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Using imperfect tests may lead to biased estimates of disease frequency and measures 
of association. Many studies have looked into the effect of misclassification on statistical 
inferences. These evaluations were either within a cross-sectional study framework, assessing 
biased prevalence, or for cohort study designs, evaluating biased incidence rate or risk ratio 
estimates based on misclassification at one of the two time-points (initial assessment or 
follow-up). However, both observations at risk and incident cases can be wrongly identified 
in longitudinal studies, leading to selection and misclassification biases, respectively. The 
objective of this paper was to evaluate the relative impact of selection and misclassification 
biases resulting from misclassification, together, on measures of incidence and risk ratio. To 
investigate impact on measure of disease frequency, data sets from a hypothetical cohort 
study with two samples collected one month apart were simulated and analyzed based on 
specific test and disease characteristics, with no elimination of disease during the sampling 
interval or clustering of observations. Direction and magnitude of bias due to selection, 
misclassification, and total bias was assessed for diagnostic test sensitivity and specificity 
ranging from 0.7 to 1.0 and 0.8 to 1.0, respectively, and for specific disease contexts, 
i.e., disease prevalences of 5 and 20%, and disease incidences of 0.01, 0.05, and 0.1 
cases/animal-month. A hypothetical exposure with known strength of association was also 
generated. A total of 1,000 cohort studies of 1,000 observations each were simulated for 
these six disease contexts where the same diagnostic test was used to identify observations 
at risk at beginning of the cohort and incident cases at its end. Our results indicated that 
the departure of the estimates of disease incidence and risk ratio from their true value were 
mainly a function of test specificity, and disease prevalence and incidence. The combination 
of the two biases, at baseline and follow-up, revealed the importance of a good to excellent 
specificity relative to sensitivity for the diagnostic test. Small divergence from perfect specificity 
extended quickly to disease incidence over-estimation as true prevalence increased and true 
incidence decreased. A highly sensitive test to exclude diseased subjects at baseline was of 
less importance to minimize bias than using a highly specific one at baseline. Near perfect 
diagnostic test attributes were even more important to obtain a measure of association close 
to the true risk ratio, according to specific disease characteristics, especially its prevalence. 
Low prevalent and high incident disease lead to minimal bias if disease is diagnosed with 
high sensitivity and close to perfect specificity at baseline and follow-up. For more prevalent 
diseases we observed large risk ratio biases towards the null value, even with near perfect 
diagnosis.

Keywords: bias (epidemiology), longitudinal study, selection bias, misclassification, epidemiologic methods

Edited by: 
Timothée Vergne,

Ecole Nationale Vétérinaire de 
Toulouse, France

Reviewed by: 
Flavie Vial,

Animal and Plant Health Agency 
(United Kingdom), United Kingdom

 Laura Cristina Falzon,
University of Liverpool, 

United Kingdom

*Correspondence:
Simon Dufour

 simon. dufour@ umontreal. ca

Specialty section:
This article was submitted to 

Veterinary Epidemiology 
and Economics,

a section of the journal 
Frontiers in Veterinary Science

Received: 05 February 2018
Accepted: 20 April 2018
Published: 28 May 2018

Citation:
Haine D, Dohoo I and Dufour S

 (2018) Selection and 
Misclassification Biases in 

Longitudinal Studies.
Front. Vet. Sci. 5:99.

doi: 10.3389/fvets.2018.00099

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org/journals/Veterinary_Science#articles
http://www.frontiersin.org/journals/Veterinary_Science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fvets.2018.00099&domain=pdf&date_stamp=2018-05-25
http://www.frontiersin.org/Veterinary_Science/editorialboard
http://www.frontiersin.org/Veterinary_Science/editorialboard
https://doi.org/10.3389/fvets.2018.00099
http://www.frontiersin.org/articles/10.3389/fvets.2018.00099/full
http://www.frontiersin.org/articles/10.3389/fvets.2018.00099/full
http://loop.frontiersin.org/people/521164/overview
http://loop.frontiersin.org/people/423889/overview
https://creativecommons.org/licenses/by/4.0
mailto:simon.dufour@umontreal.ca
https://doi.org/10.3389/fvets.2018.00099


