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Disease biogeography is currently a promising field to complement epidemiology, and 
ecological niche modeling theory and methods are a key component. Therefore, apply-
ing the concepts and tools from ecological niche modeling to disease biogeography 
and epidemiology will provide biologically sound and analytically robust descriptive and 
predictive analyses of disease distributions. As a case study, we explored the ecologically 
important fish disease Heterosporosis, a relatively poorly understood disease caused by 
the intracellular microsporidian parasite Heterosporis sutherlandae. We explored two 
novel ecological niche modeling methods, the minimum-volume ellipsoid (MVE) and the 
Marble algorithm, which were used to reconstruct the fundamental and the realized 
ecological niche of H. sutherlandae, respectively. Additionally, we assessed how the 
management of occurrence reports can impact the output of the models. Ecological 
niche models were able to reconstruct a proxy of the fundamental and realized niche 
for this aquatic parasite, identifying specific areas suitable for Heterosporosis. We found 
that the conceptual and methodological advances in ecological niche modeling provide 
accessible tools to update the current practices of spatial epidemiology. However, careful 
data curation and a detailed understanding of the algorithm employed are critical for a 
clear definition of the assumptions implicit in the modeling process and to ensure bio-
logically sound forecasts. In this paper, we show how sensitive MVE is to the input data, 
while Marble algorithm may provide detailed forecasts with a minimum of parameters. 
We showed that exploring algorithms of different natures such as environmental clusters, 
climatic envelopes, and logistic regressions (e.g., Marble, MVE, and Maxent) provide 
different scenarios of potential distribution. Thus, no single algorithm should be used for 
disease mapping. Instead, different algorithms should be employed for a more informed 
and complete understanding of the pathogen or parasite in question.
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InTRoDUcTIon

Disease biogeography is the study of the geographic distribution of infectious diseases (1). It is 
a powerful approach for mapping disease events, which can inform decision-makers, managers, 
researchers, and animal and public health specialists (2, 3). Disease biogeography has been proposed 
as a promising field that can help understand why diseases emerge in one site, but not in another 
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FIgURe 1 | The theoretical scenarios of Fundamental (NF) and Realized Niches (NR) of an aquatic parasite in environmental space. Left: all the set of abiotic 
environmental conditions suitable for the parasite resembling NF (teal cloud). Right: the sub-set of abiotic environmental conditions suitable for the species 
resembling NR (teal cloud). In this scenario, the species is restricted to a portion of NF due to the effect of biotic interactions (red; e.g., competition with other 
parasites or absence of fish hosts in the red region making this portion of the niche unusable). Note the background of abiotic environmental conditions available for 
the species (gray lines) composed by water temperature and sunlight.
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(descriptive analyses), and also provides information to identify 
suitable areas where outbreaks could occur in the future (predic-
tive analysis) (1).

conceptual Bases
According to the assumption of disease biogeography, diseases 
are not distributed at random across the landscape, instead occur 
in non-random tractable and quantifiable landscape or environ-
mental conditions. Disease biogeography incorporates the con-
cept of the ecological niche as a crucial element to understand the 
environmental requirements of a disease transmission system 
as well as the geographic distribution of the species involved 
in the system (1, 2). Disease biogeographers use the conceptual  
bases and methods from the field of ecological niche modeling to 
make disease biogeography more quantitative (3, 4). Ecological 
niche modeling links field reports with environmental variables, 
allowing for development of the descriptive and predictive anal-
yses required by disease biogeography. When ecological niche 
modeling is used for spatial epidemiology, it varies in complex-
ity, ranging from simple “black-box” approaches (focusing on 
infected individuals only to reconstruct the conditions where 
the disease may persist) to more complex hierarchical ecologi-
cal niche models (including several components of the disease 
system, e.g., intermediate host, reservoir, vector) (2). Black-box 
ecological niche models are usually employed for rare diseases 

where data for susceptible individuals, reservoirs, and vectors is 
scarce (3). Complex ecological niche models can be developed 
when more information is available, such as seasonality, density 
of vectors and reservoirs, and immunity of susceptible hosts, 
allowing to identify with more detail the different levels of 
disease transmission risk across areas, periods, and populations 
(1).

