
REVIEW
published: 12 December 2018
doi: 10.3389/fvets.2018.00315

Frontiers in Veterinary Science | www.frontiersin.org 1 December 2018 | Volume 5 | Article 315

Edited by:

Zhenhai Chen,

Yangzhou University, China

Reviewed by:

Irit Davidson,

Kimron Veterinary Institute, Israel

Joachim Denner,

Robert Koch Institute, Germany

*Correspondence:

Joaquim Segalés

joaquim.segales@irta.cat

Specialty section:

This article was submitted to

Veterinary Infectious Diseases,

a section of the journal

Frontiers in Veterinary Science

Received: 08 October 2018

Accepted: 28 November 2018

Published: 12 December 2018

Citation:

Klaumann F, Correa-Fiz F, Franzo G,

Sibila M, Núñez JI and Segalés J

(2018) Current Knowledge on Porcine

circovirus 3 (PCV-3): A Novel Virus

With a Yet Unknown Impact on the

Swine Industry. Front. Vet. Sci. 5:315.

doi: 10.3389/fvets.2018.00315

Current Knowledge on Porcine
circovirus 3 (PCV-3): A Novel Virus
With a Yet Unknown Impact on the
Swine Industry
Francini Klaumann 1,2, Florencia Correa-Fiz 2, Giovanni Franzo 3, Marina Sibila 2,

José I. Núñez 2 and Joaquim Segalés 4,5*

1CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil, 2 IRTA, Centre de Recerca en Sanitat Animal (CReSA,

IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain, 3Department of Animal Medicine,

Production and Health (MAPS), University of Padua, Padua, Italy, 4UAB, Centre de Recerca en Sanitat Animal (CReSA,

IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain, 5Departament de Sanitat i Anatomia

Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain

Porcine circovirus 3 (PCV-3) is a recently described virus belonging to the family

Circoviridae. It represents the third member of genus Circovirus able to infect

swine, together with PCV-1, considered non-pathogenic, and PCV-2, one of the

most economically relevant viruses for the swine worldwide industry. PCV-3 was

originally found by metagenomics analyses in 2015 in tissues of pigs suffering from

porcine dermatitis and nephropathy syndrome, reproductive failure, myocarditis and

multisystemic inflammation. The lack of other common pathogens as potential infectious

agents of these conditions prompted the suspicion that PCV-3 might etiologically be

involved in disease occurrence. Subsequently, viral genome was detected in apparently

healthy pigs, and retrospective studies indicated that PCV-3 was already present in pigs

by early 1990s. In fact, current evidence suggests that PCV-3 is a rather widespread

virus worldwide. Recently, the virus DNA has also been found in wild boar, expanding

the scope of infection susceptibility among the Suidae family; also, the potential reservoir

role of this species for the domestic pig has been proposed. Phylogenetic studies with

available PCV-3 partial and complete sequences from around the world have revealed

high nucleotide identity (>96%), although two main groups and several subclusters have

been described as well. Moreover, it has been proposed the existence of a most common

ancestor dated around 50 years ago. Taking into account the economic importance and

the well-known effects of PCV-2 on the swine industry, a new member of the same family

like PCV-3 should not be neglected. Studies on epidemiology, pathogenesis, immunity

and diagnosis are guaranteed in the next few years. Therefore, the present review will

update the current knowledge and future trends of research on PCV-3.
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INTRODUCTION

The evolution of emerging diseases is associated with factors
embedded in the concept “host-agent-environment triangle”
(1). To infect the host and cause disease, the pathogen needs
to evade host defenses, which may occur through single
point mutations, genome rearrangements, recombination and/or
translocation (2). Genetic uniformity generated through genetic
selection of the host (3) and the fact that demographic changes,
intensification of farming, and international commerce have
occurred markedly over the last decades, must be also considered
as essential factors for the development of emerging diseases
(4–6).

As well as in humans, emerging diseases drastically affect
animal populations, especially food-producing animals.
Livestock production in large communities (i.e., pig farms or
poultry flocks) represents an excellent environment to facilitate
the transmission and maintenance of huge viral populations,
contributing to the pathogen evolution (through mutation,
recombination and reassortment, followed by natural selection)
(7–9). The intensification of livestock during the last four decades
has probably been one of the main factors that contributed to the
emergence of new pathogens and/or pathogen variants, leading
to changes in the epidemiology and presentation of diseases (10).

The number of viral infectious diseases in swine has
significantly increased in the last 30 years. Several important
worldwide distributed viruses have been reported in this
period, including Porcine reproductive and respiratory syndrome
virus (PRRSV, family Arteriviridae), Porcine circovirus 2
(PCV-2, family Circoviridae) and Porcine epidemic diarrhea
virus (PEDV, family Coronaviridae). In addition to those
worldwide widespread viruses, an important number of
novel swine pathogens causing different types of diseases has
been described (11, 12). Although their economic impact
might be variable, they are considered significant infection
agents and their monitoring is nowadays performed in some
parts of the world. Among others, relevant examples are
Porcine deltacoronavirus (associated with diarrhea) (12),
Senecavirus A (causing a vesicular disease and increased pre-
weaning mortality) (11), Porcine sapelovirus (found in cases of
polioencephalomyelitis) (13), Porcine orthoreovirus (assumed
to cause diarrhea) (14), Atypical porcine pestivirus (cause of
congenital tremors type II) (15) and HKU2-related coronavirus
of bat origin (associated with a fatal swine acute diarrhea
syndrome) (16).

