
ORIGINAL RESEARCH
published: 31 May 2017

doi: 10.3389/fvets.2017.00071

Edited by:
Katharina Stärk,

SAFOSO AG, Switzerland

Reviewed by:
Andrea Apolloni,

Agricultural Research Centre For
International Development, France

Matthias Greiner,
Federal Institute for Risk Assessment

(BfR), Germany

*Correspondence:
Lothar Kreienbrock

lothar.kreienbrock@tiho-hannover.de

Specialty section:
This article was submitted to
Veterinary Epidemiology and
Economics, a section of the

journal Frontiers in Veterinary Science

Received: 18 November 2016
Accepted: 25 April 2017
Published: 31 May 2017

Citation:
Hüls A, Frömke C, Ickstadt K, Hille K,

Hering J, von Münchhausen C,
Hartmann M and Kreienbrock L
(2017) Antibiotic Resistances in

Livestock: A Comparative Approach
to Identify an Appropriate Regression

Model for Count Data.
Front. Vet. Sci. 4:71.

doi: 10.3389/fvets.2017.00071

Antibiotic Resistances in Livestock:
A Comparative Approach to Identify
an Appropriate Regression Model
for Count Data
Anke Hüls1,2, Cornelia Frömke3, Katja Ickstadt1, Katja Hille3, Johanna Hering3,
Christiane von Münchhausen3, Maria Hartmann3 and Lothar Kreienbrock 3*

1 Faculty of Statistics, TU Dortmund University, Dortmund, Germany, 2 IUF-Leibniz Research Institute for Environmental
Medicine, Düsseldorf, Germany, 3 Department of Biometry, Epidemiology and Information Processing, University for
Veterinary Medicine Hanover, WHO-CC for Health at the Human-Animal-Environment Interface, Hannover, Germany

Antimicrobial resistance in livestock is a matter of general concern. To develop hygiene
measures and methods for resistance prevention and control, epidemiological studies on
a population level are needed to detect factors associated with antimicrobial resistance in
livestock holdings. In general, regression models are used to describe these relationships
between environmental factors and resistance outcome. Besides the study design, the
correlation structures of the different outcomes of antibiotic resistance and structural zero
measurements on the resistance outcome as well as on the exposure side are challenges
for the epidemiological model building process. The use of appropriate regression
models that acknowledge these complexities is essential to assure valid epidemiological
interpretations. The aims of this paper are (i) to explain the model building process
comparing several competing models for count data (negative binomial model, quasi-
Poisson model, zero-inflated model, and hurdle model) and (ii) to compare these models
using data from a cross-sectional study on antibiotic resistance in animal husbandry.
These goals are essential to evaluate which model is most suitable to identify potential
prevention measures. The dataset used as an example in our analyses was generated
initially to study the prevalence and associated factors for the appearance of cefotaxime-
resistant Escherichia coli in 48 German fattening pig farms. For each farm, the outcome
was the count of samples with resistant bacteria. There was almost no overdispersion
and only moderate evidence of excess zeros in the data. Our analyses show that it is
essential to evaluate regression models in studies analyzing the relationship between
environmental factors and antibiotic resistances in livestock. After model comparison
based on evaluation of model predictions, Akaike information criterion, and Pearson
residuals, here the hurdle model was judged to be the most appropriate model.

Keywords: veterinary epidemiology, model selection, overdispersion, underdispersion, zero inflation, Poisson
regression, hurdle model

Abbreviations: E. coli, Escherichia coli; ZIP, zero-inflated Poisson; ZINB, zero-inflated negative binomial; AIC, Akaike
information criterion.
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INTRODUCTION

Antimicrobial resistance in livestock is a matter of public con-
cern. In general, its occurrence is promoted by the exposure
with antimicrobial substances and the subsequent selection of
resistant bacteria as well as by the horizontal or vertical trans-
fer of resistance determinants. To identify points of action for
measures to prevent, reduce, and control antimicrobial resistance
in farming and veterinary practice, epidemiological studies on a
population level are crucial. These epidemiological studies usually
lead to methodological constraints concerning sample size, zero
measurements on the outcome as well as on the exposure side or
associations between potential risk factors. Therefore, the study
design as well as the characteristics of the collected data should be
considered in the process of epidemiological model selection.

The diagnostic methods to identify antibiotic resistance as well
as the statistical regression techniques that could be applied are
manifold (e.g., Poisson model, negative binomial model, quasi-
Poissonmodel, zero-inflatedmodel, and hurdlemodel). To decide
on the most suitable statistical model, a structured process of
model selection is crucial to avoid misleading results and inter-
pretation.