2 May  2018 | Volume 5 | Article 99Frontiers in Veterinary Science | www. frontiersin. org

Haine et al. Bias in Cohort Studies

intrOductiOn

A cohort study is a longitudinal observational study in which a 
study population (i.e., a cohort) is selected and followed up in time 
(1, 2). Members of the cohort share a common experience (e.g., 
Kennel Club registered Labrador Retrievers born after January 
1, 2010 (3) or condition [e.g., litters from A. pleuropneumoniae 
infected sows (4)]. Two cohorts are often included in these 
longitudinal studies, one experiencing a putative causal event or 
condition (exposed cohort), and the other being an unexposed 
(reference) cohort. Cohort study is the standard study design 
to estimate the incidence of diseases and identify their natural 
history, by analyzing the association between a baseline exposure 
and risk of disease over the follow-up period. This type of study 
is characterized by the identification of a disease-free population 
(i.e., subjects with the outcome at baseline are excluded from the 
follow-up), and their exposure to a risk factor is assessed. The 
frequency of the outcome (generally the incidence of a disease or 
death) is measured and related to exposure status, expressed as a 
risk ratio (RR). Therefore it is assumed that prevalent and non-
prevalent cases can be differentiated with no error so that only 
susceptible individuals are included in the cohort. Incident cases 
are likewise supposed to be correctly identified.

However, any measurement is prone to potential errors, as 
a result of subjective evaluations, imperfect diagnostic tests, 
reporting errors (deliberate or not), recall deficiencies, or clerical 
errors. Obtaining “error-free” measurements is a desirable 
objective but it is usually much more expensive to use “gold-
standard” measurements, or they are simply not available, leaving 
the researcher with “less-than-ideal” measurement tools. Wrong 
classification at baseline and at follow-up are both misclassification 
biases, in the former the bias resulting from misclassification could 
be considered a selection bias, as the wrong (diseased) subjects 
are included in the cohort (2) while in the latter, it would be 
commonly defined as misclassification bias (5). Such errors of 
measurement or misclassification in exposure variables, outcomes 
or confounders can bias inferences drawn from the data collected, 
often substantially (6), or decrease the power of the study (7, 8). 
Many studies have looked into the effect of misclassification on 
statistical inferences, including biased prevalence and incidence 
rate estimates (6, 9) and biased relative risk estimates (10, 11). 
Nondifferential misclassification of disease leads in general to 
bias towards null in the estimated associations as well as reduced 
statistical efficiency (7, 10, 12). This bias depends mainly on the 
specificity (Sp) of the test used (12). If Sp of the test is perfect, then 
bias is absent (13). These evaluations were, however, either within 
a cross-sectional study framework, assessing biased prevalence, 
or for cohort study designs evaluating biased incidence rate or 
RR estimates but based on misclassification at only one of the 
two time-points (initial assessment or follow-up). However, both 
observations at risk and incident cases can be wrongly identified 
in longitudinal studies, leading to selection and misclassification 
biases, respectively.

The objective of this paper was to evaluate the relative 
impact of selection and misclassification biases resulting from 
misclassification, together, on measures of incidence and RR.

