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In some animals, the typical body temperature can be higher than humans, for example, 
42°C in poultry and 40°C in rabbits which can be a potential thermal stress challenge 
for pathogens. Even in animals with lower body temperatures, when infection occurs, 
the immune system may increase body temperature to reduce the chance of survival 
for pathogens. However, some pathogens can still easily overcome higher body tem-
peratures and/or rise in body temperatures through expression of stress response 
mechanisms. Salmonella is the causative agent of one of the most prevalent foodborne 
illnesses, salmonellosis, and can readily survive over a wide range of temperatures due 
to the efficient expression of the heat (thermal) stress response. Therefore, thermal 
resistance mechanisms can provide cross protection against other stresses including 
the non-specific host defenses found within the human body thus increasing pathogenic 
potential. Understanding the molecular mechanisms associated with thermal responses 
in Salmonella is crucial in designing and developing more effective or new treatments 
for reducing and eliminating infection caused by Salmonella that have survived heat 
stress. In this review, Salmonella thermal resistance is assessed followed by an overview 
of the thermal stress responses with a focus on gene regulation by sigma factors, heat 
shock proteins, along with the corresponding thermosensors and their association with 
virulence expression including a focus on a potential link between heat resistance and 
potential for infection.

Keywords: Salmonella, thermal stress response, heat shock proteins, sigma factor, virulence

iNTRODUCTiON

Salmonella is a Gram-negative foodborne pathogen that is a major concern for the food industry 
and public health authorities because of its capability to cause both widespread contamination and 
infection within the United States (US) and worldwide (1–5). An estimated one million cases of 
Salmonella-related illnesses occur annually within the US. For example, in 2014, Salmonella was 
responsible for 10 multistate outbreaks with approximately 1,000 reported outbreak cases (3, 6). 
Numerous strategies have been implemented to reduce Salmonella transmission, contamination, 
and infection. Salmonella infections are most commonly acquired through ingestion of con-
taminated foods such as eggs and poultry meat (7). Salmonella can colonize the small intestines of 
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poultry birds, along with the cecum, without demonstrating any 
symptoms related to Salmonella infections. Therefore, poultry 
serves as an efficient vector of transmission for multiple serovars 
of Salmonella to humans through consumption of contaminated 
food products.

In order for Salmonella to survive and colonize the human 
body, it must overcome multiple non-specific host defenses 
encountered within the host such as low pH, limited nutri-
ent availability and in poultry birds, a high body temperature 
(42°C). Due to the wide temperature range that Salmonella may 
grow in, it must possess specific mechanisms that can overcome 
thermal stress to proliferate and survive. However, prior to 
ingestion, Salmonella is already preexposed to a higher core body 
temperature in poultry compared to humans (37°C). During 
infection, one of the primary defenses of the innate immunity is 
an increase in body temperature through pyrogens (antigens that 
stimulate fever) such as lipopolysaccharide found in the cell wall 
of Gram-negative bacteria (8). This preexposure could increase 
the potential of Salmonella to establish infection of the host due 
to adaption to higher temperatures. Therefore, the aim of this 
review is to provide an overview of phenotypic and molecular 
responses to temperature changes as it relates to poultry, thermal 
stress regulation, and how this increases pathogenic potential of 
Salmonella.

THeRMAL AND NON-THeRMAL 
STReSSeS

With over 2,500 serovars of Salmonella, several have developed 
the ability to overcome high temperatures allowing for survival 
through thermal processing; however, this is strain specific 
(9–11). O’Bryan et al. (12) reviewed the thermal resistance of 
Salmonella species and other foodborne pathogens associated 
with meat and poultry. They concluded that a variety of fac-
tors and parameters are involved in the thermal resistance and 
inactivation of those pathogens and spoilage microorganisms 
such as various temperature exposures, growth phase, and the 
intrinsic conditions of the food product. Strains of the same 
microbial species were found to be capable of responding differ-
ently to the same treatments possibly due to specific variations 
in gene composition for each respective strain. Likewise, the 
stages of growth, the age of the culture, and the conditions of 
bacterial growth have yielded various outcomes regarding heat 
inactivation or destruction of microorganisms, which could 
contribute to determining the best methods to reduce microbial 
growth and contamination within these products (12).