Besides overt emerging diseases of swine, many other novel
infectious agents have been detected in both healthy and diseased
animals, and their importance is under discussion. This group of
agents is mainly represented by Torque teno sus viruses, Porcine
bocavirus, Porcine torovirus and Porcine kobuvirus, which are
thought to cause subclinical infections with no defined impact
on production (13, 17, 18). An exception may be represented
by Hepatitis E virus (HEV); although it seems fairly innocuous
for pigs, it is considered an important zoonotic agent (19, 20).
Recently, a novel member of the Circoviridae family named
Porcine circovirus 3 (PCV- 3), with unknown effects on pigs, has
been discovered (21, 22).

Porcine circovirus 3 (PCV-3) was first described in 2015 in
North Carolina (USA) in a farm that experienced increased
mortality and a decrease in the conception rate (21). Sows
presented clinical signs compatible with porcine dermatitis
and nephropathy syndrome (PDNS) and reproductive failure.
In order to identify the etiological pathogen, aborted fetuses
and organs from the affected sows were collected for further
analyses. Whilst histological results were consistent with PCV-
2-systemic disease, both immunohistochemistry (IHC) and
quantitative PCR (qPCR) methods to detect PCV-2 yielded
negative results. Samples were also negative for PRRSV and
Influenza A virus. Homogenized tissues from sows with PDNS-
like lesions and three fetuses were tested through metagenomic
analysis, revealing the presence of an uncharacterized virus
(21). Further analyses using rolling circle amplification (RCA)
followed by Sanger sequencing showed a circular genome of
2,000 nucleotides. Palinski et al. (21) also performed a brief
retrospective study through qPCR on serum samples from
animals clinically affected by PDNS-like lesions (but negative
for PCV-2 by IHC) and pigs with porcine respiratory diseases.
Results revealed PCV-3 qPCR positivity in 93.75 and 12.5% of
the analyzed samples, respectively (21).

Interestingly, almost concomitantly, another research group
from the USA reported a clinical picture pathologically
characterized by multi-systemic and cardiac inflammation of
unknown etiology in three pigs of different ages ranging between
3 and 9 week-old (22). Several tissues from these animals were
tested by next-generation sequencing (NGS) methods and PCV-
3 genome was found. Beyond NGS, in situ hybridization was
performed in one out of these three pigs, confirming PCV-3
mRNA in the myocardium (cytoplasm of myocardiocytes and
inflammatory cells mainly, although to a very low frequency).

Based on these two initial works, the name PCV-3 was
proposed as the third species of circoviruses affecting pigs, since
pairwise analysis demonstrated significant divergence with the
existing PCVs. The novel sequences showed <70% of identity
in the predicted whole genome and capsid protein amino acid
(aa) sequence compared to the other members of the Circovirus
genus (22). Taking into account the economic importance and
the well-known effects of PCV-2 on the swine industry, a new
member of the same family like PCV-3 should not be neglected.
Studies on epidemiology, pathogenesis, immunity and diagnosis
are guaranteed in the next few years, but the scientific community
is still in its very beginning on the knowledge of this new
infectious agent. Therefore, the objective of the present review
is to update the current knowledge and forecast future trends on
PCV-3.

MOLECULAR ORGANIZATION OF
PORCINE CIRCOVIRUSES

Porcine circovirus 3 (PCV-3) belongs to the family Circoviridae,
genus Circovirus. Until 2016, the Circoviridae family was divided
into two different genera named Circovirus and Gyrovirus (23);
however, on the basis of the viral structure and genome, a
new taxonomical grouping has been recently established by the
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International Committee on Taxonomy of Virus. The genus
Gyrovirus has been removed from the family Circoviridae and
reassigned into the Anelloviridae family, and the new taxon
Cyclovirus has been included into the Circoviridae family (24).
This new genus is closely related with Circovirus genus members,
with some differences in the genomic structure such as the
orientation of the major open reading frames (ORFs). Moreover,
viral sequences of the genus Cyclovirus have been reported in
both vertebrates and invertebrates, including humans and other
mammals (25–29), birds (30), and insects (31). Members of the
Circovirus genus have been detected in vertebrates (32); most
recently one study reported the presence of a Circovirus genome
in invertebrates (33). One of the first Circovirus discovered,
Psittacine beak and feather disease virus, was described in avian
species (34) and, subsequently, several reports revealed the
presence of similar virions in other species such as swine (35),
fishes (36), bats (37–39), chimpanzees (40), dogs (41) humans
(40), and minks (42). Since 2016, three species of porcine
circoviruses have been formally accepted, including Porcine
circovirus 1 (PCV-1), PCV-2 and PCV-3 (21, 22).

Structurally, circoviruses are small single-stranded DNA
(ssDNA) viruses (43), characterized by a non-enveloped virion
with icosahedral symmetry, and a circular genome with a
diameter ranging from 13 to 25 nm. Members of this family
are constituted by 60 capsid protein subunits organized in a
dodecahedral pentamer clustered unit (44). PCV-1 has a genome
size ranging from 1,758 to 1,760 nucleotides (nt) (45–47), while
the circular genomes of PCV-2 and PCV-3 consist of 1,766–1,769
and 1,999–2,001 nt, respectively (21, 46, 48–50).

Porcine circoviruses contain three major ORFs arranged in
the strands of the replicative form (RF) (21). For PCV-1, a total
of seven putative ORFs capable to encode proteins larger than
5 kDa have been predicted on both DNA strands (47), being
six of them larger than 200 nt (51, 52). PCV-2 contains, besides
the three major ORFs, eight more predicted ones, but just ORF4
has been characterized in more detail (53–55). PCV-3 contains
so far three identified ORFs, but only ORF1 and ORF2 have
been characterized. The general characteristics of the three major
ORFs of PCVs are summarized in Table 1.