One major problem in analyzing bacterial data are structural
zero measurements. Recently, two studies gave an overview about
the impact of the choice of different probability distributions
in the context of quantitative microbiological risk assessment to
estimate the true prevalence and concentration of microorgan-
isms in foods (1, 2). Duarte et al. (1) pointed out that when
fitting a distribution to enumeration data from a sample of food
products, several factors have an influence on the accuracy of the
fit. First, enumeration of low contaminated sample units can give
zero counts (“artificial” zeros) that add to the number of “true”
zeros resulting from non-contaminated units, thereby inflating
the total number of zeros in a sample of microbial counts. This
results in a typically zero-inflated distribution of counts. They
concluded that one of the keys to an accurate characterization of
the overall microbial contamination was the correct identification
and separation of true and artificial zeros (1).

To illustrate such a modeling process with the aim to identify
potential factors associated with antibiotic resistance in livestock,
data from a cross-sectional investigation on fattening pig farms in
Germany were analyzed. In this cross-sectional study, 48 fattening
pig farms in Germany formed the study population. In each farm,
10 samples were taken and tested for resistance against cefotaxime
in Escherichia coli (E. coli) isolates. Information on the farm and
the management of the animals were recorded with a question-
naire. The outcome used for the analyses was the count of positive
samples [for more details, see Ref. (3)]. In the original publication
of Hering et al. (3, 4), a generalized linear model (GLM) with
logit link, which is the most popular approach for count data,
was used.

The aims of this paper are to explain the model building pro-
cess comparing competing models for count data with a special
emphasis on the modeling of zero measurements and to compare
these models using the study data as an example. Based on this
comparison, we recommend a scheme how to evaluate statistical
models for studies of antibiotic resistance in livestock.

MATERIALS AND METHODS

Sample Data Set: Study Design
The cross-sectional investigation was part of the RESET research
network.1 For this epidemiological study, representative districts
were identified on the basis of average farm and animal numbers
(4). The farmers were contacted at information sessions organized
in cooperation with veterinary offices or agricultural associa-
tions in each district. Based on an approximate two-sided 95%-
confidence interval for sample proportion, it was estimated that 50
farms were necessary to estimate a prevalence of cefotaxime resis-
tance of 10–20%with an absolute error of±10%.Overall, 48 farms
with fattening pigs were visited between May 2011 and October
2012. In each farm, 10 samples were collected: six mixed fecal
samples from the ground, two pairs of autoclaved boot swabs from
the corridor inside the compartment, and two dust samples from
the windowsill, pen separation, or automatic feeder. To assess
factors associatedwith cefotaxime-resistantE. coli, a questionnaire
dealing with different aspects of farm and animal management
was applied. All microbiological analyses were carried out in
the Institute for Animal Hygiene and Environmental Health of
the Free University Berlin. A sample was defined as positive, if
bacterial growth was observed on MacConkey agar containing
1μg/ml cefotaxime and at least one colony could be confirmed
as E. coli by Matrix-Assisted Laser Desorption Ionization TOF.
A detailed description of the study design has been published
previously (3).

Sample Data Set: Description of
Laboratory Results
Overall, 288 fecal samples, 96 pairs of boot swab samples, and 95
dust samples were collected. The proportion of positive samples
was 61% for fecal samples, 54% for boot swabs, and 10% for
dust samples. In seven farms, no cefotaxime-resistant E. coli were
detected. On the remaining 41 farms (85%), at least one positive
sample was observed.

Sample Data Set: Basic Variable Selection
While the questionnaire consisted of 242 items that could poten-
tially influence the outcome of resistance, in general, the man-
agement and structure of the observed pig farms was rather
homogeneous. To avoid sparse data problems, 145 items were
excluded from the analyses because less than five farms fell into
one of the answer categories. Prior to multivariable regression
analyses, a univariable analysis was performed for each of the
remaining 95 items. Variables with a p-value smaller than 0.2 were
included into the multivariable analyses to pre-select possible risk
factors. Associations among predictor variables were investigated
using Cramer’s V and also re-examined using the correlation
matrix of the predictors from the multivariable model. Upon
the univariable screening of variables and elimination of highly
collinear factors, the final multivariable model contained 17
variables (3).

1www.reset-verbund.de.
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Modeling Count Data: General Remarks
The standard method for analyzing count data is Poisson regres-
sion modeling (5). However, Poisson regression can often be
inappropriate in practice due to over- or underdispersion, i.e.,
the variance of the data does not fit the general assumption of
the Poisson distribution, that the expected mean μ and variance
σ2 of counts are the same. This usually is measured with the
dispersion index φ = σ2/μ. In addition, an excess number of zeros
is often observed, which could not be modeled by the Poisson
distribution.