There are several factors that allow Salmonella strains to 
survive the food processing environment and overcome ther-
mal treatment. For example, preexposure to stress and growth 
conditions prior to thermal treatment could increase survival 
capability during processing. Specifically, S. Senftenberg was 
found to survive in broiler litter for up to 24  h at 80°C (13). 
Microorganisms tested against heat are known to elicit different 
responses in regard to prior growth conditions with stationary 
phase cells being more resistant to heat than log phase cells 
(14–16). In addition, stressed cells such as those exposed to 
temperatures slightly above an organism’s optimal growth range 

(heat shocked cells), those grown on limited carbon sources, 
those experiencing desiccation, and those undergoing starva-
tion stress prior to heat treatments have been shown to exhibit 
more thermal tolerance (17–21).

Exposure to non-thermal stress may also have an impact 
on the capability of Salmonella to respond to thermal threats. 
For example, Milillo and colleagues concluded that combining 
organic acids with heat can effectively reduce Salmonella over a 
short period of time (22, 23). They applied mild thermal treat-
ments and organic acids with a 1-min exposure time. Sodium 
propionate in combination with heating was demonstrated to 
be the most significantly effective for reducing viable Salmonella 
(22). In a follow-up study, Milillo et al. (23) conducted microarray 
experiments to explore the specific response of S. Typhimurium 
to organic acids in combination with heat. Exposure to sodium 
acetate with heat (55°C) and sodium propionate with heat (55°C) 
led to differentially 288 (124 upregulated and 168 downregulated 
genes) and 319 (131 upregulated and 181 downregulated genes) 
gene expression level changes, respectively. Numerous heat 
shock genes including dnaK, hptJ, dnaJ, grpE, clpP, and hscAB 
were repressed by both treatments. They concluded that this 
synergism may be attributed to damage in the synthesis of heat 
shock genes of S. Typhimurium due to membrane damage. Given 
the potential for such synergism among otherwise unrelated 
interventions, there may be opportunities for optimizing hurdle 
technologies in the food industry and demonstrating the utility 
of using genomic screening to develop application approaches for 
these technologies.

THeRMOSeNSORS

In order for Salmonella to overcome and adapt to an ever-changing 
environment it must overcome stressors encountered during its 
travel through the host; therefore, adaptation through sensory 
mechanisms is imperative. Thermosensors are considered the 
cell’s “thermometer” by utilizing various types of biological sys-
tems to detect temperature fluctuations within the cell. There are 
four different groups of thermosensors including proteins, lipids 
and membrane fluidity, RNA’s that are temperature responsive, 
and DNA structure and topology. Thermosensors play a major 
role in temperature detection and are found within the 5′ UTR 
region, which can regulate gene expression to produce adaptive 
heat stress responses. When temperature decreases or increases 
to harmful levels, stress responses (cold and heat shock) are 
needed to protect the bacterial cell and are thoroughly depend-
ent on bacterial signal transduction mechanisms (24). Genes 
involved in these mechanisms are regulated at different genetic 
stages beginning from transcription through translation and into 
posttranslational levels (25, 26).

As a protective reaction, misfolded and unfolded proteins are 
present in considerable numbers in the cytoplasmic membrane 
and the outer membrane during exposure to higher than optimal 
temperatures which, in turn, initiates the expression of heat  
shock proteins (HSPs) through the regulation of the heat shock 
factor σH (27–31). Proteins involved in heat shock are summa-
rized in Table  1. Induction of HSP formation is accomplished 
through the production of chaperones, proteases, and small heat 
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TAbLe 1 | Proteins involved in heat shock and their function are described.