ORF1 encodes for Rep and Rep′ proteins involved in
replication initiation, of 312 and 168 aa, respectively, in PCV-
1, and of 314 and 297 aa, respectively, for PCV-2 (56). ORF1
apparently codes for a single replicase protein in PCV-3, of 296–
297 aa (21, 22). ORF1 is located on the positive strand and
considered the most conserved region of the circovirus genome
(57). The origin of replication (ori), constituted by a conserved
non-anucleotide motif [(T/n)A(G/t)TATTAC], is located on the
same strand as ORF1 and, consequently, this frame is involved in
rolling circle replication (RCR) (58).

ORF2 encodes the only structural protein (Cap). It consists of
230–233 aa for PCV-1, 233–236 aa for PCV-2 (56, 59, 60) and
214 aa for PCV-3 (21, 22). ORF2 is located on the negative DNA
viral strand and Cap protein is considered the most variable (46,
61, 62), and most immunogenic (63) viral protein. Nucleotide
similarity of 67% in Cap protein between PCV-1 and PCV-2
was detected through phylogenetic analyses (64); moreover, the
similarity in this protein is much lower (24%) among PCV-1

and PCV-3 (22) while being 26–37% between PCV-2 and PCV-3
(21, 22).

The ORF3 is oriented in the opposite direction of ORF1, also
in the negative strand, which codifies for a non-structural protein
with apoptotic capacity (56, 65). The ORF3 protein consists of
206 aa for PCV-1, 104 aa for PCV-2 and 231 aa for PCV-3 (21, 66).
The apoptotic activity of ORF3 protein has been described both
in vitro and in vivo for PCV-1 and PCV-2 (67, 68), while its
putative function in PCV-3 is still unknown.

Lastly, ORF4, also located in the negative strand, has only been
described in the PCV-2 genome. This gene codifies for a protein
of approximately 60 aa with anti-apoptotic function (53, 54).

Table 2 summarizes the nucleotide and amino acid raw
distances (calculated by means of the median pairwise distances)
among and within porcine circoviruses.

The similarity between PCV-3 sequences ranges from 97 to
100% throughout the analyzed years and tested countries (48, 69–
71). Phylogenetic analyses suggested two main groups classified
as PCV-3a and PCV-3b and several sub-clusters (48, 72, 73),
based on differences found between both groups in the aa sites
122 and 320 (S122A and A320V). In fact, certain antigenicity
differences among groups have been proposed (74), although it
is still too early to discuss about potential different genotypes or
subgroups for PCV-3. Additionally, the progressive increase in
sequence availability is revealing the presence of other branching
patterns, which hardly fit with the “two genotype” classification.
Therefore, similarly to PCV-2, a higher heterogeneity might be
found in the future. A phylogenetic tree including full-length
sequences of PCV-3 is depicted in Figure 1.

EPIDEMIOLOGY

After the first description reported from the USA, several
countries located in Asia, Europe and South America (Figure 2)
have demonstrated the presence of PCV-3 genome in domestic
pig (70, 73, 75–80).

PCV-3 genome has been detected at all tested ages, including
sows, mummified fetuses and stillborn (21, 79, 81). The frequency
of viral detection found by PCR in pigs is variable according
to the collected samples around the world (Table 3). A lower
frequency of PCV-3 PCR positivity has been detected in lactating
pigs when compared with nursery and fattening ones; the highest
prevalence was found in animals after weaning (48, 77, 82).
However, these studies included different pigs from fairly limited
age-groups and not the same animals over time. In a very recent
work performed on longitudinally sampled pigs in Spain (83),
PCV-3 DNA was found at all age-groups in four tested farms,
and the frequency of infection was not clearly dominant at any
age. Also, PCV-3 has been detected at moderate to high rate in
sera pools from sows in Poland (77) and Thailand (84).

PCV-3 genome has been detected by PCR in oral fluids and
nasal swabs (76, 82) as well as in feces (85, 95), semen (70), and
colostrum (84). Kedkovid et al. (84) found a positive correlation
between detection in serum samples and in colostrum, suggesting
that the colostrum is influenced by the viremic stage of the sow.
No specific studies have been performed on the virus detection
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TABLE 1 | Summary of characteristics of the three major ORFs in PCV-1, PCV-2, and PCV-3.

Porcine circovirus Size (nt) ORF1 ORF2 ORF3

Protein Size

(aa)

Protein Size (aa) Protein Size (aa)

PCV-1 1,758–1,760 Rep

Rep′
312

168

Cap 230–233 NS 206

PCV-2 1,766–1,769 Rep

Rep′
314

297

Cap 233–236 NS 104

PCV-3 1,999–2,001 Rep 296–

297

Cap 214 Unknown 231

NS, Non-structural protein; nt, nucleotides; aa, amino acids.

TABLE 2 | Median of pairwise genetic and amino acid distance calculated for all available PCV-1, PCV-2, and PCV-3 sequences.

Complete genome Cap Rep

PCV-1 PCV-2 PCV-3 PCV-1 PCV-2 PCV-3 PCV-1 PCV-2 PCV-3

DNA PCV-1 0.011

[0.000–0.026]

0.228

[0.220–0.271]

0.533

[0.528–0.543]

0.017

[0.000–0.043]

0.332

[0.314–0.352]

0.598

[0.586–0.611]

0.006

[0.000–0.070]

0.174

[0.116–0.194]

0.500

[0.491–0.527]

PCV-2 0.228

[0.220–0.271]

0.037

[0.001–0.102]

0.525

[0.518–0.544]

0.332

[0.314–0.352]

0.057

[0.000–0.172]

0.547

[0.539–0.569]

0.174

[0.116–0.194]

0.022

[0.000–0.056]

0.495

[0.485–0.520]

PCV-3 0.533

[0.528–0.543]