To overcome these pitfalls of the Poisson model, two common
options to handle overdispersion are the negative binomial model
and the quasi-Poisson model (6). Methods to handle zero infla-
tion include zero-inflated models or hurdle models (6). Several
applications and comparisons of Poisson, negative binomial, zero-
inflated, and hurdle models have been published in the literature
[for example, Ref. (7–10)]. The statistical background of these
models will be summarized in the following subsection. For more
details, please see Ref. (11).

Modeling Count Data in the Presence of
Overdispersion and Zero Inflation
In epidemiology, the Poisson distribution is the most common
model for the analysis of count data. Assuming a cross-sectional
study design, let yi denote the count of positive samples on the
ith farm (i= 1,. . ., n) and let xi denote a (k+ 1)-dimensional set

of corresponding factors on the ith farm. Following a Poisson
distribution

fpoisson(y; μ) =
exp(−μ) · μy

y! (1)

withmean μ the random variables Yi|Xi = xi in the Poissonmodel
have mean and variance E(Yi|Xi)=Var(Yi|Xi)= μi which leads to
a dispersion index of φ = 1 (5, 12, 13). The Poissonmodel belongs
to the class of GLMs (13, 14). The corresponding regression
equation for the mean is

μi = exp
(
xTi β

)
,

with the parameter vector β = (β1,. . ., βk) representing the effect
of each of the k factors.

In real data sets, the assumption that the dispersion φ = 1 is
often violated. The consequence of an underdispersion [φ < 1, i.e.,
Var(Yi|Xi)<E(Yi|Xi)] is that SEs are too conservative. In models
with an overdispersion [φ > 1, i.e., Var(Yi|Xi)>E(Yi|Xi)], which
is more common, the level of significance is not kept. As an
example, Figure 1 shows the distribution of count data simulated
from a regular Poisson distribution (Figure 1A), count data with
underdispersion (Figure 1B) and count data with overdisper-
sion (Figure 1C). Therefore, the first step in analyzing count
data is to identify over- or underdispersion of the fitted Poisson
model.

One way to account for overdispersion in the regression model
is to assume a negative binomial distribution for the outcome

FIGURE 1 | The histogram illustrates simulated count data from a Poisson distribution (A), with underdispersion (B), and with overdispersion (C) and
count data with zero inflation (D) motivated by the real data example for antibiotic resistances in 48 German fattening pig farms.
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Yi|Xi, which formally can be described as a gamma mixture
of Poisson distributions (6). The probability density function is
defined as

fnegbin(y; μ, θ) =
Γ(y + θ)
Γ(θ) · y! · μy · θθ

(μ + θ)y+θ , (2)

with mean μ and shape parameter θ; Γ(·) is the gamma function.
Again the corresponding regression equation for the mean is

μi = exp
(
xTi β

)
.

Another way to handle moderate overdispersion (or underdis-
persion) is the quasi-Poisson regression model, which introduces
the dispersion index φ in the Poisson model, so that the variance
of the response is modeled as a linear function of the mean:

Var(Yi|Xi) = φμi.

The dispersion index φ can be estimated by

φ̂ =
1

n − k
∑ (yi − μ̂i)

2

μ̂i
,

with n observations, k risk factors, and using μ̂i as a so-called
plug-in estimate for μi (6, 15).

A second problem with count data can be an excessive number
of zero counts (zero inflation) that cannot be suitably modeled
by the Poisson or negative binomial distribution. This problem
often appears in resistance research, where a lot of samples are
negative [e.g., in broiler chicken, see Ref. (16, 17)] or vice versa
[e.g., Ref. (18)]. An excess of zeros can be easily identified through
a histogram of the observed count data. Figure 1D shows an
example of simulated zero-inflated count data.

In the presence of a large proportion of zero counts, a zero-
inflated model or hurdle model should be considered as alterna-
tives to the Poisson or the negative binomial models (6, 8, 10).

The idea of the zero-inflated model is that some of the zeros
are modeled to be part of the Poisson (or negative binomial) dis-
tribution, while the other part of the zeros are modeled through a
binomial distribution (8). In our study, zero-inflatedmodel results
may be interpreted as part of the farms having no resistant bacteria
at all, and in contrast, other farms, where the risk of resistant
bacteria has been eliminated actually. Indeed, this point of view
assumes that the study design is free from any misclassification. If
false-negative results appear, the above interpretation is biased by
adding false-negatives to the number of “true” zeros, which was
described by Ref. (2).