Summary of proteins involved in heat shock

Protein Function Reference

DnaK DNA replication under heat shock; chaperone protein (23)
DnaJ Prevents aggregation of denatured proteins under 

hyperosmotic and heat shock
(23)

GrpE Nucleotide exchange factor for DnaK; thermosensor (23)
ClpP Protease that degrades regulatory proteins (23)
HscAB Chaperone; maturation of iron–sulfur clusters during 

heat shock
(23)

σH and σ32 Regulators heat shock response; controls envelope 
stress response to heat shock, acid stress

(27, 38–40)

FourU Thermosensor; temperature-responsive RNA element (40–46)
TlpA Unknown but suggested to be a transcriptional 

regulator
(25, 47)

HtrA Thermosensor endopeptidase; chaperone in the  
outer membrane and degrades misfolded proteins

(48–54)

RpoSa General stress response sigma factor; DNA repair 
under stress

(55, 56)

FkpA Involved in intracellular survival of macrophages (57, 58)
SurAa Outer membrane protein development and assembly; 

folding of proteins involved in transportation channels
(59–64)

H-NS Virulence factor regulator under thermal changes (65–70)

aThose involved in both heat shock and virulence.
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shock proteins (s-HSPs). These function in protection, refolding 
salvaged proteins, removing damaged proteins, and repairing 
degrading protein aggregation (32–37).

FourU is a family of thermosensors located at the untrans-
lated region (5′-UTR). This temperature-responsive RNA ele-
ment contains a stretch of four uridine nucleotides within the 
ribosomal binding site. It pairs with a sequence of AGGA and 
was initially discovered in S. Typhimurium as the small heat 
shock gene agsA, aggregation suppression A (40–46). Afterward, 
a similar RNA thermometer was also confirmed to be associated 
with Yersinia virulence through the induction of the transcrip-
tional activator lcrF (44, 71).

TlpA, TIR-like protein A, is considered one of the first 
reported proteins with thermosensory gene regulation activity 
to the high temperature response (HTR) encoded by Salmonella 
enteric virulence plasmid, pSLT (25, 47). It is a robust homolog 
to a eukaryotic protein family known as tropomyosin, and 
the structure of TlpA is in a dimer form with an unusually 
long alpha-helical coiled coil structure (72). It consists of an 
N-terminal DNA binding domain and exhibits transcriptional 
autoregulatory repression activity. At temperatures below 30°C, 
the transcription of tlpA is low and the TlpA repression activ-
ity is high. The TlpA exists in two forms, as a dimeric α-helical 
(folded) coiled coil oligomer at low temperature (28°C) and an 
unfolded (non-functional) monomer at high temperature (37°C) 
that leads to increased transcription (25, 73, 74). Although the 
function of this protein is still unidentified, it was demonstrated 
that this transcriptional regulator was not essential for virulence 
of Salmonella using a mouse infection model (75).

Another thermosensing gene known as htrA, high temperature 
requirement A, is a member of the serine proteases group within the 
endoproteases family and is regulated by sigma factor E (48–52).  
It is a highly conserved gene in numerous microorganisms and 

was first discovered in Escherichia coli as degP. At low tempera-
ture, the protein HtrA (DegP) functions as a chaperone in the 
outer membrane; however, at high temperatures, it acts as a 
protease to degrade misfolded proteins with ATP-independent 
activity and other cofactors (53, 54). An earlier study also linked 
the activity of this gene to its sensitivity to thermal stress (76).  
A strain with a mutation in this gene exhibited an inability to 
grow at high temperature characterized by the inability to degrade 
unfolded proteins in the periplasmic space. S. Typhimurium was 
less affected by the sigma factor E mutation than E. coli (77–79).

CeLLULAR ReSPONSeS AND 
ReGULATiON TO HeAT STReSS

Salmonella can proliferate either in a planktonic form, floating 
freely within a liquid medium, or attach and grow while immo-
bilized to a solid medium. A large number of proteins form the 
family of s-HSP that consists of proteins with up to 50 amino 
acids, which are considered energy free and universally found 
in numerous microorganisms with diverse group and variable 
molecular weights. These proteins possess chaperone-like func-
tions and commonly maintain protein homeostasis. The s-HSPs 
are active primarily during stress to stabilize cell proteins at 
diverse cellular activities (metabolism, translation, transcription, 
and others), binding unfolded proteins and forming a complex 
that blocks non-specific irreversible aggregation (80–83). With 
the detection of heat stress, the adaptive regulation of genes is 
initiated with the expression of sigma factors. Two sigma factors 
are generally expressed: a cytoplasmic thermal stress response 
regulated by heat shock sigma factor, σH or σ32, and an extracyto-
plasmic thermal stress response regulated by the extracytoplas-
mic function sigma factor, σE or σ24, also known as extreme heat 
stress sigma factor (84–88).