0.525

[0.518–0.544]

0.009

[0.000–0.024]

0.598

[0.586–0.611]

0.547

[0.539–0.569]

0.014

[0.000–0.028]

0.500

[0.491–0.527]

0.495

[0.485–0.520]

0.006

[0.000–0.034]

Amino acid PCV-1 NA NA NA 0.028

[0.000–0.071]

0.303

[0.283–0.346]

0.748

[0.732–0.760]

0.006

[0.000–0.075]

0.147

[0.088–0.194]

0.583

[0.577–0.607]

PCV-2 NA NA NA 0.303

[0.283–0.346]

0.055

[0.000–0.177]

0.689

[0.681–0.736]

0.147

[0.088–0.194]

0.009

[0.000–0.075]

0.574

[0.564–0.602]

PCV-3 NA NA NA 0.748

[0.732–0.760]

0.689

[0.681–0.736]

0.012

[0.000–0.035]

0.583

[0.577–0.607]

0.574

[0.564–0.602]

0.003

[0.000–0.031]

The distance range is reported between brackets after removal of the lower and upper 0.1 percentile. This measure was selected to exclude extreme values, which could be due to

poor quality of some sequences challenging to be detected during alignment inspection. NA, non-applicable.

in the environment, but one study indicates that the virus was
found in 2 out of 4 sponges used for sampling pig transporting
trucks after sanitation (89).

Besides domestic pigs, PCV-3 infects wild boar. Viral DNA
sequences retrieved from wild boar showed more than 98%
similarity with the available sequences from domestic pigs (95,
96). The prevalence found in tested serum samples was similar
or higher than that found in domestic pigs, ranging from 33 to
42.66%. Additionally, infection susceptibility was associated with
the age in both studies; juvenile animals were statistically less
often PCV-3 PCR positive than the older ones. In fact, a potential
reservoir role of the wild boar with respect to PCV-3 infection has
been suggested (95, 96).

PCV-3 seems to be restricted to Suidae species. However,
PCV-3 genome has been found in 4 out of 44 (9.09%) serum
samples of dogs from China. The authors suggested that the virus
might infect, therefore, non-porcine species (97). To date, there
is no further evidence regarding susceptibility to PCV-3 infection
in other species.

DISEASE ASSOCIATION WITH PCV-3

PCV-3 has been detected in pigs with different clinical/
pathological conditions, such as respiratory, reproductive,

gastrointestinal and neurological disorders; however, the virus
has been also detected in apparently healthy animals (21, 71, 98).
The conditions in which PCV-3 has been found are summarized
in Table 4. Noteworthy, in most of these scenarios there are not
complete diagnostic studies, but only the detection of the viral
genome in a number of pigs affected by different clinical signs.
Even though the viral genome was detected, it is worthy to state
that it does not imply a causative role of PCV-3 in the observed
condition. Thus, this section compiles the peer-reviewed
papers, reporting PCV-3 DNA detection in different disease
scenarios.

The amount of viral DNA in serum samples (102-107

copies/mL) (21) and tissues (104-1011 copies/mg) (86, 91) in
postweaning pigs and adults was rather variable, as well as
in stillborn or fetal tissues (106-109 copies/mg) (21, 75). In
most of these cases, the number of PCV-3 genome copies
should be considered moderate to low (21, 91). In addition,
detection was possible in some instances, but the viral load
was below the limit of quantification of the qPCR, which may
emphasize the subclinical nature of the infection in these cases
(48, 81). An association between high viral load and severity
has been demonstrated for other porcine circovirus (PCV-2),
especifically under PCV-2-SD (102) and PCV-2-reproductive
disease (103) scenarios. However, the meaning of a given genome
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FIGURE 1 | Maximum Likelihood unrooted phylogenetic tree reconstructed based on all available PCV-3 complete genome sequences (retrieved on October 2018).

Tree terminal branches have been color coded according to the corresponding collection country. Black color in terminal branches indicates other countries not

included in the list.

FIGURE 2 | Countries in red are those that have been so far reported PCV-3 PCR positive samples in domestic pig.

viral load for PCV-3 in healthy or diseased pigs is still to be
elucidated.

Reproductive Disease
PCV-3 genome was initially retrieved from sows with clinical
signs compatible with PDNS in USA. In the affected farm, a
decrease of 0.6% in the conception rate was found while the
sow mortality showed a 10.2% increase (21). In China, PCV-
3 was found in serum samples from sows with reproductive

problems characterized by acute loss of neonatal piglets (70).
Moreover, a comparative study between healthy sows and sows
with a clinical picture characterized by chronic reproductive
failure (including increase in abortion and sow mortality rates)
revealed that PCV-3 positivity was higher in affected sows (39
out of 84, 46.42%) than in healthy ones (23 out of 105, 21.9%)
(69). Viral genome has also been found in tissues from stillborn
in farms experiencing reproductive failure in China (69–71) and
Korea (94).
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TABLE 3 | Reports describing PCV-3 frequency of detection on different countries and sample types.

References Country Sample type PCV-3 positive (n) Tested samples (n) Frequency of detection (%)

Collins et al. (85) Ireland Tissue and feces 52 313 16.61

Fu et al. (73) China Tissue and stillborn 76 285 26.67

Kwon et al. (82) South Korea Oral fluid 159 360 44.17

Ku et al. (70) China Tissue, stillborn, semen and serum 77 222 34.68

Palinski et al. (21) USA Serum 47 150 31.33

Stadejek et al. (77) Poland Serum 55 215 25.58

Xu et al. (86) China Tissue and serum 53 170 31.18

Zhai et al. (87) China Tissue and serum 84 506 16.60

Zheng et al. (71) China Tissue 132 222 59.46

Wen et al. (88) China Tissue and serum 50 155 32.26

Klaumann et al.