Material and MethOds

To investigate the impact of concomitant selection and 
misclassification biases on measure of disease frequency, data sets 
from a hypothetical cohort study with two samples collected one 
time unit apart were simulated and analyzed based on specific 
test and disease characteristics, for a stable population over the 
follow-up time, and with no elimination of disease or clustering 
of observations. Direction and magnitude of bias due to selection, 
misclassification, and total bias was assessed for diagnostic test 
sensitivity (Se) and Sp ranging from 0.7 to 1.0 (0.7, 0.75, 0.8, 0.85, 
0.9, 0.95, 0.98, 0.99, 1) and 0.8 to 1.0 (0.8, 0.85, 0.9, 0.95, 0.98, 
0.99, 1), respectively, and for specific disease contexts, i.e., disease 
prevalences of 5 and 20%, and disease incidences of 0.01, 0.05, 
and 0.1 cases/animal-time unit. The true case status ( S1 ) on first 
sample collection was used to identify observations at risk at the 
beginning of the cohort, while the second ( S2 ) was used to identify 
the true outcome. A hypothetical exposure with known strength 
o f association (RR  ∼3.0 ) was also generated. For demonstration 
purpose, simulations were also ran with a weaker RR of  ∼1.5   
(see  Supplementary Material). A total of 1,000 cohort studies 
of 1,000 observations each were simulated for these six disease 
contexts where the same diagnostic test was used to identify 
observations at risk at beginning of the cohort and incident cases 
at its end. On each datasets new  S1  and  S2  variables were generated 
by applying the scenario misclassification parameters to the  S1  
and  S2  samples. Incidence and measures of association with the 
hypothetical exposure were then computed using first the  S1  and 
 S2  variables (total bias), then  S1  and  S2  (selection bias only), and 
finally the  S1  and  S2  variables (misclassification bias only).

Disease incidence was computed as the number of new cases at 
the end of the cohort divided by the number at risk at its beginning. 
Risk ratio was computed as the ratio of the risk of disease among 
observations who were exposed to the risk factor, to the risk among 
observations who were unexposed (2). Data sets generation and 
estimation procedures were realized in R (14), and simulation code 
is available at https:// github. com/ dhaine/ cohortBias.

results

Total biases resulting from selection and misclassification errors and 
according to given disease prevalence, Se, and Sp are illustrated for 
disease incidence and RR in Figures 1, 2, respectively. These figures 
are contour plots where the lines are curves in the  x, y -plane along 
which the function of the two variables on the vertical and horizontal 
axes (i.e., Se and Sp) has a constant value, i.e., a curve joins points of 
equal value (15). The true incidence rate (or RR) is therefore to be 
found at the upper right corner of the plot. For example, in the bottom 
left panel of Figure 1 the second line from the bottom is labelled 
0.22. This line shows that, for a 5% disease prevalence and a true 
incidence rate of 0.1 case/animal-time unit, an apparent incidence 
estimate of 0.22 will be achieved by any combination of Sp and Se 
on this line (e.g., Sp = 0.845, Se = 0.7 or Sp = 0.87 and Se = 1.00). As 
an other example, in the upper right panel of this same figure, the 
first line at the top is labelled 0.02. It shows that, for a 5% disease 
prevalence and a true incidence rate of 0.01 case/animal-time unit, 
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an apparent incidence estimate of 0.02 is achieved along this line by 
any combination of Se and Sp like, for example, a Sp of 1.00 and a Se 
of 0.955. The true incidence rate is given at the upper right corner, 
where Se and Sp are both 100%. Imperfect Se to identify individuals 
at risk at baseline and imperfect Sp to identify incident cases led to 
a mild under-estimation of the observed disease incidence (Figures 
S1, S2 in Supplementary Material). From these graphs we could also 
note that Sp has little effect on selection bias while Se has little effect 
on misclassification bias. Of the two, misclassification bias had a much 
bigger effect than selection bias. But overall, the combination of the 
two biases, at baseline and follow-up, revealed the importance of 
a good to excellent Sp relative to Se for the diagnostic test. Small 

divergence from perfect Sp extended quickly to disease incidence 
over-estimation as true prevalence increased and true incidence 
decreased (Figures 3–5). Selection and misclassification biases of a 
low prevalent and incident disease, diagnosed with close to perfect Sp, 
were minimal, reflecting the importance of choosing a highly specific 
test to improve identification of animal (or individual) unit at risk and 
incident case identification. The same effect was also observed with 
RR estimations (Figures S3, S4 in Supplementary Material). Similar 
results were found with a weaker exposure, RR of 1.5 (Figures S5–S8 
in Supplementary Material).

