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Disease spread modeling is widely used by veterinary authorities to predict the impact of 
emergency animal disease outbreaks in livestock and to evaluate the cost-effectiveness 
of different management interventions. Such models require knowledge of basic disease 
epidemiology as well as information about the population of animals at risk. Essential 
demographic information includes the production system, animal numbers, and their 
spatial locations yet many countries with significant livestock industries do not have 
publically available and accurate animal population information at the farm level that 
can be used in these models. The impact of inaccuracies in data on model outputs 
and the decisions based on these outputs is seldom discussed. In this analysis, we 
used the Australian Animal Disease model to simulate the spread of foot-and-mouth 
disease seeded into high-risk herds in six different farming regions in New Zealand. We 
used three different susceptible animal population datasets: (1) a gold standard dataset 
comprising known herd sizes, (2) a dataset where herd size was simulated from a beta-
pert distribution for each herd production type, and (3) a dataset where herd size was 
simplified to the median herd size for each herd production type. We analyzed the model 
outputs to compare (i) the extent of disease spread, (ii) the length of the outbreaks, and 
(iii) the possible impacts on decisions made for simulated outbreaks in different regions. 
Model outputs using the different datasets showed statistically significant differences, 
which could have serious implications for decision making by a competent authority. 
Outbreak duration, number of infected properties, and vaccine doses used during the 
outbreak were all significantly smaller for the gold standard dataset when compared 
with the median herd size dataset. Initial outbreak location and disease control strategy 
also significantly influenced the duration of the outbreak and number of infected prem-
ises. The study findings demonstrate the importance of having accurate national-level 
population datasets to ensure effective decisions are made before and during disease 
outbreaks, reducing the damage and cost.

Keywords: disease spread modeling, quantitative epidemiology, biosecurity preparedness, outbreak response, 
animal populations
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inTrODUcTiOn

In countries that are historically free of significant livestock 
diseases such as foot-and-mouth disease (FMD), the outputs 
of disease spread models are a useful proxy for field informa-
tion on disease behavior. This information may be used by 
the competent authority to compare the impacts of alternative 
disease control policy decisions (1–8). Traditionally, the policies 
of FMD-free countries such as the United Kingdom, the United 
States, Australia, and New Zealand rely on stamping out methods 
to eradicate outbreaks of FMD. This involves depopulation and 
thorough cleaning and disinfection of detected infected premises 
(IPs), tracing and biocontainment of all contacts, active surveil-
lance to detect all clusters of infection, and intensive movement 
restrictions to limit disease spread. Areas of ongoing research 
include comparing the impacts of policies that would allow ani-
mals to be vaccinated, with policies that would cull animals on all 
affected farms. Furthermore, if a vaccination policy is considered, 
the impact of vaccinating cattle only compared with vaccinating 
all susceptible species (2) is of interest as there are seldom suf-
ficient human resources and vaccine doses to target every animal.

These comparisons must consider the spread of disease in dif-
ferent regions, the effectiveness of a variety of control options, and 
the economic impact of the outbreak. This includes the cost of con-
trol measures and loss of trade due to restrictions implemented by 
the international community. The complexity of these decisions 
has driven the development of ever more complex disease spread 
simulation models that can now incorporate detailed information 
on within- and between-herd spread of disease. Some models, 
for example, use the count of animals on each farm to estimate 
infectivity according to latent periods, within-herd contact rates, 
and incubation periods, specific to the species and numbers of 
each species present in each herd on each farm. Although there 
is still much debate over the best modeling approach (2, 9–12), a 
key requirement of any spatially enabled disease spread simulator 
is national (or district/state/county)-level data of farm locations 
with susceptible animal populations. The model also requires 
data on the contact patterns of susceptible individuals and 
disease-specific information for each species represented. Few 
countries have publicly available and accurate animal population 
information at the farm level, which can be used in these models; 
however, the impact of inaccuracies in data on model outputs 
and decisions is seldom discussed. This is an increasingly critical 
point as these modeling activities generally make use of centrally 
held datasets, the accuracy of which is rarely scrutinized (13, 14), 
while modeling becomes both progressively more complex and 
more highly valued by decision makers.

The objective of this study was to test the null hypothesis that 
uncertainty around farm-level animal population sizes is not 
important when interpreting the outputs of within-herd spread 
FMD models. While no dataset can be expected to have an exact 
representation of herd size at every point in time, our study is 
concerned with examining the performance of an FMD model 
which explicitly models within herd spread using a heterogene-
ous herd dataset with census-based herd sizes, compared with 
simplified herd datasets where herd size is estimated according 
to herd type. Three different herd datasets are used in simulations 

that cover six geographic areas in New Zealand, under three 
different disease control strategies. Each of the geographic areas 
have large populations of foot-and-mouth susceptible livestock 
in different densities. Impacts on outbreak size and duration are 
assessed, and the potential implications for decision makers and 
competent authorities of using inaccurate data discussed.