(81)

Spain Serum 75 654 11.47

Franzo et al. (89) Italy Sponge sample 2 4 50.00

Franzo et al. (76) Denmark Tissue and serum 44 78 56.41

Franzo et al. (76) Italy Tissue and serum 36 91 39.56

Franzo et al. (76) Spain Serum (pools) 14 94 14.89

Hayashi et al. (90) Japan Tissue 7 73 9.59

Kedkovid et al.

(84)

Thailand Colostrum 17 38 44.74

Kedkovid et al.

(91)

Thailand Tissues and serum 33 103 32.04

Sun et al. (78) China Tissue 13 200 6.50

Zou et al. (69) China Serum 62 190 32.63

Zhao et al. (92) China Tissue 40 272 14.71

Ye et al. (93) Sweden Tissue 10 49 20.41

Kim et al. (94) Korea Serum 37 286 17.9

Kim et al. (94) Korea Tissue 20 296 6.8

Respiratory Disease
PCV-3 DNA was also detected in pigs with respiratory disorders,
as already indicated in the first report of this virus (21). Two
more studies reported PCV-3 genome in animals from China
with abdominal breathing and lesions including lung swelling
and congestion (87, 99). More recently, the viral genome has
been detected in fattening pigs from Thailand suffering from
porcine respiratory disease complex (PRDC), characterized by
coughing, dyspnea, fever and anorexia; the prevalence was higher
in diseased animals (60%; 15 out of 25) than in healthy ones (28%;
7 out of 25) (91).

Other Conditions
Multisystemic inflammation and myocarditis were initially
linked with the presence of PCV-3 (22). One single study
described PCV-3 in weaned pigs that suffered from gastro-
intestinal disorders (diarrhea), showing higher prevalence in pigs
with clinical signs (17.14%, 6 out of 35) compared to those with
non-diarrhea signs (2.86%; 1 out of 35) (87). In another report,
animals with congenital tremors were analyzed and PCV-3 was
the only pathogen found in the brain, with high amount of viral
DNA (101).

Healthy Animals
A number of studies found PCV-3 in apparently healthy animals
(69, 76, 81, 87, 93), which makes much more complicated the

overall interpretation of this virus as potential causative agent of
disease.

Co-infections
Whilst the initially PCV-3 PCR positive cases were negative for
three of the most important swine infectious agents (PCV-2,
PRRSV, and Porcine parvovirus, PPV) (21, 22, 87), subsequent
studies revealed frequent co-infection with other viruses. All
pathogens found in co-infections with PCV-3 are summarized in
Table 5.

It is still too early to establish the overall picture of
PCV-3 infection, since it is a widespread virus in healthy
animals. Therefore, the likelihood of disease may not depend
on its presence only, but other factors may serve as illness
triggering factors or up-regulate its replication under disease
scenarios.

LABORATORY TOOLS TO DETECT PCV-3

The detection of the virus is currently based on molecular
techniques such as conventional PCR and qPCR and its
characterization by Sanger sequencing or NGS. In fact,
the first PCV-3 complete genome was identified by NGS,
and subsequently Sanger sequencing has been systematically
applied to obtain novel PCV-3 sequences. Several primer
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TABLE 4 | Clinical signs reported in PCV-3 PCR positive animals according to production phase in different clinical/pathological scenarios.

Disorders Production

phase

Clinical signs - disease Control

group-healthy

animals

Reference

Reproductive Sows • Increase in the sow mortality; decrease in the conception

rates; mummified fetuses

• Aborted fetuses, stillborn

• Abortion, mummified fetuses; reproductive failure;

decrease of neonatal rate

NA

NA

NA

Palinski et al. (21)

Faccini et al. (75)

Ku et al. (70)

Respiratory Lactation

Weaning

Weaning

Fattening

Fattening

• Dyspnea

• Anorexia, fever, icterus, abdominal breathing

• Cough, softly panting, abdominal breathing

• Respiratory signs

• Porcine respiratory disease complex (PRDC)

NA

NA

Yes*

NA

NA

Phan et al. (22)

Shen et al. (99)

Zhai et al. (87)

Phan et al. (22)

Kedkovid et al. (91)

Cardiovascular Weaning • Anorexia, weight loss, swollen joints NA Phan et al. (22)

Gastrointestinal Weaning • Diarrhea Yes* Zhai et al. (87)

Systemic Weaning • Wasting

• Periweaning failure-to-thrive syndrome (PFTS)

Yes*

Yes*

Stadejek et al. (77)

Franzo et al. (100)

Neurological Lactation

Lactation

• Neurological signs

• Congenital tremors

NA

NA

Phan et al. (22)

Chen et al. (101)

Others Fattening

Sows

• Rectal prolapse

• PDNS

NA

NA

Phan et al. (22)

Palinski et al. (21)

NA, not available in the published study; *, PCV-3 positivity in lower frequency than diseased animals.

pairs and probes have been designed for these molecular
techniques (21, 89, 101). Moreover, a duplex qPCR for the
simultaneous detection of PCV-2 and PCV-3 has been also
attempted (105).

In situ hybridization, a technique used to detect viral
genome on histological tissue sections, has been performed
in two studies (22, 91). However, the technique is not yet
completely standardized, since it is still used in minimal number
of laboratories worldwide and a thorough description of the
infected cell types is still missing.

A minimum number of studies showed the development
and validation of serological tests. Two reports have
published limited information about indirect enzyme-linked
immunosorbent (ELISA) tests using recombinant PCV-
3 Cap protein (21, 106). More recently, a PCV-3 specific
monoclonal antibody has been produced, presumably working
on formalin-fixed, paraffin-embedded tissues by means of
immunohistochemistry (72).