Sigma factors comprise a large group of genes expressing 
proteins with critical mechanisms associated with the RNA 
polymerase holoenzyme complex that function as guidance for 
core RNA polymerases to recognize their promoters and initi-
ate transcription. The sigma factors are primarily divided into 
two categories, sigma factor 70 family (σ70) that coordinates the 
transcriptional activities in various stress responses, also known 
as σA in Bacillus subtilis and other bacterial species (51, 89–91),  
and a second identified family of sigma factors encoded by 
rpoN, known as sigma factor 54 (σ54/N) (92–94), identified in 
Campylobacter jejuni, Enterococcus faecalis, Listeria monocy­
togenes, and Pseudomonas spp. (29, 95–97).

Heat shock responses are regulated by the alternative sigma 
factors σ32/H and σ24/E. These two factors make up the third and 
fourth subgroups of sigma factors encoded by rpoH and rpoE 
genes, respectively (98, 99). rpoH regulates the transcription 
of heat shock genes and is itself regulated during translation. 
When the temperature is at an optimal microbial growth range, 
the translation of the rpoH gene is blocked. The stem III and I of 
the rpoH mRNA secondary structure is liberated with increas-
ing temperatures (42°C), facilitating the ribosomal binding and 
enhancing the efficiency of translation (27, 38–40). Sigma factors 
associated with heat stress response have been demonstrated to 
regulate over a 100 genes. Of those, sigma factor σ32/H controls 
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more than 30 proteins, most of which are associated chaperones 
and proteases (30, 31, 100–103). A more recent study by Lim  
et  al. (104) made it clear that σ32/H is not just localized at the 
bacterial cytoplasm but is also found in the inner membrane 
through a direct interaction with the signal recognition particle 
and its signal receptor.

Proteases expressed by sigma factor σ32/H can control and 
decrease the expression of the membrane HSPs to a level as 
needed by the cell to withstand environmental stresses. For 
instance, FtsH is one of the ATP-dependent proteases, which 
possesses numerous cellular functions and has been dem-
onstrated to be very critical to E. coli viability (105–108). In 
addition, FtsH functions as a protein qualifying protease and 
has a role in membrane protein degradation activities primarily 
those with SsrA-tagged cytoplasmic proteins at their carboxy 
terminal (109, 110). FtsH degrades MgtC, a membranous 
protein with five transmembrane domains. MgtC, a virulence 
factor, has been identified as being required for survival inside 
macrophages (111). Katz and Ron (108) demonstrated a main-
tenance role of FtsH for lipopolysaccharide biosynthesis with 
a shielding permeability function (108, 112–114). Although 
σ32/H and σ24/E are alternative sigma factors, σ32/H regulates 
HSPs for the cytoplasmic components and σ24/E regulates the 
extracytoplasmic (cell envelope) proteins in response to high 
temperatures and other envelope stress factors (50, 52, 88, 
115–118). An interesting finding is that one of the four promot-
ers of rpoH gene expression is regulated by σ24/E for additional 
coordination of thermal responses requiring both cytoplasmic 
and extracytoplasmic components (119–124).

HeAT SHOCK AND viRULeNCe

The adaptation of Salmonella to heat shock can also lead to a 
range of other effects, including an increase in virulence poten-
tial through gene regulatory mechanisms. Exposing Salmonella 
to thermal stress results in protective responses and can induce 
changes in gene expression levels of virulence genes. Numerous 
chaperones and proteases regulated by the alternative heat shock 
factors, σH/32, σE/24, and others such as σS (RpoS) are notably 
involved in bacterial virulence with several studies linking these 
proteins to Salmonella and E. coli virulence factors (51, 125–129). 
Although both σH/32 and σE/24 are regulators for heat shock stress, 
their molecular mechanisms for initiation responses are not 
similar.