Unlike zero-inflated models, hurdle models do not make the
distinction between different types of zeros and handle them iden-
tically (19). Therefore, these models include all three type of zeros
by definition. The basic idea is that a binomial probability model
governs the binary outcome of whether a count variable is zero
or positive. If the realization is positive, the “hurdle” is crossed,
and the conditional distribution of the positives is governed by
a truncated at-zero count data model (20). In the study addressed
here, all zeros in a hurdlemodel represent farmswithout any resis-
tant bacteria (true negatives and false-negative results), whereas

the count-part of the model describes the situation of farms that
did exhibit resistant bacteria.

To distinguish between zero-inflated/hurdle models with a
Poisson and those with a negative binomial, the overdispersion
within the count-part of the data needs to be evaluated. One
option might be to evaluate the dispersion index after excluding
all zero counts. However, since we cannot determine which of
the zeros belong to the count-part and which belong to the zero-
part, the dispersion index might be biased toward underdisper-
sion after excluding all zeros. For a clarification, the histogram
of the data distribution needs to be evaluated and compared to
simulated data with overdispersion (compare Figure 1) and if
there is some indication for overdispersion, Akaike information
criterion (AIC), and Pearson residuals of the zero-inflated/hurdle
models with negative binomial distribution should be compared
to zero-inflated/hurdle models with Poisson distribution.

In more formal detail, zero-inflated models (20, 21) are two-
component mixture models that combine a point distribution
I{0}(y) (e.g., binomial) with a count distribution f count(y; x, β)
(Poisson or negative binomial). This leads to a two-component
probability density function defined as

fzeroinfl(y; x, z, β, γ) = fzero(0; z, γ) · I{0}(y)
+ (1 − fzero(0; z, γ)) · fcount(y; x, β).

The parameter vectors β and γ can be estimated using maxi-
mum likelihood. The corresponding regression equation for the
mean is given by

μi = fzero (0; zi, γ) · 0 + (1 − fzero (0; zi, γ)) · exp
(
xTi β

)
.

In contrast, the probability density function of the hurdlemodel
is defined as

fhurdle(y; x, z, β, γ)

=

{
fzero(0; z, γ) if y = 0
(1 − fzero(0; z, γ)) · fcount(y; x, β)/ (1 − fcount(0; x, β)) if y > 0

with a count datamodel f count(y; x, β), such as the Poisson or neg-
ative binomial distribution (Eqs 1 and 2), that is left-truncated at
Y= 1 and a zero hurdlemodel f zero(y; z, γ) that is right-censored at
Y= 1 (6). The parameter vectors β and γ can be estimated through
maximum likelihood. The corresponding regression equation for
the mean is given by

log(μi) = xTi β + log (1 − fzero(0; zi, γ))
− log (1 − fcount(0; xi, β)) .

Therefore, in general, zero-inflated Poisson (ZIP), zero-inflated
binomial, and hurdle models are often much more appropriate
to take into account the several ways of transmit resistance into
farms.

Sample Data Set: Variable Selection for
Comparing Poisson Regressions
To decide which model fits best to our data, we first compared
the observed counts with the model predictions, followed by a
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TABLE 1 | Description of variables included in the count models (Poisson,
quasi-Poisson, and negative binomial model) and in the count-part of the
zero-inflated Poisson and the hurdle model.

Farms with fattening pigs (%)

N 48
Moving single pigs,a n (%) 39 (81.25)
Seperate pen for diseased pigs,a n (%) 32 (66.67)
Use of purchased feed only,a n (%) 11 (22.92)
Water birds in 1 km radius of farm,a n (%) 17 (35.42)
Disinfection of livestock trail
Never,b n (%) 8 (16.67)
After housing out, n (%) 33 (68.75)
Less frequent than after housing out, n (%) 7 (14.58)

Disinfection with chlorine,a n (%) 8 (16.67)
Number of fattening pigs
0 to ≤1,000,b n (%) 20 (41.67)
>1,000 to ≤1,500, n (%) 14 (29.17)
>1,500, n (%) 14 (29.17)

a“No” as reference category.
bReference category.

comparison of theAIC. TheAIC is ameasure of the goodness of fit
of the model, which describes the trade-off between accuracy and
complexity of the model. The model with minimum AIC value is
preferred. Furthermore, we calculated the Pearson residuals and
plotted them against the fitted values. If the model assumptions
are suitable, the residuals should randomly fall within an area rep-
resenting a horizontal band. Finally, we checked the plausibility of
the estimates and their SEs. Inflated estimates and SEs might give
a further hint for violated model assumptions.