MaTerials anD MeThODs

To design an experiment that provides information on the impact 
of herd-level animal counts on disease modeling, a disease spread 
simulator that utilizes the susceptible population within a herd 
or farm was required. The Australian Animal Disease (AADIS) 
model (15), which was developed in 2015 for use by the Australian 
Federal Government for disease response preparedness, was used 
for this study. AADIS is a hybrid model of livestock disease spread 
and control which is designed to support emergency animal dis-
ease planning. The disease simulator uses both population-based 
and individual-based modeling techniques. AADIS uses the herd 
populations to model within-herd spread with a deterministic 
model, and between-herd spread with a spatially explicit sto-
chastic agent-based model (ABM). Our models use passive first 
IP detection which comprises two stochastic processes: detection 
and reporting. Detection is defined as inspecting stock (on a 
farm, at a saleyard, or in an abattoir), noticing clinical signs and 
consulting a veterinarian. An infected herd is only a candidate for 
detection if it meets the minimum clinical prevalence level con-
figured for the herd type. Reporting is defined as a veterinarian 
suspecting FMD, sending samples to a lab, FMD being confirmed 
and the Chief Veterinary Officer being notified. The detection 
and reporting probabilities are defined per herd type and per 
premises type.

The AADIS model allows for representation of a situation 
where any type of herd may be present on any type of farm. AADIS 
allows disease to spread more effectively between herds on the 
same farm than between herds on separate farms. The ability to 
parameterize the spread of disease with respect to herd type and 
region captures the heterogeneous nature of seasonal manage-
ment practices and contact patterns. For example, a beef herd on 
a non-commercial farm (referred to as a lifestyle block in New 
Zealand) will be subject to different management and marketing 
practices affecting the spread of disease when compared with a 
beef herd on a pastoral farm. AADIS also takes species and herd 
size into account when estimating herd susceptibility and infec-
tivity reflecting Tildesley et al. (15) observation that a non-linear 
relationship between herd size and herd infectivity/susceptibility 
best described data from the 2001 UK FMD outbreak (15).

Model Parameters
Herd location and herd size data were obtained from AgriBase, 
a commercial database of farm properties and animal popula-
tions maintained by AsureQuality, a New Zealand state owned 
entity (16). All AgriBase farms with no animals susceptible to 
FMD were removed, leaving 115,618 herds on 76,487 farms in 
the model (Table 1). Farms were categorized into four primary 
types (pastoral farming, dairy cattle farming, lifestyle farming, 
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Table 1 | Counts of secondary herd types and primary farm types used to 
parameterize the Australian Animal Disease model.

Primary farm type

Pastoral Dairy Pigs lifestyle Total

Secondary 
herd types 
on farm

1. Large sheep 17,950 17,950
2. Small sheep 6,772 1,526 43 12,086 20,427
3. Large pigs 114 33 126 273
4. Small pigs 2,044 624 1,770 4,438
5. Large deer 3,236 63 3,299
6. Small deer 302 22 294 618
7. Large dairy 2,010 11,806 2 13,818
8. Small dairy 465 24 681 1,170
9. Large beef 23,559 1,203 40 24,802
10. Small beef 7,907 2,080 22 18,814 28,823

Total 64,359 17,381 233 33,645 115,618

Movement patterns and management activities vary by herd type and susceptibility to 
FMD varies by species.

Table 2 | Descriptive data for each of the herd types used to parameterize Australian Animal Disease.

herd type Minimum 25th percentile Mode Median Mean 75th percentile Maximum

Large sheep 50 214.2 100 1,998.9 1,080 2,720 115,600
Small sheep 1 6 10 33.4 12 25 14,450
Large pigs 12 60 40 1,168.3 300 1,471 44,000
Small pigs 1 2 5 4.5 5 5 30
Large deer 15 76 100 404.7 187 430 19,249
Small deer 1 2 1 14.5 6 12 1,365
Large dairy 15 193 200 400.9 304 497.8 10,220
Small dairy 1 2 1 10.5 4 10 650
Large beef 15 31 20 168.1 73 195 14,500
Small beef 1 3 2 7.9 6 10 657

The minimum, mode, and maximum were used to create the beta-pert dataset, the median for the median dataset and remaining descriptors serve to describe the distribution of the 
gold standard data.
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or pig farming) based on what farmers reported in AgriBase 
as their main production activity. Ten secondary herd types 
were created based on other livestock species present on the 
farm: a large and small herd type for each of deer, sheep, pigs, 
dairy cattle, and beef cattle, which are the farmed species in 
NZ susceptible to FMD (Table  1). Large or small herd type 
was allocated based on the farm type in AgriBase (which is 
specified by the farmer) to make allowance for management 
practices and then further divided based on the size of the 
herd. This made it possible for some of the effects of hobby 
or “lifestyle” farming to be represented by assigning a “small” 
herd type to those herds of any kind (or size) present on hobby 
farms and then allocating cut points as shown in Table 2. Cut 
points were chosen based on experience with farming practices 
in New Zealand.