Theoretically, species’ niches can be described as Fundamental 
Niche (NF) and Realized Niche [NR (5, 6); Figure  1]. The NF 
would resemble the abiotic conditions not modifiable by the 
species and that are necessary by the species to survive and, 
most importantly, to maintain populations in the long term 
without the need for immigration. The NR is represented by the 
portion of the NF that is actually occupied by the species (2). 
NF and NR are usually estimated in ecological niche modeling 
based on field observations also termed occurrences and the 
environmental conditions in a region, here termed background. 
In the field of ecological niche modeling, considerable efforts 
have been made to develop methods and environmental vari-
ables to determine the NF and NR of species under the assump-
tion that occurrences ⊆ NR ⊆ NF ⊆ background. Ecological niche 
modeling estimations are therefore developed in environmental 
dimensions to be later projected to geography in the form of 
maps of areas occupied and potentially occupied by the species 
in question (Figure 1).
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FIgURe 2 | Species used in this exploration. (A) Necrotic muscle tissue of the fish Fathead minnows (Pimephales promelas) infected with large aggregations of 
spores from the parasite Heterosporis sutherlandae. (B) Fathead minnows experimentally challenged with H. sutherlandae. (c) Heterosporosis-positive occurrences 
(black points) across the Great Lakes region used for this study. Lines denote administrative boundaries.
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Applications in epidemiology
While biogeographic methods have gained attention in the 
epidemiology of terrestrial ecosystems (3), they have been barely 
explored in the epidemiology of aquatic organisms (7). Examples 
of biogeographic analyses applied to infectious aquatic diseases 
include forecasts of Gyrodactylus salaris an ectoparasite of salmon 
(8), Vibrio cholera in coastal waters (9), and Viral Hemorrhagic 
Septicemia virus in the Great Lakes (10). Descriptive biogeographic 
analyses are useful to understand the natural history of novel infec-
tious diseases, poorly known diseases, or diseases barely explored 
in the field (11–13). Predictive analyses are useful to anticipate risk 
in areas where the diseases has not yet been reported, and to guide 
active surveillance and research (14). A poorly understood infec-
tious disease of epidemiological importance is Heterosporosis 
which infects fish in the Great Lakes region. Heterosporosis is 
caused by the microsporidian parasite Heterosporis sutherlandae 
and is known to infect at least eight fish species of economic and 
ecological importance (15). This disease was first confirmed in 
2000 in Leech Lake and Catfish Lake in Minnesota and Wisconsin 
and has since been reported in waterbodies in Minnesota (n = 26), 
Wisconsin (n = 16), Michigan (n = 2) in the USA and Lake Ontario 
(15). The obligate intracellular parasites proliferate inside skeletal 
muscle cells (Figure  2A), eventually leading to liquefaction of 

the muscle tissue. Advanced stages of the disease likely result in 
indirect parasite-induced mortality due to decreased overall fit-
ness, inability to capture prey or escape predation, and increased 
host stress (Figure  2B). The transmission of H. sutherlandae is 
thought to be horizontal, through the consumption of infected 
prey or contact with mature spores shed into the water column. 
Consequently, the overland transport of infected fish or water are 
likely risk factors for the spread of this pathogen. The possibility 
does exist for vertical transmission, similar to other microsporid-
ian species infecting fish (16).

With Heterosporosis as a case study, we explored the use of 
next generation biogeography tools to evaluate how these tools and 
approaches can help (i) understand the ecology of a rare infectious 
disease and (ii) forecast the geographic areas where future investi-
gation is necessary. This contribution aims to use the most state-of-
the-art algorithms and variables available in order to incorporate 
disease biogeography in the toolkit of modern epidemiology.

MeThoDS

occurrences
We obtained Heterosporosis-positive occurrence locations 
from Miller (17) and Phelps et  al. (15), who in turn received 
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TABle 1 | Environmental variables used to construct the background.

