entirely less than 0 (lower risk than the 
average farm). This represents the residual risk attributable to each farm once spatial clines (northings and eastings), local climate (rainfall and temperature), and 
local similarities between farms (modeled via the spatially smooth random effect) have been fitted to the model.
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direct fashion at the level of the individual animal, thus increas-
ing the power available for the analysis. However, this infor-
mation was supplied by MHS inspectors on a voluntary basis, 
based on a local arrangement. Other authors have highlighted 
the potential for using slaughterhouse data for surveillance of a 
number of conditions and for syndromic surveillance [e.g., Ref. 
(50–52)]. It is possible that, as our model takes into account 
the whole life history of each animal, it increases the amount 
of information available, thereby facilitating a more powerful 
analysis. A particular strength of this approach is that, by using 
the complete history of an animal in a carefully parameterized 
generalized linear mixed model, we are able to examine the 
risk on farms that do not directly sell animals to slaughter. This 
ability to highlight farms with abnormal condemnation risk is 
one of the important outcomes from this approach and could 
be used to target follow-up on-farm investigations. In addition, 
the use of condemned livers avoids some potential issues that 
can arise from other liver fluke indicators; for example, data 
derived from fecal counts can be biased by mistaken observa-
tion of rumen fluke Calicophoron daubneyi (53) and antibody 
analysis of bulk milk samples do not provide information at 
the individual animal level. Condemned liver data do not have 
such issues.

However, there are also negative aspects to our approach. For 
example, farm management practices that mitigate liver fluke 
risk by restricting the grazing period are particularly problem-
atic for our model, because the model assumes a standardized 
period at pasture, so the effect of such strategies will affect the 
model in a non-random fashion. Such farm-based interventions 
might explain some of the extreme, farm-specific random effects 
observed in the model (Figure 5). Our model is also limited by 
using data from only one slaughterhouse. Although the locations 
at which cattle spent time were scattered broadly across Scotland 
and even parts of England, the majority of locations (and time 
spent at locations) were in NE Scotland, around the region of 
the slaughterhouse. While the NE of Scotland is one of the main 
cattle-producing parts of Scotland, the use of one slaughterhouse 
does result in other areas of the country being relatively under-
represented in our data. While our model provided risk factors 
similar to those from other studies, more accurate and robust 
outputs could be obtained by using existing liver data from a 
larger number of slaughterhouses around Scotland. However, 
our aim of trialing the use of slaughterhouse surveillance data 
for identifying liver fluke risk factors (made possible by the 
use of a bespoke statistical model) was, nonetheless, achieved 
successfully.

In conclusion, we have demonstrated that the use of existing 
individual animal-level data from slaughterhouse surveillance 
identifies the same environmental/climatic/geographic risk 
factors as previous studies from different regions. This result 
implies that these slaughterhouse liver data are robust enough 
for use in monitoring liver fluke over time and over space (when 
coupled with cattle tracing scheme data) and could be used for 
projecting future fasciolosis risk given likely climate changes or 

other changes in the environment and pattern of animal move-
ments or management systems. Predictive hazard maps, such as 
the ones we have produced here, can help in the development of 
mitigation strategies; for example, a potential strategy to slow 
the development of resistance to antihelminthic drugs (54) 
could be to restrict their use to high-risk areas as identified 
by models such as ours that use slaughterhouse condemnation 
data. The inclusion of detailed on-farm management factors 
data and, especially, mud snail data, would undoubtedly 
increase the predictive power of models of liver fluke infec-
tion, but the use of innovative statistical models to combine 
information from existing datasets does offer a cost-effective 
way to generate the evidence base for policy interventions. This 
work highlights how slaughterhouse surveillance data can be 
a powerful research tool for identifying prevalence and risk 
factors for disease.
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