Given the available sample size, we applied the following pro-
cedure to reduce the number of variables considered in the model
comparison process. Using backward selection based on the AIC
criterion, we retained eight variables in the Poisson model. Since
the Poisson model discussed here is limited to 7 degrees of free-
dom only, the variables with the highest p-value after backward
selection was excluded as well. The remaining variables were
used for the count models following: Poisson, quasi-Poisson, and
negative binomial; and for the count-part of the zero-inflated
and hurdle models (Table 1). Additionally, on the basis of these
seven variables, a backward selection by the AIC criterion was
performed on the zero-part of the hurdle model, leading to five
variables in the zero-part of the hurdle and the ZIP models
(Table 2).

Sample Data Set: Statistical Software
Analyses were performed using R 3.0.3 (22). The negative bino-
mial model was fitted using the glm.nb function from the MASS
package (23), the quasi-Poisson model with the glm() function by
setting family= quasipoisson() (6), and the hurdle model and the
zero-inflated models with the hurdle() and zeroinfl() functions,
respectively, from the pscl package (6, 24).

RESULTS: APPLICATION TO THE RESET
STUDY

Forty-eight fattening pig farms in Germany were investigated.
For each farm, the primary outcome was the count of samples
with cefotaxime-resistant E. coli (positive samples). To ensure

a structured approach in evaluating the competing models, a
model building strategy was established with a Poisson model as
a starting point (Figure 2).

In our analysis, the Poisson model exhibited slight overdisper-
sion (dispersion index φ = 1.55). Therefore, we investigated the
negative binomial and quasi-Poisson models within the model
selection process. The descriptive analysis of the observed data
(Figure 3) indicated some zero inflation. In total, 14.6% of the
samples were zero measurements potentially some being excess
zeros and some being zeros from the counting data part (Poisson
or NB), leading us to consider a hurdle model (with Poisson
distribution) and the ZIP model. We did not consider zero-
inflated/hurdle models with a negative binomial distribution for
the count-part of the model as there did not appear to be an
evidence of overdispersion in this setting after excluding the zero
counts [φ = 1.02 and no descriptive indication for overdispersion
in the count-part (compare simulated count data in Figure 1 and
observed count data in Figure 3)].

Comparing the model predictions for the Poisson, negative
binomial, ZIP, and hurdle models (Figure 3), the predicted out-
comes for the regression parameters for four or more positive
samples were all similar. For a smaller number of positive samples,
themodel predictions estimated in the ZIP and hurdlemodel were
almost identical and fitted well the observed data, whereas the
model predictions from the Poisson and negative binomialmodels
exhibited a lack of fit. The model with the smallest AIC was the
Poisson model, followed, in ascending order, by the hurdle, ZIP,
and negative binomial models (Table 2).

The Pearson residuals for the Poisson and the negative binomial
models appeared to violate the assumption of homoscedasticity
(Figure 4). Furthermore, the assumption of a larger variance in
the negative binomial model led to a wider range of fitted values
(0.7–15.6) indicating a poor model fit. The residuals for the zero-
inflated models (ZIP, hurdle) did not indicate any issues with
model fit. In summary, while the Poisson model had the smallest
AIC, the model predictions, and Pearson residuals indicated the
ZIP or hurdle model provided better model fit.

The model with the highest number of statistically signifi-
cant factors associated with antibiotic resistance was the Poisson
model (Table 2). The estimates for the Poisson and quasi-Poisson
model are identical by definition, but the SEs and resulting p-
values for the quasi-Poisson model were larger due to overdis-
persion. The count-part of the hurdle model indicated a sta-
tistically significant association between two variables (“moving
single pigs” and “origin of feed”) and a higher number of positive
samples, while the zero-part of the model showed a statistically
significant association between “having a separate pen for dis-
eased pigs” and a higher number of positive samples. However,
in the ZIP model, there were no statistically significant effects
due to larger SEs. Nevertheless, estimates for the variables of
“moving single pigs” and “origin of feed” were similar to the
hurdle model and the corresponding p-values were only slightly
above 0.05.

Next, a variable selection was performed to decide which of
these two models should be applied. In the main analysis, factors
for the zero-part of the ZIP and hurdle model were chosen using a
backward selection procedure based on the hurdlemodel resulting
in the following factors included in the zero-part: “separate pen
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TABLE 2 | Regression estimates*, SEs and p-values of the variables estimated in the Poisson, quasi-Poisson, negative binomial, zero-inflated Poisson (ZIP), and hurdle model.