Fundamental niche Realized niche

Annual mean temperature (°C) Mean value of the monthly MODIS 
enhanced vegetation index (EVI) time 
series data (index)

Mean diurnal temperature range 
[mean(period max-min)] (°C)

SD of the monthly MODIS EVI time 
series data (index)

Isothermality (Bio02 ÷ Bio07) Mean value the 8-day MODIS  
day-time land surface temperature 
(LST) time series data (°C)

Temperature seasonality (C of V) SD of the 8-day MODIS day-time LST 
time series data (°C)

Max temperature of warmest week (°C) Minimum value of the 8-day MODIS 
day-time LST time series data (°C)

Min temperature of coldest week (°C) Maximum value of the 8-day MODIS 
day-time LST time series data (°C)

Temperature annual range  
(Bio05-Bio06) (°C)

Mean value the 8-day MODIS  
night-time LST time series data (°C)

Mean temperature of wettest  
quarter (°C)

SD of the 8-day MODIS night-time 
LST time series data (°C)

Mean temperature of driest  
quarter (°C)

Minimum value of the 8-day MODIS 
night-time LST time series data (°C)

Mean temperature of warmest  
quarter (°C)

Maximum value of the 8-day MODIS 
night-time LST time series data (°C)

Mean temperature of coldest  
quarter (°C)

Mean value of the 8-day MODIS 
day-time LST time series data for 
December/January (°C)

Annual precipitation (mm) Mean value of the 8-day MODIS  
day-time LST time series data for  
February/March (°C)

Precipitation of wettest week (mm) Mean value of the 8-day MODIS  
day-time LST time series data for 
April/May (°C)

Precipitation of driest week (mm) Mean value of the 8-day MODIS  
day-time LST time series data for 
June/July (°C)

Precipitation seasonality (C of V) Mean value of the 8-day MODIS  
day-time LST time series data for 
August/September (°C)

Precipitation of wettest quarter (mm) Mean value of the 8-day MODIS  
day-time LST time series data for 
October/November (°C)

Precipitation of driest quarter (mm)
Precipitation of warmest quarter (mm)
Precipitation of coldest quarter (mm)
Annual mean radiation (W m−2)
Highest weekly radiation (W m−2)
Lowest weekly radiation (W m−2)
Radiation seasonality (C of V)
Radiation of wettest quarter (W m−2)
Radiation of driest quarter (W m−2)
Radiation of warmest quarter (W m−2)
Radiation of coldest quarter (W m−2)
Annual mean moisture index
Highest weekly moisture index
Lowest weekly moisture index
Moisture index seasonality (C of V)
Mean moisture index of wettest quarter
Mean moisture index of driest quarter
Mean moisture index of warmest quarter
Mean moisture index of coldest quarter

Fundamental niche: variables based on climatic data at ~19 km spatial resolution. 
Realized Niche: variables based on MODIS data at ~1 km spatial resolution.
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the reports from natural resource management agencies  
(i.e., Minnesota Department of Natural Resources, Wisconsin 
Department of Natural Resources, and U.S. Fish and Wildlife 
Service). Reports were confirmed by gross lesions and histopa-
thology, and in some cases by PCR and sequencing. Anecdotal 
reports not verified in the laboratory were not included in this 
study. Lake centroids were used to determine latitude and lon-
gitude locations, and duplicate coordinates were removed. To 
explore the effect of data curation in the model’s performance, 
models were developed using all the final occurrences available 
and a subset of resampled occurrences without environmental 
outliers (see below).

Fundamental niche (NF)
The NF was estimated in a large model calibration region 
including: all the occurrences and the filtered occurrences. 
Specifically, we focused on the Laurentian Great Lakes region 
of North America (41.4° and 49.3°N and −97.8° and −74.8°W), 
a bi-national Canadian–American region with portions of the 
American states of Ohio, Illinoi, Indiana, Minnesota, Wisconsin, 
Michigan, Pennsylvania, New York, and the Canadian province 
of Ontario (Figure  2C). We used climatic variables from this 
calibration region to construct a background of environmental 
conditions in which the NF was estimated (18) resembling the 
landscape and terrestrial environmental drivers where parasites 
and hosts co-occur. We used climate data from the CliMond 
repository (19), selecting the first 35 bioclimatic variables 
with original measurable information on annual, weekly, and 
seasonal temperature, soil moisture, radiation, and precipita-
tion (Table  1), as these variables are a proxy to reconstruct 
ecoregions and present-day faunistic distributions (20). These 
variables are a summary of climatic conditions between 1961 
and 1990 in the form of rasters at ~19  km spatial resolution. 
A principal component analysis was developed using NicheA 
software 3.0 (21) to reduce dimensionality and correlation 
between variables, retaining the first three components as they 
contained 83.85% of the information from the original set of 
variables. These three components composed the environmental 
background that summarized the environmental patterns in the 
area with reduced spatial and temporal autocorrelation and were 
used in posterior analyses. The background developed was then 
used by the ecological niche model algorithms to identify the 
relationship of parasite occurrences with this environmental 
background. Once this relationship is established, models search 
for this combination of conditions across the entire study area to 
define locations suitable and unsuitable for the parasite.