To explore the importance of herd size, three different herd 
size model parameterizations were derived from the AgriBase 
data. The first used the actual herd sizes reported in AgriBase 
and represented the real or “gold standard” dataset; the second 
assigned each herd a size equal to the median herd size for each 
of the 10 herd types. The third assigned each herd a size that 
was sampled from a beta-pert distribution generated from each 
of the 10 herd types. The herd type descriptive summaries used 

to generate the median and beta-pert distributions are shown in 
Table  2. Beta-pert distributions were selected to represent the 
herd size distributions based on testing of the gold standard herd 
dataset in a quantitative risk analysis software which identified this 
as being the best fit for the data (17). The minimum, maximum 
and mode (most likely) values were then selected to describe the 
best fitting beta-pert distribution for each of the ten herd types. 
Each simulation run sampled a different value for each herd from 
the constructed beta-pert distributions.

The disease-specific parameterization of the AADIS model 
was derived from the New Zealand Standard Model (NZSM) 
of FMD spread, which is represented in Interspread Plus, and 
models an outbreak of FMD serotype O pan PanAsia (18–20).

Outbreak seeding
Using a random seed design across the whole of New Zealand 
in the AADIS model results in a large degree of heterogeneity 
in outbreak size with an insufficient number of large outbreaks 
to allow comparison of the different herd size scenarios equally. 
Furthermore, the population densities of farms and susceptible 
animals are known to influence the spread of highly infectious 
diseases (21) as well as the efficacy of vaccination strategies for 
FMD (22, 23). To address these known effects, as well as to make 
the simulations more representative of an economically severe 
outbreak in New Zealand, the territorial local authorities (TLAs) 
that were most likely to have FMD introduced were identified 
and then further ranked based on where an introduced outbreak 
would be most likely to spread.

The greatest risks of FMD introduction to New Zealand have 
been reviewed and published elsewhere (24). Based on the FAO 
FMD contingency plans manual (25), the greatest risk for New 
Zealand appears to be through the feeding of FMD-infected 
material to non-commercially kept pigs. As there were no data 
available for imported materials, we used the density of small pig 
herds as a proxy for the risk of introduction. The likelihood of 
spread was based on cattle and pig population density (Table 3).

Six TLAs were chosen to provide sufficient areas to give 
examples in both the North and South Islands but to limit the 
number of TLAs so that results are still intuitively comparable 
(Figure 1). The goal of the study is not to predict the distribution 
of outbreaks sizes but to allow the comparison of the different 
data quality scenarios.
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Table 4 | Tabular representation of a study designed to test the null hypothesis 
that uncertainty around herd size is not important when interpreting the results of 
a within-herd spread FMD model.

control strategy

stamping out Vaccinate all 
species

Vaccinate cattle 
only

Herd 
data set

Beta- 
pert

1A 1000 iterations  
in 6 TLAs

1B 1000 iterations 
in 6 TLAs

1C 1000 iterations  
in 6 TLAs

Real 2A 1000 iterations  
in 6 TLAs

2B 1000 iterations 
in 6 TLAs

2C 1000 iterations  
in 6 TLAs

Median 3A 1000 iterations  
in 6 TLAs

3B 1000 iterations 
in 6 TLAs

3C 1000 iterations  
in 6 TLAs

Three control strategies and three herd population datasets were used to create nine 
model scenarios each of which were run for 1000 iterations in each of six New Zealand 
territorial local authorities—each cell (1A−3C) represents 6000 model iterations each 
using the same order of seed farms.

FigUre 1 | Six New Zealand territorial local authorities selected for locations 
of simulation models to examine the effects of variation in herd size in the 
within-herd spread disease model of foot-and-mouth disease, Australian 
Animal Disease model.

Table 3 | Description of the six New Zealand territorial local authorities (TLAs) used as disease index herd for hypothetical foot-and-mouth (FMD) outbreaks in the 
study.

Tla area (km2) Farms with FMD  
susceptible animals/km2

Mean nearest  
neighbor distance (km)

count of small  
pig herds

small pig  
herds/km2

cattle/km2 Pigs/km2

New Plymouth 2,205 0.995 0.347 123 0.056 87 3.692
Auckland 4,947 1.649 0.284 240 0.049 60 2.176
Whakatane 4,474 0.27 0.454 161 0.036 38 1.504
Rangitikei 4,484 0.264 0.700 110 0.025 41 0.727
Tasman 9,650 0.201 0.534 148 0.015 13 0.049
Southland 30,198 0.11 0.862 150 0.005 22 0.038
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control strategies
The control of disease within AADIS is a part of the ABM. 
Measures include movement restrictions, surveillance and trac-
ing, IP operations, resource management, and vaccination. The 
emergent behavior of the ABM is the spatiotemporal spread of 
disease across the population and the subsequent activities to 
control and eradicate the disease. The disease spread pathways 
and control measures can be thought of as components of the 
ABM environment. Each component of the AADIS ABM envi-
ronment operates independently (26). Three control strategies 

were modeled. The first was “stamping out” of identified infected 
farms (each FMD-susceptible herd on each of these farms is 
culled). The second applied vaccination to all susceptible species 
(with no restrictions on the number of doses). The third applied 
vaccination to cattle only.