Poisson Quasi-Poisson Negative binomial ZIP Hurdle

exp(β̂ββ) SE p-Value exp(β̂ββ) SE p-Value exp(β̂ββ) SE p-Value exp(β̂ββ) SE p-Value exp(β̂ββ) SE p-Value

Count
model/Count-part

Intercept 0.82 0.34 0.548 0.82 0.42 0.632 0.46 0.45 0.095 2.18 0.73 0.290 2.61 0.41 0.018

Moving single pigs 1.76 0.22 0.010 1.76 0.27 0.045 1.83 0.31 0.061 1.72 0.28 0.056 1.73 0.24 0.023
Separate pen for diseased pigs 1.74 0.20 0.005 1.74 0.25 0.030 1.85 0.30 0.047 1.50 0.26 0.127 1.44 0.21 0.084
Use of purchased feed only 0.56 0.19 0.003 0.56 0.24 0.022 0.49 0.29 0.018 0.64 0.24 0.072 0.65 0.21 0.042
Water birds in 1 km radius of farm 1.24 0.16 0.177 1.24 0.20 0.285 1.44 0.26 0.170 1.10 0.17 0.576 1.09 0.16 0.592
Disinfection of livestock trail after
housing out

2.21 0.24 0.001 2.21 0.30 0.011 3.01 0.33 0.002 1.15 0.45 0.761 0.99 0.26 0.977

Disinfection of livestock trail less
frequent than after housing out

1.64 0.29 0.086 1.64 0.36 0.176 2.46 0.44 0.046 0.95 0.46 0.914 0.83 0.31 0.555

Disinfection with chlorine 1.38 0.19 0.090 1.38 0.24 0.182 1.72 0.31 0.089 1.24 0.21 0.307 1.20 0.19 0.318
Number of fattening pigs (>1,000
to ≤1,500)

1.07 0.17 0.697 1.07 0.22 0.756 1.19 0.29 0.547 0.93 0.18 0.696 0.93 0.18 0.700

Number of fattening pigs (>1,500) 2.01 0.18 1.10×10−04 2.01 0.22 0.004 2.83 0.29 0.001 1.47 0.24 0.104 1.42 0.20 0.082

Zero-parta Intercept 2.81 1.28 0.419 3.32 1.18 0.309
Separate pen for diseased pigs 0.09 1.48 0.097 0.07 1.27 0.037
Use of purchased feed only 6.32 2.16 0.393 5.04 1.33 0.223
Water birds in 1 km radius of farm 0.10 2.6 0.382 0.16 1.55 0.240
Disinfection with chlorine 0.00 7,210.56 0.998 0.00 5,847.27 0.998
Number of fattening pigs (>1,000
to ≤1,500)

0.09 2.24 0.287 0.12 1.62 0.199

Number of fattening pigs (>1,500) 0.02 3.86 0.331 0.04 1.66 0.056

Akaike information criterion (AIC) 231.6385 231.6385 265.2818 233.2511 233.0947

The variables in the zero-part were chosen following a backward selection based on the AIC of the hurdle model.
*Interpretation of estimates in the count model/count-part: a one unit change in the predictor variable is associated with a (1−exp(β̂))∗100 percentage change of the expected sample count, holding other variables constant. Interpretation
of estimates in the zero-part: a one unit change in the predictor variable is associated with a (1 − exp(β̂))∗100 percentage increase of the odds (chance) of not having any positive samples.
aThe ZIP model estimates the probability for zero inflation and the hurdle model estimates the probability for hurdle crossing (non-zeros). Therefore, the estimates of the hurdle model were multiplied by (−1) to make them comparable to
the ZIP model.
Bold: p-values that passed the significance threshold (p< 0.05).
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FIGURE 2 | Flow chart for model building processes for count data.

FIGURE 3 | The histogram illustrates the observed count data. The lines
show the predictions from the different regression models [Poisson, negative
binomial, zero-inflated Poisson, hurdle model (Poisson)].

FIGURE 4 | Residual plots (Pearson residuals against the fitted values)
of the four models for count data in our study.
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TABLE 3 | Sensitivity analysis: the variables in the zero-part were chosen following a backward selection based on the Akaike information criterion (AIC)
of the zero-inflated Poisson (ZIP) model instead of the hurdle model (compare Table 2).