To mitigate uncertainty implicit in occurrences, we employed 
a method modified from Van Aelst and Rousseeuw (22) as filter 
to remove potential errors in occurrences. This filtering method 
is robust for outlier detection: we estimated minimum ellipsoids 
around occurrences displayed in environmental space and 
removed 5% [i.e., α = 0.05 (3, 23)] of occurrences with the most 
marginal environmental values, as these outlier values could be 
associated with occurrence errors [e.g., misidentification; see,  
Ref. (24)]. The script for occurrences filtering by detection of the 
outliers has been included as Supplementary Material S1. We 
then estimated the NF using NicheA with the remaining filtered 
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the areas predicted by the NF model. The NF and NR were then 
projected to the geographic space to identify areas suitable as 
predicted by the models.

Finally, to highlight the predictions of MVE and Marble vs. 
a classic ecological niche modeling method, we developed a 
series of models using Maxent algorithm (32). Maxent is a type 
of logistic regression (33) and is currently a standard method to 
estimate species’ ecological niches (34). Maxent models included 
the estimation of the NF based on climate data and NR based 
on remote sensing data. The NF and NR were estimated using 
the original occurrences and filtered occurrences as described 
before. Models were calibrated using default settings in Maxent 
3.3.3k (34).

All models were compared using a cumulative binomial 
distribution test using two sets of occurrences, one for model 
calibration and one for model evaluation, as in Peterson et  al. 
(24). The R script used here for automated data split is included 
as Supplementary Material S3. Evaluation occurrences were not 
used during model calibration and instead were used to test the 
ability of the model to predict independent data using evaluation 
points as trials, evaluation points predicted correctly as successes, 
and the proportion of area predicted suitable as the probability 
of a success (23). The method used to develop this evaluation is 
included as Supplementary Material S4 to facilitate replication.

ReSUlTS

Once duplicates and environmental outliers were removed, 32 
single occurrences remained and were used for modeling. The 
data curation process in the environmental space allowed us 
to identify several environmental outlier occurrences; one was 
removed based on our threshold defined a  priori (Figure  3). 
The MVE estimated from this set of filtered occurrences, as a 
proxy of the NF, revealed that the species was not occurring in 
all environmental conditions available in the model calibration 
region, instead, it occurred in consistent, tractable climatic 
conditions (Figures 4 and 5). When the NF was projected from 
the environmental space to the geographic space, suitable areas 
were identified across North central Minnesota, northern areas of 
Wisconsin, and a small portion of western Michigan (Figure 4). 
Once the NR of the parasite was estimated in these areas, we 
found suitability in specific areas of these states with high detail 
that allowed the identification of lakes that could be suitable 
for Heterosporosis (Figure 4). The Marble algorithm estimated 
fine scale suitability as a proxy of the NR, based on a cloud of 
occurrences that excluded three isolated marginal occurrences 
detected outside of a main cluster (Figure 3). This generated a 
model of suitability based on the occurrences occupying the most 
tractable and consistent environmental conditions.

Once models were calibrated using all the data available, 
including the climatic outlier (Figure  3), the ecological niche 
models predicted broader areas suitable for Heterosporosis 
across the Great Lakes basin, resulting in 406% increase in 
areas predicted for this NF model compared with the NF without 
outliers (Figure 6). Changes in NF estimations generated changes 
in the range of environmental values predicted suitable for the 
parasite (Figure  5). Changes in the range of environmental 