Sirsat et  al. (130) examined the effect of heat stress on  
S. Typhimurium gene expression using transcriptional profiling. 
Microarray analysis was applied to identify the thermal stress 
response of S. Typhimurium at a sublethal temperature of 42°C 
with 144 upregulated and 167 downregulated genes detected. 
These genes belonged to various functional categories, but 
primarily to the general stress response sigma factor S (RpoS) 
and HSPs, and to sigma factors H and E (RpoH and RpoE). The 
latter protein has been shown to be critical in the virulence of 
numerous pathogens (131–133). However, RpoS regulates genes 
responsible for lethality in mice where preadaptation through 
RpoS by increasing virulence potential of Salmonella cells that 

survive processing as suggested by Dodd and Aldsworth [(55); 
Ibanez-Ruiz et  al. (56)]. Therefore, sigma factors and HSPs 
may increase pathogenic potential by overcoming various 
stressors and increasing pathogenic and colonization potential. 
Interestingly, research has indicated that RpoS can function as 
a DNA repair protein that is active under stressful conditions. 
Thermal stress can induce DNA damage suggesting that there is 
correlation between thermal stress, the general stress response, 
and virulence of Salmonella (56). However, more research is 
needed to confirm this. Generally, genes associated with stress 
and energy metabolism represent the first responses of the cells 
to tolerate heat stress. These genes may possibly give the patho-
gen cross-resistance to other stresses and result in more virulent 
cells. The study conducted by Sirsat et al. (130) was considered 
the first to report that sublethal heat stress-influenced Salmonella 
interaction with Caco-2 cells through the expression of fimbriae-
associated genes. Genes of two Salmonella pathogenicity islands 
(SPI-2 and SPI-5) were upregulated, resulting in improved adhe-
sion (SPI-5 only) and survival in the host while genes of SPI-1 
were downregulated.

A loss of rpoE gene activity has also been shown to cause a 
defect in cell viability of E. coli and increase cell envelope stress (50, 
118, 122, 134). In Salmonella, rpoE mutants were found to be less 
responsive to heat shock temperatures, exhibiting an intracellular 
defect in the survivability within a macrophage and becoming 
avirulent in a mouse infection model (126, 135–137). In addition, 
the rpoE gene has been shown to be essential in response to star-
vation stress (138), oxidative stress (92), antimicrobial peptide 
resistance (139), and osmotic and cold stresses (127). Lewis et al. 
(128) discovered that both functions of htrA, are important with 
the function of the proteases being most critical inside the host.  
A more recent study verified that HtrA protein activity is criti-
cal for S. Enteritidis persistence in egg whites at 42°C (129).

FkpA, an FKBP-type periplasmic peptidyl-prolyl cis/trans 
isomerase (PPIase), is involved in heat tolerance (116). This 
protein is comparable to proteins known as macrophage 
infectivity potentiators found in other pathogenic bacteria 
and improves the survivability and proliferation inside the 
macrophages and epithelial cells (140). Horne et al. (141) dem-
onstrated that a mutation in fkpA causes the corresponding 
Salmonella strain to become avirulent; however, Humphreys 
et al. (57) argued that a single mutant deletion of fkpA was not 
enough to reach that conclusion. They observed that only when 
combining that mutation with one of the other σE regulated 
genes, surA or htrA, would the virulence of S. Typhimurium be 
disrupted (57, 58). In a more recent study reported by Weski 
and Ehrmann (142), they conducted a genetic analysis of chap-
erones and proteases of E. coli associated with the cell envelope, 
evaluating single and double mutant deletions under different 
growth conditions. A fkpA mutation was examined at 37 and 
42°C using rich medium agar plates with and without 0.5 M 
NaCl with the corresponding mutants found to not exhibit 
any detectable defects under any of the conditions. However, 
when combining this strain with another mutation in dsbA, 
disulfide bond formation A, the strain displayed weak growth 
on the hyperosmolar media when incubated at 37°C, while 
no sign of growth was observed on the hyperosmolar media 
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when incubated at 42°C with a minimal growth of dsbA single 
mutants at the latter condition (142, 143).