ZIP Hurdle

exp(β̂ββ) SE p-Value exp(β̂ββ) SE p-Value

Count-part Intercept 1.54 0.38 0.264 2.61 0.41 0.018
Moving single pigs 1.82 0.23 0.008 1.73 0.24 0.023
Separate pen for diseased pigs 1.66 0.20 0.011 1.44 0.21 0.084
Use of purchased feed only 0.62 0.20 0.015 0.65 0.21 0.042
Water birds in 1 km radius of farm 1.10 0.16 0.537 1.09 0.16 0.592
Disinfection of livestock trail after housing out 1.39 0.27 0.229 0.99 0.26 0.977
Disinfection of livestock trail less frequent than after housing out 1.13 0.32 0.703 0.83 0.31 0.555
Disinfection with chlorine 1.30 0.19 0.158 1.20 0.19 0.318
Number of fattening pigs (>1,000 to ≤1,500) 0.94 0.18 0.712 0.93 0.18 0.700
Number of fattening pigs (>1,500) 1.59 0.19 0.018 1.42 0.20 0.082

Zero-parta Intercept 0.38 0.68 0.151 0.40 0.58 0.114
Use of purchased feed only >1,000 >1,000 0.993 3.63 1.14 0.259
Water birds in 1 km radius of farm 0.00 >1,000 1.000 0.19 1.26 0.185
Number of fattening pigs (>1,000 to ≤1,500) 0.00 >1,000 1.000 0.22 1.20 0.214
Number of fattening pigs (>1,500) 0.00 >1,000 0.988 0.15 1.30 0.148

AIC 229.91 236.71

Estimates*, SEs, and p-values of the variables are given for the ZIP and hurdle model.
*Interpretation of estimates in the count model/count-part: a one unit change in the predictor variable is associated with a (1−exp(β̂))∗ 100 percentage change of the expected sample
count, holding other variables constant. Interpretation of estimates in the zero-part: a one unit change in the predictor variable is associated with a (1 − exp(β̂))∗ 100 percentage
increase of the odds (chance) of not having any positive samples.
aThe ZIP model estimates the probability for zero inflation and the hurdle model estimates the probability for hurdle crossing (non-zeros). Therefore, the estimates of the hurdle model
were multiplied by (−1) to make them comparable to the ZIP model.
Bold: p-values that passed the significance threshold (p< 0.05).

for diseased pigs,” “use of purchased feed,” “water birds in 1 km
radius of farm,” “disinfection with chlorine,” and “number of
fattening pigs” (Table 2). For the sensitivity analysis, the above
analysis was repeated by choosing factors for the zero-part of
these models using a backward selection procedure based on the
ZIP model (Table 3). This resulted in retaining the three factors
“use of purchased feed,” “water birds in 1 km radius of farm,”
and “number of fattening pigs” instead of the five factors initially
retained (Table 3). In this case, the AIC of the ZIP model was
even smaller than that of the Poisson model. For the count-part
of the ZIP model, four factors were statistically significant with
effect estimates similar to that of the Poisson and hurdle models.
However, the results for the zero-part of the ZIP model yielded
inflated estimates and SEs for nearly each factor under study,
whereas this was not the case for the hurdle model (Table 3).

Therefore, for our dataset we conclude that the hurdle model
is more stable than the ZIP model. Furthermore, interpretation
of the zero-part of the hurdle model is much more in line with
the underlying biology of the transmission of antibiotic resistance.
Factors in the zero-part of the model may be related to farms
without any resistant bacteria at all, whereas factors in the count-
part of themodel may be interpreted as factors associated with the
success of handling the resistance problem.

In contrast to the results by Hering et al. (17), the factors
associated with antibiotic consumption presented here are slightly
different. Variables that were applied to backward selection both,
in Hering et al. (17) and in the present publication were: “Sep-
arate pen for diseased pigs,” “Moving single pigs,” “Water birds
in 1 km radius of farm,” “Disinfection of livestock trail,” and
“Disinfectionwith chlorine.” The only factor with a p-value< 0.05

in both publications was “Separate pen for diseased pigs,” which
is a measure of hygiene indeed. Additional factors with a p-
value< 0.05 in the multiple Poisson regression by Hering et al.
(17) were “Ventilation” and “Control of flies with toxin” while
in the analyses presented here the variables “Moving single pigs,”
“Use of purchased feed,” “Disinfection of livestock trail,” and
“Number of fattening pigs (>1,500)” were identified also. In fact,
the factors identified here, seem to be more in line with the
biology of antibiotic resistance transmission. But, the results of
the Poisson model published earlier cannot be compared directly
with the results of the Poisson model presented here because the
hierarchical level of sampled animal group within farm was not
considered due to guarantee an “overall-stability” in the modeling
process.