occurrences. The NF was calculated as the minimum-volume 
ellipsoid (MVE) from the occurrences in a three-dimensional 
environmental scenario composed by the first three components 
from the original environmental variables, described elsewhere 
(21, 22). Basically, occurrences are displayed and analyzed in 
three environmental dimensions instead of two geographic 
dimensions (i.e., latitude and longitude). NicheA estimates the 
centroid point of the occurrences’ cloud, which will be the center 
of the ellipsoid. Then, the Euclidean distance is estimated between 
the center of the ellipsoid and the most external occurrences. The 
two most external occurrences are the coordinate axes of the 
ellipsoid and in tandem with the Euclidean distances are used as 
parameters for a standard tri-axial ellipsoid equation (22). This 
ellipsoid was then used to simulate Gaussian response curves of 
the species to the environmental data employed to resemble eco-
logical theories of species responses to environmental conditions  
(5, 25–27). To visualize the impacts of occurrences curation in 
estimations, a second model was developed as described above, 
but without occurrences filtered, i.e., using all the reports avail-
able to us.

Realized niche (NR)
The NR was estimated in a reduced calibration region, includ-
ing only areas falling inside the NF model (Figure  1). In these 
sub-regions, we used 16 remotely sensed variables summarizing 
land surface temperature (LST) and primary productivity (28). 
Specifically, we used MODIS data at ~1  km spatial resolution, 
including day and night-time values of LST, and primary 
productivity in the form of enhanced vegetation index (EVI; 
Table 1) available from the WorldGrids repository (28).1 These 
variables were also reduced in number and correlation via a 
principal component analysis that summarized >89.21% of the 
overall information from the original variables in the first three 
components.

We used the Marble algorithm to estimate the NR. Marble 
is a novel algorithm that identifies clusters of occurrences in 
n-dimensional environmental spaces as has been described 
elsewhere (29). Briefly, Marble is based on the generalized 
density-based clustering algorithm that determines the position 
of occurrences in the multidimensional environmental space 
[see, Ref. (30)] and identifies clusters of occurrences of arbitrary 
shape but also is able to identify noise in the form of non-clustered 
occurrences in the environmental space [see, Figure  6 in Ref. 
(29)]. The default parameters are the automatic estimation of the 
radii according to the number and position of occurrences allow-
ing the inclusion of at least 99% of occurrences in the clusters. 
Due to the ability of the Marble algorithm to prioritize groups 
of occurrences and exclude isolated occurrences, the algorithm 
generates ecological niche models from consistent clusters only, 
with reduced interpolation and extrapolation. This approach 
results in models of metamorphosed shapes in the environmental 
space (29). The script employed in this study to develop Marble 
models in R has been included as Supplementary Material S2. 
We employed the occurrences and MODIS data that were inside 

1 http://worldgrids.org.
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FIgURe 3 | Automated occurrences curation process. (A) Occurrences 
(black circles) were displayed in a two-dimensional environmental space of 
principal components one (PC1) and two (PC2) from the original climate data. 
Ellipsoids were estimated using the full occurrences (red ellipsoid) and then 
reducing one occurrence at a time (blue ellipsoids), to filter occurrences via 
outlier elimination. Note that using 100% of the points resulted in the 
detection of an outlier (black circle in edge of the red ellipsoid). (B) The first 
three PC from MODIS data were used to display the distribution of filtered 
occurrences (red circles) and also occurrences detected clusters (black 
circles). Note that outlier occurrences in term of climate were also outliers in 
terms of MODIS data (black points). The script for outlier detection is 
included as Supplementary Material S1.
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tolerances occurred in the highest limit for some variables, while 
others showed shifts in the lowest limits. For some variables  
(e.g., maximum temperature, precipitation of wettest week, SD 
EVI, and maximum day-time LST), the impact of the outlier in 

the range of environmental tolerances was minimal, while others 
had more dramatic impacts in the range estimated (e.g., annual 
mean and minimum temperature, annual precipitation, and 
precipitation of the driest week; Figure 5).

Maxent models generated predictions comparable to those 
of Marble in the regions of Minnesota and Wisconsin. However, 
Maxent predictions were restricted to areas surrounding the 
occurrences when the entire data set was employed, showing 
low effect of outliers during model calibration as compared 
to MVE models (Figure  6 vs. Figure  7). Using independent 
calibration and evaluation occurrences during model evalua-
tions, all models showed prediction better than by chance in 
all the scenarios (Supplementary Material S5). The outputs, 
however, varied between algorithms. For example, we found 
that estimations of NF was overfitted in Maxent, while MVE 
provided more generalized predictions when the model was 
calibrated using all the data available (Figure 6 vs. Figure 7A).