Research is ongoing to identify alternative methods to con-
trolling and eradicating the FMD virus, rather than automatic 
culling of sometimes healthy animals. The benefits of augment-
ing stamping out with vaccination for disease-free countries 
have been explored, and the strategy of vaccinating cattle only 
postulated as an effective alternative to vaccinating all susceptible 
species (2, 4, 27–30). Here we examine the effect of the accuracy 
of herd-level population information on the selection between 
two vaccination strategies, namely vaccinate cattle only, and vac-
cinate all susceptible animals (note that culling of animals on IPs 
is still employed in these strategies). When considering the use of 
vaccination (vs. stamping out only), decision makers must take 
into account the current World Organization for Animal Health 
(OIE) regulations, which restrict international trade for a country 
for an additional time period if it employs vaccination compared 
with if it employs a stamp out strategy (31).

Model simulations
One thousand simulations were performed for each of the 
nine model parameterizations (three control strategies and 
three herd populations) in each of the six selected TLAs, giving 
54,000 simulations in total. The study structure is represented in 
Table 4. Each outbreak simulation was seeded into a small pig 
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Table 5 | Number of simulations that generate outbreaks that are not detected (not detected), outbreaks that last 365 days without being eradicated (right censored), 
and number of simulations where the outbreak is detected and eradicated within 365 days (detected and eradicated), by region and by dataset.

beta-pert gold standard Median

not 
detected

right 
censored

Detected and 
eradicated

not 
detected

right 
censored

Detected and 
eradicated

not 
detected

right 
censored

Detected and 
eradicated

Auckland District 1,226 4 1,770 1,066 322 1,612 1,140 1,037 823
New Plymouth District 1,200 19 1,781 745 679 1,576 692 1,576 732
Rangitikei District 1,263 0 1,737 997 173 1,830 982 758 1,260
Southland District 1,256 0 1,744 1,012 5 1,983 925 112 1,963
Tasman District 1,530 0 1,470 1,553 17 1,430 1,442 125 1,433
Whakatane District 1,337 1 1,662 811 662 1,527 928 1,304 768

Table 6 | Analysis of variance (ANOVA) table for the cox proportional hazards (CPH) models with infected premises (IPs) and duration as outcome variables.

explanatory variable Outcome variable: count of infected premises Outcome variable: duration

Deviance chi2 degrees of 
freedom

p–Value relative 
deviance

Deviance chi2 degrees of 
freedom

p–Value relative 
deviance

Control type 656.4 2 <0.0001 328 519.2 2 <0.0001 260
Data type 9,937.4 2 <0.0001 4,969 10,389.4 2 <0.0001 5,195
Territorial local authority (TLA) 5,997.6 5 <0.0001 1,200 5,353.5 5 <0.0001 1,071
Control type × data type interaction 574.6 4 <0.0001 144 596.0 4 <0.0001 149
Control type × TLA interaction 478.1 10 <0.0001 48 447.8 10 <0.0001 45
Data type × TLA interaction 2,602.8 10 <0.0001 260 2,526.5 10 <0.0001 253
Control type × data type × TLA interaction 448.5 20 <0.0001 22 400.8 20 <0.0001 20

Explanatory variables were identical for both models. Given the large size of the dataset analyzed, the small p-values might be expected, however, the large relative deviance for data 
type provides an indication of the importance of this variable in the models.
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herd (small pig herds were identified as the most likely entry 
point in NZ). The same seed lists were reused in each of the 54 
different model parameterizations. Simulated outbreaks, which 
reached 365 days’ duration (number of simulation days) were 
terminated.

statistical analysis
Those outbreaks that failed to propagate were analyzed with a 
logistic regression model that included data type, TLA, and 
control strategy as explanatory variables and failure to propagate 
as the outcome variable. This analysis was performed to test the 
hypothesis that failure to propagate was independent of control 
type but was associated with herd data type and TLA.

For outbreaks that were eliminated within 365 days, outbreak 
duration and count of IPs on the last day of the outbreak were 
used as outcome variables as these are both important to decision 
makers choosing between control strategies. Further analysis was 
performed between the two vaccination scenarios using count of 
vaccinated animals (a proxy for vaccine doses) as the outcome 
variable with the same explanatory variables. We included inter-
actions between each of these terms and a three-way interaction 
between all explanatory variables in all models.