Infection of cell cultures with PCV-3 tissue homogenates has
been attempted in PK-15 (21, 75) and swine testicle cells (ST) (21)
without success. The cells were observed for cytopathic effects
and monitored by qPCR for viral growth. However, the Ct-values
did not increase at each cellular passage and no cytopathic effect
was observed (21, 75). Therefore, there is not any PCV-3 isolate
so far available.

Definitely, in order to elucidate the PCV-3 pathogenesis,
further establishment of laboratory techniques such as
viral isolation, serology, and detection of viral components
in tissues is needed. In consequence, the potential
association of PCV-3 with any clinical condition, if any,
is difficult to be demonstrated due to existing technical
limitations.

KNOWLEDGE GAPS OF PCV-3 INFECTION

PCV-3 As a Cause of Disease
Porcine circoviruses (PCVs) are ssDNA ubiquitous viruses,
widespread worldwide in the domestic pig population (107). Two
species were known to infect Suidae species before 2015: PCV-1,
considered non-pathogenic, and PCV-2, the cause of one of the
most devastating porcine diseases, PCV-2-SD. PCV-3 represents
an expansion of the swine virosphere within the Circoviridae
family, but the up-to-date knowledge is still very limited and
there is not yet any clue on its potential pathogenesis or disease
causation role. It is at least curious that 20 years ago there
were serious doubts about PCV-2 as a cause of an overt disease
characterized by severe lesions and high mortality (108), while
nowadays PCV-3 has been found within a number of clinical
conditions and putative association has been established from the
very beginning (21, 22).

Current literature has already reported the presence of PCV-
3 in animals affected by different clinical pictures, although just
few of them included healthy control groups (71, 76, 87, 91). In
all studies, the frequency of PCV-3 detection in diseased animals
was higher; although these results did not prove any disease
causality, at least open the avenue to definitively ascertain its
role in clinical/pathological manifestations. Further studies on
potential disease association of PCV-3 are needed.

Pathogenesis
No data is available regarding the pathogenesis of PCV-
3 infection. The lack of virus isolation has impeded the
establishment of an infection model to date. It is known that
PCV-3 can be found in different tissues of domestic pig and
wild boar (86, 87, 95), indicating the systemic nature of the
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TABLE 5 | Pathogens present in PCV-3 PCR positive samples/cases.

Pathogen Frequency of

co-infection (percentage)

Reference

PCV-2 38/200 (19%)

28/40 (70%)

35/222 (15.77%)

13/46 (28.26%)

1/8 (12.5%)

Sun et al. (78)

Zhao et al. (92)

Ku et al. (70)

Kim et al. (104)

Kedkovid et al. (91)

11/57 (19.3%) Kim et al. (94)

PRRSV 1/8 (12.5%) Kedkovid et al. (91)

25/57 (43.86%) Kim et al. (94)

Torque teno sus virus

(TTSuV1 and 2)

66/132 (50%) Zheng et al. (78)

Classical swine fever virus

(CSFV)

108/200 (54%) Sun et al. (78)

Porcine bocavirus (PBoV) NA Chen et al. (101)

Porcine epidemic diarrhea

virus (PEDV)

NA Chen et al. (101)

Atypical porcine pestivirus

(APPV)

NA Chen et al. (101)

Porcine deltacoronavirus

(PDCoV)

NA Chen et al. (101)

Porcine kobuvirus (PKV) NA Chen et al. (101)

Porcine pseudorabies virus

(PRV)

NA Chen et al. (101)

Porcine sapelovirus (PSV) NA Chen et al. (101)

Porcine parvovirus (PPV) NA Franzo et al. (100)

Ungulate bocaparvovirus 2

(BoPV2)

NA Franzo et al. (100)

Pasteurella multocida NA Kedkovid et al. (91)

Haemophilus parasuis NA Phan et al. (22)

Streptococcus suis NA Phan et al. (22)

Mycoplasma hyorhinis NA Phan et al. (22)

NA, not available in the published study.

infection. However, the point of viral entry, primary replication,
organic distribution and persistence are still unsolved issues.
PCV-3 has been found in feces, nasal swabs, oral fluids, and
trucks transporting pigs (82, 85, 95), which allows speculating
that horizontal transmission through direct contact is probably
an important route. Detection of viral genome in fetuses and
stillborn from farms with history of reproductive failure (21, 70,
75), as well as in semen and colostrum, points out also to vertical
transmission as another likely route. Definitively, more studies
are needed to ascertain the potential excretion routes of this virus.

Co-infections
Co-infection of PCV-3 with both PCV-2 and PRRSV has been
reported (70, 78, 91, 92, 94). In fact, this was expected since
both well-known pathogens are widespread in the pig population
(109–111). Noteworthy, it is known that both PCV-2 and
PRRSV are able to affect the immune system and, therefore,
co-infections with these viruses are not unusual (112, 113).
Other pathogens were also detected in PCV-3 PCR positive
samples (78, 114). Very recently, PCV-3 has been found by
NGS approach in pigs affected by periweaning failure-to-thrive

syndrome in co-infection with PPV andUngulate bocaparvovirus
2 (100). Since experimental and field studies demonstrated that
co-infection with PPV increase the effect of PCV-2 in causing
PCV-2-SD (115), at this point it cannot be ruled out that a similar
effect may occur with PCV-3. Further investigations are needed
to determine whether PCV-3 might act as a secondary agent up-
regulating its replication once pigs are immunosuppressed or
immunomodulated, or whether the frequency of co-infection is
independent of the immune system affection.