DIScUSSIon

Ecological niche models for Heterosporosis allowed the 
identification of suitable areas beyond the current locations 
with reports of the parasite, providing information about sites 
where the parasite could potentially occur based on suitable 
environmental conditions (4). MVE and Marble, the two novel 
algorithms employed in the modeling process, generated suit-
ability surfaces in the form of binary maps showing areas with 
environmental conditions similar to those with Heterosporosis 
records (Figures 4 and 6). This binary modeling output format 
avoids continuous suitability surfaces of difficult biological 
interpretation (3). The models based on filtered occurrences 
without environmental outliers generated models with the best 
fit as expressed by the similarity of environmental conditions 
occupied by the occurrences vs. the conditions predicted by 
the MVE. That is to say, failure to remove outlier occurrences 
may have severe consequences in the areas predicted suitable 
by some ecological niche model algorithms (35), including 
MVE (see Figure 4 vs. Figure 6). For example, removing outlier 
occurrences generated models with more detailed identification 
of regions suitable for Heterosporosis, thus, making forecasts a 
more useful tool to guide active epidemiological surveillance in 
specific constrained areas.

We found that the inclusion of environmental outliers also had 
a dramatic impact on the predictions in both the geographic and 
the environmental space. In this case, this was particularly true 
for the NF models based on the MVE algorithm. For example, 
models calibrated with the environmental outlier generated pre-
dictions with high extrapolation for the higher values of predicted 
suitability, including annual mean and minimum temperature 
and annual precipitation and precipitation of driest week. For 
other variables, such as precipitation of wettest week, the outlier 
generated extrapolation in the lower values (Figure 5). We found, 
however, that in other variables the inclusion or not of the outlier 
occurrence was less dramatic (e.g., maximum temperature, SD 
of EVI, day-time LST values for the annual maximum and mini-
mum, and the mean values for December and January, and for 
June and July; Figure 5). The Marble algorithm was less sensitive 
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FIgURe 4 | Ecological niche models from filtered Heterosporosis data. (A) The Fundamental Niche (NF; green ellipsoid) was estimated based on the minimum-
volume ellipsoid formula in NicheA, using as background (gray points) the first three principal components (PC) of climate (red axes). (B) The Realized Niche (NR; red) 
as estimated inside the conditions predicted suitable by the NF (green) across the background constructed with the PC of the MODIS data (gray). (c) The NF (green) 
and the NR (red) were projected to the geography. In this case, the axes are longitude and latitude.
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since this method automatically accounts for occurrences outside 
environmental clusters (Figure 3), i.e., noise detection (30).

Fundamental niche (NF)
According to ecological theories, the NF of an organism should 
have an ellipsoidal form (21). This assumption is supported by 
experimental data showing Gaussian responses of species to abi-
otic environmental variables (26, 27, 36–39). The MVE estimated 
from the occurrences in environmental dimensions was able to 
generate response curves resembling normal distributions as the 
theory suggested (Figure 5), allowing us to have a proxy of the 
environmental tolerances of the species according to the data 
available to us. This suggests that NicheA could be a promising 
tool to simulate how species occupy environmental conditions 

based on field records; however, this would require high quality 
records. Erroneous records could tremendously impact the range 
of values used to estimate the ellipsoids (30), and in turn, the 
areas predicted suitable (Figure 5). To mitigate the inclusion of 
errors from the set of occurrences (40), we propose to employ 
an automated data curation system developed in environmental 
dimensions (Figure 3).

In addition to occurrence filtering, the estimation of MVEs is 
a protocol that requires a series of steps including a PCA analysis, 
displaying occurrences in the environmental space, calculations 
of ellipsoids, and projection of the final model to the geographic 
space. To facilitate this process, the workflow of the analyses 
developed here is included as Supplementary Material S6 to 
be executed in NicheA (21) and includes data to replicate this 
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FIgURe 6 | Example of ecological niche models from unfiltered Heterosporosis data. The Fundamental Niche (NF; green) was estimated based on the minimum-
volume ellipsoid formula in NicheA, using all the occurrences including outliers and, as background, the first three principal components (PC) of climate. Then, the 
Realized Niche (NR; red) was estimated inside the Fundamental Niche using marble algorithm based on the PC of the MODIS data (similar to Figure 4 but with 
unfiltered occurrences).