SurA, survival protein A, is also a PPIase. It is regulated 
by σE and contributes to thermotolerance fitness. This protein 
participates in outer membrane protein (OMPs) development 
and assembly and plays a role in the folding of transportation 
channels, known as porins (59–64). Sklar et al. (62) observed 
that the surA role is associated with the initial phases of OMP 
biosynthesis. Previously, Tormo et al. (144) had demonstrated 
that surA was critical to E. coli for survival during stationary 
phase. Tamae et al. (145) screened approximately 4,000 single 
mutant deletions, among them a ΔsurA that exhibited chemi-
cal sensitivity to the drugs and detergents used in the study. It 
is not clear whether similar functionalities exist with surA in 
Salmonella but it does appear to have the same association with 
virulence in the host. Sydenham et al. (146) found a mutation 
of surA in S. Typhimurium that exhibited extensive attenuation 
when introduced to mice orally or intravenously. It has also been 
demonstrated in several studies that surA is a critical factor for 
OMP transport and associated with virulence of uro-pathogenic 
E. coli and Salmonella (64, 147). Using a high-throughput 
Tn-seq technique to screen the entire genome, Khatiwara et al. 
(148) identified numerous genes in S. Typhimurium associated 
with high temperatures with surA identified as a gene associated 
with growth at 42°C.

Numerous studies have associated virulence factors with 
thermal changes that mediate DNA topology. These modifica-
tions include overall DNA helical conformation “supercoil-
ing,” the degree of helical twists and coiling (25, 149–152), or 
alterations in the specific-sequence curvature of chromosomal  
or plasmid DNA (153–156). Some studies have demonstrated 
that DNA topology plays a role in Salmonella pathogenicity 
(157, 158). Positive DNA supercoiling after heat exposure  
causes DNA to be twisted in a right-handed fashion until it 
generates a knot, as seen mainly in plasmid DNA, and is con-
trolled by DNA gyrase and topoisomerase I. Changes at the level 
of DNA supercoiling trigger SPI-1 gene expression levels and 
initiate the subsequent intestinal invasion. Once inside the host 
cells, the DNA changes its form and as a result, SPI-2 genes are 
induced (159, 160). For a more detailed discussion of SPI-1 and 
SPI-2 regulation, please see Ref. (160).

The second mechanism is through a recognized bending 
DNA sequence “promoter-curvature.” Commonly, this bending 
DNA region is an AT-rich sequence that has been primarily iden-
tified in the 5′-end upstream of the promoter region influencing 
RNA polymerase binding as a silencing factor. Initially, thermal 
stress induces some alterations in the DNA topology as bends in 
the AT-rich sequence regions on the transcriptional level. This 
can influence the interaction between RNA polymerase and the 
promoter region, altering gene expression (155, 156).

CROSS PROTeCTiON

The microorganisms’ responses to temperature changes 
(inflammation, fever) vary from one microorganism to another 
with cell metabolic changes occurring when sensing external 
environmental shifts resulting in protection from certain 

stresses and/or cross protection for other additional stresses  
(130, 161, 162). This can be a major concern within the host by 
increasing potential for overall pathogenesis. Prior exposure 
to prevention strategies utilized within industry before human 
consumption occurs could increase survivability of Salmonella 
and their ability to establish infection once ingested (163). When 
Nielsen et  al. (164) compared two different growth forms of  
S. Typhimurium, immobilized versus planktonic cells, diverse 
responses were elicited in response to heat shock at 45°C for 
30  min. The results revealed that 538 genes were expressed 
differently with flagellar and virulence genes upregulated in the 
immobilized heat stressed cells compared to the non-stressed 
cultures. Greater invasiveness was observed in immobilized 
HeLa cells after this sublethal treatment compared to decreased 
invasiveness in the planktonic cells. Based on this study, it would 
appear that inadequate cooking and heat treatments during 
food processing could actually increase survival and thermal 
resistance of Salmonella and other foodborne pathogens through 
cross protection by increasing virulence capability (164–166).  
Gruzdev et  al. (21) found that desiccated Salmonella cells in 
sterile deionized water showed high tolerance to dry heat at 60°C 
with no significant population change within 1 h, in comparison 
to a 3-log reduction in the number of non-desiccated cells under 
identical conditions. A previous study also found that Salmonella 
cells that had previously adapted to desiccation conditions 
survived substantially longer in aged chicken litter than non-
adapted control cells exposed to the same treatment (13).