In summary, we conclude, therefore, that the hurdle model is
the most appropriate model to analyze our data, despite the fact
that the Poisson model achieved the lowest AIC. While the resid-
ual plot of the Poisson model indicated variance heterogeneity
and partly larger residuals, the model predictions and Pearson
residuals indicated the hurdle model provided better model fit
with plausible estimates and SEs.

DISCUSSION AND RECOMMENDATIONS

In this paper, we address the problem of statistical model building
and selection for studies analyzing the association of antibiotic
resistance with environmental factors. These regression models
based on epidemiological data on a population level are needed to
identify potential intervention measures to reduce the occurrence
and transmission of resistance.
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The Poisson model is the most common model for count data
(here, number of resistant samples in a farm). However, in many
situations, this is not an appropriate model due to violations of the
general model assumptions. Therefore, it is essential to evaluate
the model assumptions for the Poisson model in a systematic
way in order to identify relevant factors associated with resis-
tance. Hence, the main objective of the paper was to demon-
strate possible strategies for model selection, taking into account
the two most important problem areas when modeling count
data, namely, over- or underdispersion and zero inflation, which
applies especially on epidemiological studies on the occurrence of
antimicrobial resistance in livestock.

Strong overdispersion can be handled through the use of a
negative binomial model. For more subtle overdispersion and
even underdispersion, the quasi-Poisson model can be used to
correct the SEs and resulting p-values, while zero-inflated models
or the hurdlemodel can be used to handle zero inflation.However,
the application of all discussed models is restricted to the case of
fixed sample size per herd. In the case of different sample sizes, the
observations need to be transformed so that they can be modeled
by the same distribution. Furthermore, we did not account for
the different nature of samples in the sample set. This could have
either been done bymodeling a hierarchical binomial distribution
instead of summarizing all samples to one count variable or by
weighting the samples according to their nature.

In practical studies, over- or underdispersion and zero inflation
are accompanied with the problem of misclassification of out-
come. For the topic addressed here, observed zeros are “true zeros”
and “false-negative zeros,” where within the “true zeros” farms
were includedwith no resistance at all. As in other epidemiological
studies in veterinary science, this aspect has to be discussed in
detail, especially in the light of the multistep isolation procedure
suggested in this study. In principal, this is due to two compo-
nents, the laboratory sensitivity as well as the sampling sensitivity.
In our study, the diagnostic protocol was developed with a special
emphasis on identifying ESBL positives, i.e., with enrichment on
the resistant bacteria. This protocol developed in the RESET-
consort meanwhile is approved by the EFSA. In general, it is
stated that the diagnostic sensitivity is close to 100% due to the
enrichment procedures. Therefore, the impact of false-negatives
may be neglected from the laboratory process and may appear
only by the sampling procedure. Here, 10 samples per farm were
chosen following the general concept of EFSA-baseline studies
to narrow this error.2 Taking these both points into account, the
number of false-zeros may be neglected in our study and models
including the false-negative rate were not incorporated into the
model building process.

This paper investigates statistical models for the analyses
of count data using a study of cefotaxime-resistant E. coli in

2 https://www.efsa.europa.eu/.

German fattening pig farms as an example for the model selection
process. In general, results of epidemiological multifactor models
vary depending on the choice of the statistical model. Therefore,
it is not recommended to strictly define the models to be used
in the study protocol but to define the model building process,
depending on whether the final data fulfill the model assump-
tions. In detail, our results indicate that for analyzing count data
of antibiotic resistance in small study populations (n= 48), the
hurdle model might be more appropriate to handle a moderate
excess of zeros which is in line with Xu et al. (19) who pointed
out that the hurdle models are more stable when structural zeros
are absent. However, given our application to only a single dataset,
more comprehensive studies would be needed to confirmwhether
our findings can be generalized. Furthermore, if structural zeros
are believed to exist due to misclassification and the interest is in
modeling them, the zero-inflated models should be chosen. The
probability to observe counts greater than zero in the Poisson or
negative binomial part of the model can then be interpreted as
diagnostic sensitivity. However, in this case, if non-convergence
is encountered, a larger sample size is probably required (19). In
addition, our results show that the decision for the most appropri-
ate model should not be based on the AIC only. It is important to
compare the observed values with the model predictions and to
perform a residual analysis (Pearson residuals).

Motivated by our analysis, we conclude that the recommen-
dation scheme provided in Figure 2 should be used to find the
most appropriate method to handle count data in the case of
over-/underdispersion and/or zero inflation.
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