FIgURe 5 | Example of predictions represented in terms of single environmental variables. Pixels values of each environmental variable were counted across the 
study area representing the background (red line), the pixels predicted suitable by the Fundamental Niche (NF) models based on a minimum-volume ellipsoid 
including all occurrences, i.e., with the environmental outlier occurrences (olive line), and with outliers removed (green line), and the estimation of environments 
occupied as predicted by the Realized Niche (NR) model from the Marble algorithm (blue line). The occurrences employed for model calibration are also displayed 
(pink line). Count of pixels in log value for better visualization. Note that including all the occurrences without filtering generates high extrapolation of the NF  
(i.e., broader range from the NF estimations; olive line) compared with the models based on filtered occurrences (i.e., green line).
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workflow (Supplementary Material S6). Step-by-step instructions 
to estimate NF of any species can also be found in the website of 
NicheA.2

Realized niche (NR)
While the NF aims to estimate environmental tolerances, algo-
rithms to estimate NR, as the case with Marble, are meant to 

2 http://nichea.sourceforge.net/.

identify in environmental space the most “immediate” environ-
mental conditions that are suitable to the species. In other words, 
models aiming to estimate the NR are expected to overfit to the 
occurrences used for model calibration, resulting in a reduced 
interpolation and extrapolation. To our knowledge, this is the first 
application of Marble in epidemiology, and in turn in modeling 
diseases in fish. We showed that Marble is a promising algorithm 
to estimate realized niches, which in turn estimates areas that are 
suitable in high detail, avoiding the inclusion of environmental 
conditions beyond those currently used by the species.
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FIgURe 7 | Ecological niche models from Heterosporosis data using Maxent. The Fundamental Niche (NF; green) was estimated using as background the first three 
principal components (PC) of climate. Then, the Realized Niche (NR; red) was estimated inside the Fundamental Niche based on the PC of the MODIS data.  
(A) Models using all the occurrences available. (B) Models based on filtered data without outliers.
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novel vs. classic Methods
We explored two novel methods to estimate species niches based 
on (i) algorithms resembling ecological theories (i.e., MVE and 
Marble) and (ii) algorithms resembling the data (i.e., Maxent). 
All models showed that predictions of independent occurrences 
were better than random in all model scenarios. However, it was 
evident that the machine learning structure of Maxent provides a 
high fit of the model with the data available (33). If assumptions 
are more relaxed and the data and information of the species 
are limited, MVE can be a good solution as this algorithm is 
less complex than Maxent (requires less parameters during 
calibration). This predictive behavior was replicated during NR 
estimations: Marble provided generalized estimations with broad 
areas predicted suitable for the parasite and Maxent provided 

more conservative estimations principally in sites surrounding 
reports. We note that both modeling approaches, (i) algorithms 
resembling ecological theories (i.e., MVE and Marble) and 
(ii) algorithms resembling the data, are not wrong. In fact, 
both approaches develop niche estimations based on different 
assumptions: algorithms resembling ecological theories may 
overestimate the areas suitable due to the high levels of inter-
polation (31) aiming to reconstruct niche shapes as supported 
species physiology (21), while machine learning algorithms may 
have increased sensitivity to the data due to reduced extrapola-
tion and interpolation to gain model fit. We argue that both 
approaches have pros and cons, one can prefer a simple model 
generalizing the niche estimation to gain knowledge or one can 
prefer a model with limited overestimation to obtain predictions 
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dictated by the data. Under both scenarios, the study question 
and assumptions will vary. For example, one can assume that 
Heterosporosis is still on its path to occupy the full ecological 
niche (i.e., ecological equilibrium) and model over estimations 
reducing the overfit of models to the data would be desirable. To 
mitigate uncertainties during model selection, two main frame-
works could be considered in ecological niche modeling, one in 
which several algorithms are explored to capture consensus and 
variability (31), and one in which a single algorithm is explored 
under a detailed parameterization and assumptions based on 
abundant data and a considerable knowledge of the species in 
question (41).