Australian Animal Disease model outputs were described and 
analyzed using the R statistical computing language, Cox pro-
portional hazard (CPH) models were fitted using the R survival 
package (32–35). The data were right censored because not all 
outbreaks had been eradicated within 365 days when the simula-
tions were terminated. Although the study design is balanced, 
the data are not, because many simulations generated outbreaks 

that were not detected, and were removed from further analysis 
(Table 5). Therefore, CPH models were run with all orderings of 
predictor variables to ensure that the explanatory ability of the 
variables was assessed conditionally on other variables in the 
model.

In order to simplify how we determined the relative contri-
bution of each predictor variable to the response variable, we 
augmented comparison of p-values (which are all highly statisti-
cally significant), with a comparison of the deviance values that 
they index. Our reasoning is that under the null hypothesis of no 
term effect, the deviance follows a chi-square distribution with set 
degrees of freedom. Ordinarily we compare these values with the 
index distribution to obtain a p-value. Because of the large num-
bers of simulations and the strength of the effects, all p-values are 
very small (Table 6). Our goal was to make a statement about the 
relative contribution of each of the experimental variables upon 
the response variable, but the uniformly very small p-values are 
difficult to interpret in this light. Therefore, we augmented our 
consideration of the predictor variables by interpreting the size 
of the deviance values relative to their expectation under the 
null hypothesis of no effect, which is the same as the number of 
degrees of freedom. So, the relative importance of model covari-
ates was determined by averaging the deviance values from the 
output then dividing by the degrees of freedom for each term to 
estimate the relative deviance.

To assess the effect of herd type on choice of control strategy, 
the strategy that had the lowest operational cost for each seed 
herd was recorded. This process was repeated for each of the herd 
data types. This allowed the percentage agreement and Fleiss and 
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FigUre 3 | Distribution of the log10 of final count of infected premises (IPs) for models using each of three herd size data sets across six New Zealand territorial 
local authorities for three control strategies.

FigUre 2 | Distribution of duration of outbreak for models using each of three herd size data sets across six New Zealand territorial local authorities for three control 
strategies.
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FigUre 4 | Ratio between the operational costs generated by a comparison between the strategy indicated as being the lowest by real herd data-set and the costs 
of the strategy that would have been chosen should an alternate herd data set have been used. The x-axis is displayed at the log scale. The median ratio is 7 (not 
at log scale) and the median of the cost ratio for those decisions using the beta-pert data-set is 7.5 and the median ratio for the decisions made using the median 
data-set is 6.64.
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Cohen’s Kappa statistics on the lowest cost operational option 
to be calculated between the real, median, and beta-pert data 
sets (36, 37). When one of the herd type data sets did not have 
a completed simulation for that seed, the seed was deleted from 
the dataset used for comparison. This left 4,292 of a possible 6,000 
data lines to compare between scenarios.

The operational cost of each strategy selected using the real 
herd data was compared with the operational cost that would 
have been incurred had an alternate strategy (based on the 
suggestion of the alternate herd data set) been followed. The 
cost of the alternate strategy was based on the cost generated 
by the real herd dataset. These amounts were examined as 
ratios rather than absolute amounts as we wish to demonstrate 
the value of this information rather than to predict outbreak 
costs which will change over time. As an example of how 
this comparison was made, consider a model iteration where 
the lowest fixed cost management strategy was to stamp out 
according to the real herd size dataset. This model iteration 
would be found in cell 2A in Table 4. Conversely, when using 
the median herd size data-set the lowest operational cost 
corresponds with the strategy to vaccinate all species in cell 
3B in Table 4. To calculate the ratio between costs using the 
real dataset and median dataset, the real cost of the strategy 
to vaccinate all species (cell 2B) was divided by the cost of 
stamping out (cell 2 A).

resUlTs

Descriptive statistics for the number of simulated outbreaks that 
reached 365  days, the number of outbreaks that ended before 
they were detected, and the number of outbreaks that were 
detected and controlled are shown in Table  5 for each of the 
herd size scenarios. When the subset of simulations that ended 
prior to spreading were analyzed in a logistic regression model, 
the explanatory variables representing data type and TLA were 
significant, but control strategy was not significant (p > 0.05).

The distribution of outbreak duration and counts of IPs between 
TLAs, control options (only stamping out, culling IPs and vaccinat-
ing all susceptible animals, and culling IPs and vaccinating cattle 
only), and data sets (beta-pert modeled herd size, gold standard 
herd size, and median herd size) were compared and the results 
displayed in Figure 2 (duration) and Figure 3 (count of IPs). The 
CPH models demonstrated that for outbreak duration and number 
of IPs, all three explanatory variables are significantly associated 
with the outcomes. In addition, for each of the models a three-way 
interaction term was statistically significant, indicating that for 
each region both the control strategy and the data type are signifi-
cantly associated with the outcome variable. This is evidenced by 
the relative deviance values shown in Table 6.