Our results indicated that the departure of the estimates of 
disease incidence and risk ratio from their true value were mainly 

Figure 1 |  Estimated incidence rate (in cases/animal-time unit) as a function of test sensitivity and specificity, disease prevalence (5 or 20%), and true disease 
incidence (0.01, 0.05, 0.1 case/animal-time unit) when using an imperfect test both at baseline and follow-up (i.e., total bias). True incidence rate is found at the 
upper right corner (i.e., perfect sensitivity and specificity).
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a function of test Sp, and disease prevalence and incidence. 
Imperfect Se to identify individuals at risk and imperfect Sp 
to identify incident cases led to a mild under-estimation of 
the observed disease incidence. The combination of the two 
biases, at baseline and follow-up, revealed the importance of a 
good to excellent Sp (over 95%) over Se for the diagnostic test. 
Small divergence from perfect Sp extended quickly to disease 
incidence over-estimation as true prevalence increased and true 
incidence decreased. Selection and misclassification biases of 
a low prevalent and incident disease, diagnosed with close to 
perfect Sp, were minimal, reflecting the importance of choosing a 
highly specific test to improve unit at risk and case identification. 

A highly sensitive test to exclude diseased subjects at baseline was 
of less importance to minimize bias than using a highly specific 
one at this time point. Of course, the situation would be different 
in a population with a very high disease prevalence. For most 
diseases, however, the tendency is to have a large proportion of 
healthy animals and a small proportion of diseased ones. The 
range of diseases prevalence investigated in our study (5–20%) 
would therefore cover most disease scenarios seen in veterinary, 
and perhaps, human studies.

Near perfect diagnostic test attributes were even more 
important to obtain a measure of association close to the true 
risk ratio, according to specific disease characteristics, especially 

Figure 2 |  Estimated risk ratio as a function of test sensitivity and specificity, disease prevalence (5 or 20%), and true disease incidence (0.01, 0.05, 0.1 case/
animal-time unit) for an exposure with a true measure of association corresponding to a risk ratio of  3.0  when using an imperfect test both at baseline and follow-up 
(i.e., total bias). True risk ratio is found at the upper right corner (i.e., perfect sensitivity and specificity).
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its prevalence. Low prevalent and high incident disease led to 
minimal bias if disease was diagnosed with high Se and close 
to perfect Sp. For more prevalent diseases we observed large 
risk ratio biases towards the null value, even with near perfect 
diagnosis. This bias also got larger as incidence decreased. For 
diseases with moderate to high prevalence (20%), the biases 
could be so important that a study using a test with a Se or Sp 
<0.95 would have very little power to identify any measure of 

association with exposures. Even with prevalence of disease of 
5%, a dramatic loss of power is to be expected when imperfect 
tests are used. Therefore a corollary result of a sub-optimal Sp is 
that, by causing a bias towards the null, weaker associations (like 
our RR  ∼1.5 ) will be more difficult to demonstrate. It would be 
unnecessary to fight this loss in power by increasing the study 
sample size in order to get a narrower CI, as the measured 
association would be biased anyway (16). It was already 

Figure 3 |  Apparent incidence resulting from total bias, as a function of 
specificity. Disease prevalence = 5%. Solid line: median value; dotted lines: 
first and third quartiles.

Figure 4 |  Apparent incidence resulting from total bias, as a function of 
specificity. Disease prevalence = 20%. Solid line: median value; dotted lines: 
first and third quartiles.
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demonstrated that study power decreases as misclassification 
increases (17). For stronger associations and in the presence 
of small biases, sample size could be adjusted (18, 19). But in 
the presence of larger biased associations towards the null, a 
weaker, reduced, association would be candidate for further 
investigation, even if its CI includes 1.0 (20).

It is already recognized that misclassification of outcome 
or exposure during follow-up leads to bias towards null in the 
estimated associations (7, 12, 21) as well as reduced statistical 
efficiency by loss of power (8) and confidence intervals of the 
parameters estimates that are too narrow (22). However this bias 
towards the null value is strictly true only when misclassification 
is the same in the two compared groups, i.e., exposure and 
covariates status do not influence Se and/or Sp (12, 22, 23). In 
this case, we have non-differential misclassification. As shown 
previously by (12), misclassification bias depends primarily on 
the Sp of the test used and increase with disease rarity, with 
most of the bias occurring even before the Sp drops below 85%. 
With Se and Sp as high as 0.90 and 0.96, respectively, RR is 
already substantially biased (1.5 instead of 2) (12), but when Sp is 
perfect, bias is absent (13). When disease frequency is low, error 
in disease diagnosis leads to an increase in false positives which 
submerge true positives and dilute measures of incidence and 
association. Bias in RR increases as Se increase and Sp decrease 
(8). Exposure misclassification alone can cause serious bias on 
the RR even if Se or Sp are not lower than 80% (24).