Further Research
Current methods for disease mapping in epidemiology are 
dominated by distance-based analyses restricted to geogra-
phy (e.g., spatial clusters), neglecting the importance of the 
landscape heterogeneity (42). However, recent literature in 
epidemiology has attempted to consider the climate and/or 
the landscape configuration when mapping disease transmis-
sion risk (1). While these attempts have important benefits 
in terms of the information generated and biological realism 
in the maps produced, most of these studies still lack a bio-
geographic framework to design the study and interpret the 
results. Indeed, click-and-run tools to generate ecological niche 
models are common in the scientific literature with studies of 
poor study design, but more strikingly without justification of 
the model parameters, assumptions, variables, occurrences, 
and study areas selected, even when such factors have been 
largely recognized as crucial in ecological niche modeling  
(4, 33–35, 43, 44).

Our study case focused on a fish parasite; thus, the model 
was calibrated using exclusively infected fish, resulting in a 
“black-box” approach as a proxy for all the species acting in the 
Heterosporosis system: the parasite and the susceptible hosts (2). 
Future studies are necessary at finer scales in the areas identified 
here as suitable for the parasite to include fish density, fish com-
munity assemblages, and other competitive parasites limiting the 
occurrence of Heterosporosis at a local level.

We assumed that NF could be reconstructed using envi-
ronmental data at coarse resolution, while NR would require 
environmental variables at finer grain. These assumptions may 
be a limitation to the areas predicted by the models and should 
be a crucial point during the study design of models developed 
for spatial epidemiology. Beyond resolution, models could 
be impacted by the assumptions on the response of species to 
the environmental values absent in the occurrence data avail-
able. An important assumption is environmental interpolation. 
MVE has high interpolation of values predicting suitable all 
the environmental conditions falling inside the range of values 
estimated from the available occurrences. Thus, MVE would be 
less sensitive to sampling bias but would be sensitive to outliers. 
Maxent and Marble have limited interpolation with overfit to the 
data available, resulting in suitable conditions resembling the 
data. Thus, these algorithms are more sensitive to sampling bias  
(e.g., oversampling close to the roads or only during summer 

conditions) but are less sensitive to outliers. A good practice would 
be a careful selection of algorithms with the abilities to answer 
the research question, i.e., estimation of the potential distribu-
tion (NF) or current distribution of the disease (NR), considering 
the weaknesses in the environmental data (e.g., resolution) and 
occurrence data (e.g., bias).

Final Remarks
Several ecological niche modeling tools exist to map infectious 
diseases, but easy-to-use tools are preferred even if most users 
do not understand how the algorithms work (45). For instance, 
Maxent, an easy-to-use ecological niche modeling software, has 
suffered abuse in its application to epidemiology in a series of 
“recipe-like” studies with Maxent assumptions that may not be 
appropriated to the particular study questions (1, 3, 46–48). In 
biogeography, ecological niche modelers have cautioned the 
development of models with poor study design (3, 40, 46, 49, 50), 
which may lead to incorrect assumptions and interpretations. 
The algorithm selection and study design is particularly crucial 
in applications of ecological niche modeling to epidemiology, 
considering that modeling outputs could be used by public health 
intelligence and animal health policy makers.

We propose novel ecological niche modeling methods that 
can help understand the biogeography of an aquatic infectious 
disease, identify areas at risk for disease transmission, and can 
complement current methods. First, we highlight the importance 
of data curation and show a method for outlier removal in 
environmental dimensions based on a priori assumptions. Also, 
the ecological niche modeling algorithms proposed require low 
parameterization as they are based on the position (MVE) and 
density (Marble) of occurrences in an environmental space (22, 
30), but also require a series of biological assumptions to make the 
outputs interpretable [e.g., Fundamental Niches of an ellipsoidal 
shape (21)]. We found that exploring algorithms of different ana-
lytical nature such as those aiming to fit environmental clusters, 
climatic envelopes, and logistic regressions (e.g., Marble, MVE, 
and Maxent) provided different scenarios of the potential distribu-
tion of Heterosporosis. Thus, no single algorithm should be used 
for disease mapping as this may result in an incomplete panorama 
of forecasts. We argue that different algorithms are necessary to 
achieve more informed predictions of the potential distribution 
of pathogen or parasites of public health or veterinary concern.
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