When assessing agreement between the three herd datasets 
on lowest operational cost strategy, 493 instances (12% of a 
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total of 4,292 observations where each of the three herd data 
sets could be compared) produced the same recommendation. 
In 1,681 instances (39%), the simulations based on the beta-pert 
dataset identified the same lowest operational cost strategy as 
simulations based on the real dataset. Similarly, in 1,801 instances 
(42%), the median and real datasets identified the same strategy 
as being the most cost effective. A Fleiss Kappa statistic was 0.04 
(p < 0.0001) indicating very low levels of agreement. Agreement 
on the most cost effective control strategy between the median 
and real dataset and the real and beta-pert datasets had very 
low Kappa statistics of 0.06 (p <  0.005) and 0.02 (p <  0.005), 
respectively. The size of the median ratio between the lowest cost 
operational strategy and the strategy indicated by the alternate 
(median or beta-pert) dataset was 7 (5th percentile 1.2; 25th 
percentile 2.5; 75th percentile 30.5; and 95th percentile 613). 
This distribution is shown in Figure 4 at the log scale and strati-
fied by data type.

DiscUssiOn

Simulation studies have been performed in the UK to identify the 
effect of modeled farm location information on the performance 
of disease spread models (38, 39). In these studies, simulations 
using modeled farm locations do not significantly differ from 
those for which farm locations are drawn from real data. To 
our knowledge, there are no published studies in which model 
results using simulated animal counts are compared with results 
of models using real animal counts.

The accuracy of herd population data used in modeling can 
significantly influence the preparations for responding to disease 
outbreaks. In our study, those model runs that use the gold 
standard herd sizes result in significantly different numbers of IPs 
and outbreak length when compared with those runs that used 
the modeled or median herd sizes. The size of the operational 
costs incurred based on decisions made using the median and 
beta-pert herd sizes was seven times the cost of the decision made 
using the real herd data. This result suggests that accurate popula-
tion datasets should be a priority to ensure effective decisions on 
the best available information in order to minimize the impact of 
disease outbreaks. The lowest operational cost was variable among 
the three datasets for the same seed farm (low values of Fleiss 
and Cohens Kappa). Although the seed herds are the same for 
each instance, AADIS introduces stochasticity into each run—so 
true agreement may be greater than what our calculations show. 
Another possible source of bias is that large outbreaks that run 
more than 365  days without finishing were removed from the 
comparative data analysis.

The number of model simulations that ran for unexpectedly 
long durations (resulting in right censoring) is strongly correlated 
with data type. Those simulations run with the median herd 
size are over represented in all TLAs, but those TLAs that have 
higher density of farms with susceptible species are most affected. 
Similarly, a beta-pert estimation of herd size results in an over 
representation of outbreaks that burn out before spreading further 
and remain undetected (Table 5). It is possible that as the model 
parameterization of AADIS for New Zealand has not been fully 
tested and had as much time invested in it as the NZSM, it could 

cause artifacts in these results (18). However, as the objective of 
this study was to examine the impact of the accuracy of herd-level 
populations on a disease spread model, we focus on these find-
ings, comparing results between models to gather information 
on the importance of regionally representative herd size informa-
tion, rather than making recommendations on specific disease 
control policy for FMD free countries. Particularly important in 
the context of our hypothesis is the large relative deviance for data 
types identified in the CPH models. The relative deviance for data 
types is approximately five times larger than the relative deviance 
for the next most influential variable in the model (TLA) when 
considering both duration and final count of IPs.

An underestimation of outbreak size or duration in a par-
ticular region based on incorrect or estimated herd and farm 
population information could be as damaging to response 
decision making efforts as an over estimation. Take the example 
of the duration in days in the Whakatane region (Figure  2; 
Table A1 in Appendix). Here, the beta-pert data would suggest 
that there is little benefit in augmenting stamping out with vac-
cination (median of 26 days duration regardless of strategy). The 
median herd size data suggest that stamping out will result in 
longer outbreaks when using the stamping out and stamping 
out augmented with vaccinating all species (a median of about 
330 days) when compared with stamping out augmented with 
vaccinating cattle only (median of 215 days). Running the model 
with the gold standard dataset (a more accurate reflection of 
regional population heterogeneity), results in a more complex 
picture where stamping out results in longer median outbreaks 
(332 days) compared with either of the vaccination augmented 
strategies (152 days when vaccinating all species and 138 days 
when vaccinating cattle only).