When misclassification is differential, i.e., Se and Sp of 
outcome classification is not equal in each true category of 
exposure (or Se and Sp of exposure classification is not equal in 
each true category of outcome), direction of bias for parameter 
estimates can be in any direction (22, 25, 26). In this case, Se 
and Sp as low as 90% can be sufficient to produce high bias 
(24). Direction of the bias can also be in any direction with 
dependent misclassification [i.e., the errors in one variable are 
associated with the errors in an other (27, 28)], even if non-
differential (24). The same is found when the exposure variable is 
not dichotomous but has multiple levels (25, 29). Bias towards the 

null also requires that selection bias and confounding are absent 
(30). There are therefore many situations where bias towards 
null do not apply. Even when non-differential misclassification 
is thought to take place, random errors in the observed estimates 
can lead bias away from the null (30).

In cohort studies, non-differential misclassification of disease 
at baseline, i.e., selection bias, especially imperfect Se, can lead 
to over- or under-estimation of the observed RR (31). This bias 
can be significant for disease with a low true incidence, a high 
true prevalence, a substantial disease duration (i.e., as long as 
the interval between first and second test), and a poor test Se 
In the presence of misclassification of disease at baseline the 
observed RR depend on the association between exposure and 
disease both at baseline and during follow-up (31). Therefore 
to minimize bias, the standard recommendation is to exclude 
subjects with the outcome at baseline from the cohort based on 
a highly sensitive test (32). Then during the follow-up period, 
case identification should use a highly specific test having a high 
positive predictive value (33). However (34) have shown that a 
more prevalent and incident disease diagnosed with an imperfect 
Se and/or Sp will give biased measure of association despite 
attempts to improve its diagnosis.

We have shown here that combined misclassification at 
baseline and follow-up requires a highly specific test. If a test with 
high Sp cannot be used, one could use a less efficient test twice 
at recruitment or for identifying incident cases and with a serial 
interpretation. The loss in Se of such an approach would cause 
little bias, compared to the potential gains due to the increased 
Sp. However, this combined misclassification would also require 
a highly sensitive test to estimate an association close to the true 
RR. Unfortunately increasing Sp of a test very often decreases 
its Se, i.e., a lower probability for diseased individuals to be 
recognized as diseased. As a results, some classification errors 
are to be expected leading to biased parameters estimates. If 
classification errors cannot be avoided during the study design 
stage, the misclassification bias can be corrected into the analytic 
stage. For instance, Se and Sp of the test can be incorporated 
into the modelling strategy (35), by performing a probabilistic 
sensitivity analysis (36), or by including the uncertainty in 
the estimates with a Bayesian analysis in the form of prior 
distributions (37). A latent class model (38) would therefore 
return the posterior inference on regression parameters and 
the Se and Sp of both tests. Acknowledgement of these biases 
and possible corrective measures are important when designing 
longitudinal studies when gold standard measurement of the 
outcome might not be readily available, like for bacterial diseases 
(for example subclinical intramammary infection (39), viral 
diseases (40) or more complex outcome evaluations (e.g., bovine 
respiratory disease complex (41). Efforts should be made to 
improve outcome evaluation but absence or limitation of bias 
is not always granted in some situation (34). demonstrated 
that for some specific disease incidences and prevalences bias 
could not be avoided by improving outcome measurements. 
Using latent class models can help in these cases, as shown  
by (42).

Bias in parameters estimates can be important when 
considering selection and misclassification biases together in 

Figure 5 |  Estimated risk ratio as a function of test specificity and disease 
risk, and for a sensitivity of 95%, when using an imperfect test both at 
baseline and follow-up. True risk ratio =  3.0 .
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