Age of Infection and Transmission
Although PCV-3 genome has been detected at higher prevalence
in weaned pigs (48, 77, 82), only one study has monitored PCV-3
infection longitudinally (83). In this study, PCV-3 was found in
pigs at all ages with a similar frequency. This infection dynamics
contrasts with that of PCV-2, which infects pigs mainly between
five and 12 weeks of age, and rarely in animals at the lactation
phase (116–118). This is explained by the fact that colostrum
antibodies are protective against infection and then decline
during the lactation and weaning phases. Once maternally
derived antibodies waned, an infection is followed by active
seroconversion (117–119). This seroconversion usually occurs
between 9 and 15 weeks of age and the antibodies may last until
28 weeks of age at least (117, 120–122). Regrettably, information
about infection in sows, maternally derived immunity and how
protective the immunity might be against PCV-3 is completely
lacking at this moment. It is known that PCV-3 can be found in
colostrum (84), implying the possibility of vertical transmission
(sow to piglet) and emphasizing the potential importance of early
infections. Again, available information regarding these issues on
PCV-3 is still to be generated.

Persistent or Long Lasting Infection
One study performed in samples from captured and re-captured
wild boar revealed long-lasting infection (potential persistent
infection), since the virus was detected during a period of at least
5–7 months in few animals (95). Susceptibility of wild boar to
PCV-3 was not a surprise, since this species shows susceptibility
to several pathogens that affect humans and animals (123),
including PCV-2; moreover, the wild boar can also develop PCV-
2-SD (124). Taking into account the potential long period of
infection observed in some animals and even a higher overall
prevalence in wild boar when compared with domestic pigs,
such potential reservoir role deserves further investigations (95,
96).

Spectrum of Species Infected and Public
Health Issues
Infection of PCV-3 in other non-Suidae species is, at this point,
still to be demonstrated. Although PCV-3 DNA has been found
in sera from dogs in China (97), the lack of other detection
techniques able to confirm a true infection with this virus
prevents the assumption of multiple species susceptibility.

Another interesting aspect yet currently unknown is the
potential impact of PCV-3 on public health. DNA from PCV-
1 and PCV-2 has been found in vaccines intended for use in
humans (125), probably associated to the use of reagents from
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swine origin in the vaccine manufacturing. At this point, no
information regarding PCV-3 and its role as a contaminant
of human medicines do exist. On the other hand, porcine
circoviruses belong to a group of microorganisms that still
has not been fully addressed in terms of risk evaluation for
xenotransplantation (126), so, PCV-3 should be also a priori
added to such list.

Origin, Evolution, and Phylogeny
Palinski et al. (21) conducted a brief study in paraffin fixed tissues
from 2010 to 2016 in North America and results showed a high
percentage of PCR positivity in these samples, suggesting that
the virus emerged before the year of its discovery. In fact, PCV-
3 has been already demonstrated retrospectively in Sweden in
1993 (93) and Spain (81) and China in 1996 (78), indicating
that this is not a new virus and it has been circulating during
several decades in domestic pigs. Moreover, PCV-3 has been
detected in the oldest samples so far tested in these studies,
suggesting that this virus could have been infecting pigs for even
a longer period. However, these findings cannot be assumed
as a proof of non-pathogenicity, especially when mirroring
another closely-related circovirus, PCV-2. Although this latter
virus was initially detected in association with disease by mid-
late 1990s, retrospective studies showed evidence of pig infection
a number of decades before (120, 127–129). In fact, in most
of these investigations, evidence of PCV-2 infection coincided
with the very first investigated year, suggesting again that PCV-
2 might be even an older circulating virus. In addition, a
retrospective study on PCV-3 conducted in samples of wild boar
from Spain during a 14-year period (95) detected the virus in
the first tested year (2004). Overall, obtained data confirmed
that PCV-3 is not a new virus and has been circulating for
a fairly, non-determined long time in swine and wild boar
populations. In fact, the most common ancestor of PCV-3
was estimated to be originated approximately in 1966 (73,
130).

Genetic characterization of PCV-3 is mainly done through
Sanger sequencing. Phylogenetic analyses of PCV-3 genomes
available from the GenBank indicate they are part of different
clusters. However, nucleotide identity among these sequences is
really high (>97%). In consequence, it seems that PCV-3 has
remained fairly stable over the years without an independent
molecular evolution according to specific areas of the world.
Moreover, these findings do not point out a high mutation rate
as has been suggested (48, 131). If such mutation rate were
high, it would have generated a higher genomic heterogeneity,
which should have been detected at least in the performed
retrospective studies accounting for more than 20 years. Further
studies on the evolution on PCV-3 are crucial to solve out these
controversies.

The first metagenomics sequence available from PCV-3
revealed low identity with cap and rep genes of PCV-1 and PCV-
2 and a closer identity with other Circoviruses such as Canine
circovirus (21, 22) and Barbel circovirus (71). The Circovirus
genus members are able to infect a wide range of hosts, and

cross-species transmission has also been reported (40). Franzo
and collaborators (132) hypothesized the possibility of PCV-3
being the product of recombination related with a host jump.
The analysis of genome composition of PCV-3 found the rep gene
closely related with that of bat circoviruses and cap gene with that
of avian ones (132). Recently, novel circoviruses isolated in civets,
showing higher similarity in terms of aa sequence in Rep protein
with PCV-3, have been described (133). The increasing new data
should be useful to clarify the relationships and origin of this
virus. On the other hand Fux et al. (48) found nucleotide changes,
which resulted in two aa alterations in ORF1/ORF2 and ORF3
(A24V and R27K), between the two proposed genotypes (PCV-
3a and PCV3b). Li et al. (131) also suggested two groups with
two individual subclades termed PCV-3a-1 and PCV-3a-2. The
aa site 24 from ORF2, predicted to be under positive selection,
was suggested to be located in a potential epitope region. The
presence of possible genotypes was also suggested in other studies
(73, 76). However, considering the high similarity found in partial
or complete PCV-3 sequences (>98% in most of the cases),
the importance of determining genotypes or groupings at this
stage seems poorly relevant. Due to the sensitivity limitations
of Sanger sequencing, it must be emphasized the need to apply
NGS technology to discover minor variants, which might unravel
the presence of quasispecies undetected by the currently used
technology.