Actual farm population information may not be available for 
a variety of reasons which include resource limitation and legal 
restrictions (14). Where actual census data are not available, then 
a compromise may be to use modeled population data that are 
conditional on region as well as herd type rather than as a single 
function of herd type across the country, as has been done in this 
study. The optimal size for the regions that would best strike a bal-
ance between representing regional heterogeneity and best use of 
resource is not known. It might be argued that collection of rep-
resentative samples from each locality to generate the conditional 
populations might require so much effort that the collection and 
use of actual data (which have other essential uses apart from 
disease spread modeling) would be a better use of resources. Our 
models indicate that population detail is more important in some 
areas of New Zealand than others and this is supported by previ-
ous work on farm animal populations in New Zealand (40). The 
current study does not address the impact of subtle animal count 
biases on disease spread as it compares only the “gold standard,” 
beta-pert distributed and median herd sizes for each of 10 herd 
types. The beta-pert representation of herd size was used based 
on the finding that the beta-pert distribution best fit the herd size 
distributions in the gold standard data. The herd type median 
was used as the final data set to include as InterSpread Plus, the 
current disease spread simulator used as the NZSM for FMD 
spread uses a probability of disease transmission based on the 
median herd size to drive disease spread in the model (18). While 
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we have reasons for choosing both comparative datasets in our 
study, it is likely that inaccuracy in herd size data will, in practice 
not be distributed uniformly among all herds in the dataset and 
that some herd types will be more affected than others. We hope 
that our study will serve as a starting point for future, more 
nuanced studies which will explore the effect of sector-specific 
data inaccuracies.

It is important to note that no resource constraints were 
applied in this set of model simulations. Our results reflect that (as 
expected) in the absence of constraints, it is preferable to vaccinate 
all susceptible species than to vaccinate cattle only. Note that in 
Table A1 in Appendix, there appears to be a paradoxical effect of 
vaccinating all species in the median dataset when compared with 
vaccinating cattle only. This is explained by the fact that model runs 
that exceeded 365 days were removed from the dataset. As shown 
in Table 5, there are more of these model runs in the parameteriza-
tions that use the median herd size dataset which leads to larger 
numbers of IPs. Further investigation of the response of the model 
to vaccine dose and human resource limitations will make interest-
ing future work as will further investigation of impacts not limited 
to operational costs of an outbreak.

Our model findings are aligned with other published 
research that indicates that the value of vaccination is associ-
ated with the start location of an epidemic. Furthermore, while 
susceptible animal density does affect outbreak size, it does 
not alone predict infectiousness or infectivity of a herd (22, 
41). The presence of multiple species on a farm, the size of 
the holding and the distance to the closest infective property 
were risk factors identified in the 2001 UK epidemic (42). The 
authors point out that the accuracy of herd-level population 

and location information would be relevant to two (if not 
three) of these risk factors. In addition, should an actual 
outbreak occur, the strain type of the virus and its specific 
epidemiology would be hugely influential on the effectiveness 
of any chosen control strategy (20).

Our study indicates that when using a disease spread simula-
tor that explicitly represents the spread of disease within farms 
the quality and origin of the data used to represent herd size has 
significant impacts on the model results. We recommend that 
specific attention needs to be focused on national-level animal 
population datasets that results in their alignment and more 
efficient utilization.
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aPPenDiX

Table a1 | Descriptive five number summaries (minimum, 25th percentile, median, mean, 75th percentile and maximum) for each of 2 outcome variables (count of 
infected premises and duration in days) and 3 explanatory variables for the models described in Table 4.

Data type Outcome 
variable

region stamping out (minimum, 25th 
percentile, median, mean, 75th 
percentile, maximum)

stamping out augmented with 
vaccinating all susceptible 
species (minimum, 25th 
percentile, median, mean, 75th 
percentile, maximum)

stamping out augmented 
with vaccinating cattle only 
(minimum, 25th percentile, 
median, mean, 75th 
percentile, maximum)

Gold standard 
herd size data

Infected 
Premises

Auckland District 0, 0, 19, 1658, 679.5, 10320 0, 0, 18.5, 264.2, 199, 2729 0, 0, 21.5, 275.9, 334.2, 2275
New Plymouth District 0, 1, 2702, 3823, 8149, 11190 0, 1, 284, 591.6, 1073, 3394 0, 0, 284, 554.8, 994.8, 2961
Rangitikei District 0, 0, 14, 644.5, 103, 10630 0, 0, 12, 119.3, 93.5, 1956 0, 0, 14, 122.2, 95, 1997
Southland District 0, 0, 23, 83.08, 118, 928 0, 0, 20, 85.73, 129, 957 0, 0, 25, 89.42, 134.2, 692
Tasman District 0, 0, 0, 59.53, 16.25, 6454 0, 0, 0, 24.3, 17, 1462 0, 0, 0, 29.41, 17, 1580
Whakatane District 0, 0, 2120, 3531, 7187, 10460 0, 0, 245.5, 609.4, 1175, 3553 0, 0, 254.5, 561.9, 1079, 4320