However, as environmental conditions change, Salmonella 
must be able to rapidly adapt through alterations in gene expres-
sion in order to overcome stress efficiently. For example, this can 
be accomplished through attachment, which results in a phe-
notypic change allowing Salmonella to become more resistant to 
thermal stress than cells in planktonic form (167–170). Multiple 
studies have concluded that modifications of the membrane fatty 
acid composition of Salmonella strains were directly associated 
with their ability to resist thermal treatment where those cells 
with less membrane fluidity possessed greater thermal resistance 
(171–174). Similarly, in E. coli, the increase in membrane fluidity 
also leads to increased synthesis of HSPs, thus suggesting that 
membrane composition is directly related to thermal resistance 
(175). Under low temperatures, the physiological state of the cell 
can switch to a reversible, less fluid like lipid bilayer, whereas  
under high temperatures, the state of the cell switches to a 
membrane with higher fluidity. This is regulated by thermosen-
sors (175). A review by O’Bryan et al. (12) noted that foodborne 
pathogens in contaminated food products possessing a high fat 
content demonstrated increased pathogenic potential.

A well-known gene encodes for nucleotide-associated protein 
(H-NS), a histone-like nucleotide-structuring protein, which 
has been associated with virulence factors as a temperature-
dependent phenotype (65–70). This protein is considered a com-
mon transcriptional regulator that can be induced by thermal 
changes in Salmonella. At low temperature, H-NS binds to an 
AT-rich sequence and forms a complex. When temperature rises 
to 37°C (host body temperature), the binding capacity is reduced 
until dissociation occurs, leading to virulence gene expression. 
This mechanism was demonstrated in E. coli K-12 to control over 
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60% of the genes regulated by temperature including virulence 
factors (176). The association of H-NS with virulence has been 
verified in other pathogens such as Salmonella (69, 177–179), 
Shigella, Yersinia enterocolitica, and Yersinia pseudotuberculosis 
(180–182). Two studies were conducted to identify the mecha-
nism of H-NS in Salmonella. The first study was performed on 
S. Typhimurium LT2, and it was noted that H-NS negatively 
regulated approximately 254 genes (69). The second study was 
carried out on S. Typhimurium 14028 (183), and it was discov-
ered that 265 unique Salmonella genes were negatively associated 
with H-NS which contained low G + C content (183). In both 
studies, among the identified genes were those present in SPI-1, 
2, 3, and 5 (184–186).

A more recent study by Pesingl et  al. (187) demonstrated 
that protein-l-isoaspartyl methyltransferase (PIMT) is required 
by Salmonella to survive at 42°C and it in turn contributes to 
virulence capability in poultry (body temperature of 42°C). 
Proteins were susceptible to damage induced by thermal stress 
and thus PIMT assisted in prevention and repair of proteins. 
Under stress, aspartate is converted to iso-aspartate, which can 
lead to unfolded proteins and modified amino acids residues 
(188). Pesingl et al. (187) found that PIMT contributes to sur-
vival under both thermal and oxidative stress during stationary 
phase due to its direct role in protection of proteins at elevated 
temperatures. Therefore, further research is needed in the cor-
relation between the heat shock responses and virulence gene 
expression and how their respective regulation patterns influ-
ence the pathogenic potential of Salmonella.

CONCLUSiONS

Salmonella typically encounters various thermal stresses 
that can be host-specific and can represent a component of 
the overall immune and physiological response to infection. 
However, Salmonella spp. have developed thermal resistance 
mechanisms to overcome these changes in host temperature 

through the induction of stress response mechanisms. In par-
ticular, sigma factors play a leading role in thermal stress res-
ponse. Preexposure to thermal stress can lead to an increase in 
pathogenic potential through activation and regulation of genes 
associated with thermal stress. This thermal stress response can 
influence the activation of genes associated with virulence and 
the general stress response allowing for Salmonella to overcome 
host defenses and establish infection. The type of host can also 
play a role on the ability to establish infection. A host with a 
higher body temperature than humans could activate thermal 
stress resistance mechanisms allowing for easier coloniza-
tion and establishment of infection compared to a host with a  
body temperature at 37°C in which these thermal stress resist-
ance mechanisms are not expressed. An understanding of the 
Salmonella thermal resistance is essential for elucidating survival 
and infection mechanisms. It could be useful to identify specific 
targets for prevention and treatment of Salmonella infections. 
Therefore, it is imperative that the proteins involved in regula-
tion and activation of these genes be thoroughly studied in order 
develop novel strategies to reduce outbreak cases and infection 
in all types of hosts.
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