CONCLUSIONS

Porcine circovirus 3 is a recently discovered virus widespread
in both domestic pigs and wild boar population. The virus
can be found at all tested ages and few animals may display
a persistent infection. Although the virus has been found in
several clinical and pathological conditions, a definitive proof
of its pathogenicity is still lacking. Phylogenetic information
available to date indicates a low genetic variability of PCV-
3 in comparison with other single stranded-DNA viruses and
indicates that the virus genome has been relatively stable across
the years.
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First description of postweaning multisystemic wasting syndrome
(PMWS) in wild boar ( Sus scrofa ) in Croatia and phylogenetic
analysis of partial PCV2 sequences. Acta Vet Hung. (2007) 55:389–404.
doi: 10.1556/AVet.55.2007.3.13

125. Gilliland SM, Forrest L, Carre H, Jenkins A, Berry N, Martin J, et al.
Investigation of porcine circovirus contamination in human vaccines.
Biologicals (2012) 40:270–7. doi: 10.1016/j.biologicals.2012.02.002

126. Denner J, Mankertz A. Porcine Circoviruses and Xenotransplantation.
Viruses (2017) 9:83. doi: 10.3390/v9040083

127. Jacobsen B, Krueger L, Seeliger F, BruegmannM, Segalés J, BaumgaertnerW.
Retrospective study on the occurrence of porcine circovirus 2 infection and
associated entities in Northern Germany. Vet Microbiol. (2009) 138:27–33.
doi: 10.1016/j.vetmic.2009.02.005

128. da Silva FMF, Júnior AS, de Oliveira Peternelli EF, Viana VW, Neto
OC, Fietto JLR, et al. Retrospective study on Porcine circovirus-2 by

nested pcr and real time pcr in archived tissues from 1978 in brazil.
Brazilian JMicrobiol. (2011) 42:1156–60. doi: 10.1590/S1517-8382201100030
00039

129. Ramírez-Mendoza H, Castillo-Juárez H, Hernández J, Correa P, Segalés J.
Retrospective serological survey of Porcine circovirus-2 infection in Mexico.
Can J Vet Res. (2009) 73:21–24.

130. Saraiva GL, Vidigal PMP, Fietto JLR, Bressan GC, Silva Júnior A, de Almeida
MR. Evolutionary analysis of Porcine circovirus 3 (PCV3) indicates an
ancient origin for its current strains and a worldwide dispersion. Virus Genes
(2018) 54:376–84. doi: 10.1007/s11262-018-1545-4

131. Li G, Wang H, Wang S, Xing G, Zhang C, Zhang W, et al.
Insights into the genetic and host adaptability of emerging porcine
circovirus 3. Virulence (2018) 9:1301–13. doi: 10.1080/21505594.2018.
1492863

132. Franzo G, Segales J, Tucciarone CM, Cecchinato M, Drigo M. The
analysis of genome composition and codon bias reveals distinctive patterns
between avian and mammalian circoviruses which suggest a potential
recombinant origin for Porcine circovirus 3. PLoS ONE (2018) 13:e0199950.
doi: 10.1371/journal.pone.0199950

133. Nishizawa T, Sugimoto Y, Takeda T, Kodera Y, Hatano Y, Takahashi M,
et al. Identification and full-genome characterization of novel circoviruses
in masked palm civets (Paguma larvata). Virus Res. (2018) 258:50–4.
doi: 10.1016/j.virusres.2018.10.004

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Klaumann, Correa-Fiz, Franzo, Sibila, Núñez and Segalés. This

is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner(s) are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Veterinary Science | www.frontiersin.org 13 December 2018 | Volume 5 | Article 315

https://doi.org/10.2460/ajvr.2002.63.354
https://doi.org/10.1046/j.1439-0450.2003.00621.x
https://doi.org/10.1016/j.vetmic.2008.10.007
https://doi.org/10.1098/rstb.2009.0086
https://doi.org/10.1556/AVet.55.2007.3.13
https://doi.org/10.1016/j.biologicals.2012.02.002
https://doi.org/10.3390/v9040083
https://doi.org/10.1016/j.vetmic.2009.02.005
https://doi.org/10.1590/S1517-838220110003000039
https://doi.org/10.1007/s11262-018-1545-4
https://doi.org/10.1080/21505594.2018.1492863
https://doi.org/10.1371/journal.pone.0199950
https://doi.org/10.1016/j.virusres.2018.10.004
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles

	Current Knowledge on Porcine circovirus 3 (PCV-3): A Novel Virus With a Yet Unknown Impact on the Swine Industry
	Introduction
	Molecular Organization of Porcine Circoviruses
	Epidemiology
	Disease Association With PCV-3
	Reproductive Disease
	Respiratory Disease
	Other Conditions
	Healthy Animals
	Co-infections

	Laboratory Tools to Detect PCV-3
	Knowledge Gaps of PCV-3 Infection
	PCV-3 As a Cause of Disease
	Pathogenesis
	Co-infections
	Age of Infection and Transmission
	Persistent or Long Lasting Infection
	Spectrum of Species Infected and Public Health Issues
	Origin, Evolution, and Phylogeny

	Conclusions
	Author Contributions
	Acknowledgments
	References