Duration in 
days

Auckland District 0, 0, 42.5, 109.5, 321.5, 355 0, 0, 40, 83.13, 123, 346 0, 0, 47.5, 85.71, 154, 349
New Plymouth District 0, 27, 335, 201.2, 342, 357 0, 23.75, 128.5, 140.9, 247.2, 354 0, 0, 127.5, 126.8, 209, 347
Rangitikei District 0, 0, 47, 87.34, 90, 355 0, 0, 45, 69, 103.2, 348 0, 0, 55, 69.79, 106.2, 352
Southland District 0, 0, 54, 63.25, 89, 340 0, 0, 52, 59.38, 98, 306 0, 0, 61, 62.54, 106, 278
Tasman District 0, 0, 0, 29.84, 47, 347 0, 0, 0, 28.34, 45, 342 0, 0, 0, 29.64, 46, 343
Whakatane District 0, 0, 332, 193.6, 342, 357 0, 0, 152, 147.6, 258, 355 0, 0, 137.5, 130.5, 224, 354

Beta pert 
modelled herd 
size data

Infected 
Premises

Auckland District 0, 0, 3, 26.62, 24, 1350 0, 0, 3, 24.3, 26, 313 0, 0, 3, 25.49, 25.25, 796
New Plymouth District 0, 0, 5, 53.37, 50.25, 1368 0, 0, 2, 33.94, 32, 805 0, 0, 4, 37.55, 39, 785
Rangitikei District 0, 0, 1, 7.771, 7, 283 0, 0, 1, 10.51, 8, 244 0, 0, 1, 11.19, 8, 749
Southland District 0, 0, 1, 8.901, 9, 206 0, 0, 1, 10.66, 9, 567 0, 0, 1, 10.1, 9, 222
Tasman District 0, 0, 0, 6.898, 6, 129 0, 0, 0, 8.579, 7, 707 0, 0, 0, 7.982, 7, 214
Whakatane District 0, 0, 1, 18.11, 16, 691 0, 0, 1, 16.52, 16, 373 0, 0, 1, 16.19, 14, 492

Duration in 
days

Auckland District 0, 0, 30, 27.18, 43, 356 0, 0, 30, 27.78, 44, 226 0, 0, 29.5, 27.59, 45, 131
New Plymouth District 0, 0, 34, 37.63, 50, 351 0, 0, 29, 30.9, 53, 212 0, 0, 34, 32.04, 57, 119
Rangitikei District 0, 0, 27, 23.32, 40, 162 0, 0, 28, 25.63, 40, 312 0, 0, 27, 25.46, 41, 219
Southland District 0, 0, 27, 23.4, 40, 232 0, 0, 28, 23.99, 40, 183 0, 0, 28, 24.88, 40, 137
Tasman District 0, 0, 0, 18.96, 36, 263 0, 0, 0, 20.03, 37, 301 0, 0, 0, 19.52, 38, 101
Whakatane District 0, 0, 26, 24.82, 42, 333 0, 0, 26, 25.65, 42.25, 181 0, 0, 25, 24.95, 43, 141

Median herd 
size data

Infected 
premises

Auckland District 0, 0, 9510, 8281, 16750, 19160 0, 0, 207, 1365, 2816, 10220 0, 0, 173, 908.5, 1877, 5328
New Plymouth District 0, 14, 17250, 12890, 17890, 19330 0, 13.5, 3108, 2660, 4128, 13800 0, 8.25, 2029, 1765, 2765, 14850
Rangitikei District 0, 0, 33.5, 5657, 14700, 19220 0, 0, 27.5, 760.2, 1062, 16410 0, 0, 36, 465.6, 682.2, 13040
Southland District 0, 0, 29, 114.7, 123.2, 1550 0, 0, 33, 98.43, 124.2, 1079 0, 0, 37, 77.89, 114, 1648
Tasman District 0, 0, 4.5, 981.9, 63, 17980 0, 0, 2, 113.9, 59, 3877 0, 0, 2, 101.2, 68, 2969
Whakatane District 0, 0, 15780, 10220, 17210, 18990 0, 0, 1902, 1843, 3334, 14150 0, 0, 1426, 1301, 2290, 4115

Duration in 
days

Auckland District 0, 0, 326, 180.6, 341, 352 0, 0, 122, 167.5, 339, 353 0, 0, 108.5, 137.8, 261, 350
New Plymouth District 0, 44, 340, 254.5, 343.2, 358 0, 57.25, 340, 247.3, 343, 352 0, 40, 230.5, 194.9, 294, 351
Rangitikei District 0, 0, 58, 150, 336, 350 0, 0, 58.5, 130.4, 328, 357 0, 0, 66, 110.4, 213, 348
Southland District 0, 0, 52, 71.41, 77.25, 346 0, 0, 57, 70.34, 86.25, 350 0, 0, 66, 56.13, 87, 330
Tasman District 0, 0, 34, 56.34, 61, 348 0, 0, 28.5, 47.4, 63, 345 0, 0, 28.5, 46, 69, 345
Whakatane District 0, 0, 337, 212.2, 343, 358 0, 0, 334, 206.6, 342, 358 0, 0, 215, 171.1, 284.2, 351

These results are graphically represented in Figures 2 and 3.
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