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Weaning imposes simultaneous stress, resulting in reduced feed intake, and growth

rate, and increased morbidity and mortality of weaned pigs. Weaning impairs the

intestinal integrity, disturbs digestive and absorptive capacity, and increases the intestinal

oxidative stress, and susceptibility of diseases in piglets. The improvement of intestinal

development and health is critically important for enhancing nutrient digestibility capacity

and disease resistance of weaned pigs, therefore, increasing their survival rate at this

most vulnerable stage, and overall productive performance during later stages. A healthy

gut may include but not limited several important features: a healthy proliferation of

intestinal epithelial cells, an integrated gut barrier function, a preferable or balanced

gut microbiota, and a well-developed intestinal mucosa immunity. Burgeoning evidence

suggested nutritional intervention are one of promising measures to enhance intestinal

health of weaned pigs, although the exact protective mechanisms may vary and

are still not completely understood. Previous research indicated that functional amino

acids, such as arginine, cysteine, glutamine, or glutamate, may enhance intestinal

mucosa immunity (i.e., increased sIgA secretion), reduce oxidative damage, stimulate

proliferation of enterocytes, and enhance gut barrier function (i.e., enhanced expression

of tight junction protein) of weaned pigs. A number of feed additives are marketed

to assist in boosting intestinal immunity and regulating gut microbiota, therefore,

reducing the negative impacts of weaning, and other environmental challenges on

piglets. The promising results have been demonstrated in antimicrobial peptides, clays,

direct-fed microbials, micro-minerals, milk components, oligosaccharides, organic acids,

phytochemicals, and many other feed additives. This review summarizes our current

understanding of nutritional intervention on intestinal health and development of weaned

pigs and the importance of mechanistic studies focusing on this research area.
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INTRODUCTION

Weaning is the most challenging stage that has significant
bearings on pig welfare and growth performance in swine
industry. During weaning period, piglets are immediately
imposed to a number of environmental and psychosocial
stressors that predispose them to diarrhea and gut damage,
which can adversely impact their survival at a very early and
most vulnerable stage. The post-weaning mortality ratio is 6–
10%, but sometime may rise up to 20%. Thus, in the last
decade, animal nutritionists have made great effort to optimize
feed formulation to meet requirement of newly weaned pigs,
and to explore different nutritional factors or management
that focus on promoting the overall health of weaned pigs.
In addition, antibiotics used to be a powerful component in
the herd health programs for protecting weaned pig health. It
has been reported that global consumption of antibiotics in
livestock production was estimated at 63,151 tons in 2010 and is
projected to increase by 67% by 2030 (1). In the U.S., antibiotics
use in livestock industry is estimated to account for 71% of
the nation’s annual antibiotic consumption (2). However, these
practices also contribute to the spread of antibiotic-resistant
pathogens in both livestock and humans, rising a significant
public health threat. Use of in-feed antibiotics for production
purpose in livestock industry is completely banned in the U.S.
(3) starting in January 2017, which is remarkably increasing the
challenge of keeping pigs healthy, especially in post-weaning
period. Therefore, another urgent need in animal science society
is to develop strategies to replace antibiotics for food-producing
animals without hampering animal production. Although the
manipulation of genetics, management, and health also plays
substantially important role in protecting animal health and
promoting their production performance, in the current review,
we only focus on nutritional interventions on intestinal health of
weaned pigs.

WEANING STRESS ON INTESTINAL
DEVELOPMENT AND HEALTH

Many factors contribute to post-weaning stress, including
hierarchy stress, new housing environment, transferring to solid
feed, and others (4). Weaning stress is generally companying
with reduced feed intake, poor growth performance, as well
as increased disease susceptibility (5, 6). Weaning stress
also negatively impacts intestinal development, physiology,
microflora, and immunity as thoroughly discussed by other
review articles (7–9). The focus of this review is to briefly
highlight weaning stress on intestinal development and health by
adding more recently published research.

Weaning Stress on Pig Intestinal
Physiology
Intestinal epithelium is characterized by rapidly proliferating
cells in crypts, which then invaginating into the underlying
mesenchyme and villi (10). The intestinal epithelial cells
continuously and rapidly turn over in 4 to 5 days (11). The

stem cells in crypts produce proliferating transit-amplifying cells
that undergo a series of transitions, and ultimately differentiate
into four differentiated cell types comprising one type of
absorptive (enterocytes) and three types of secretory cell lineages
(enteroendocrine cells, goblet cells, and paneth cells) (12).
Absorptive enterocytes constitute up to 90% of epithelial cells
in the crypt-villus axis (13). Paneth cells migrate to the base of
crypts, whereas enteroendocrine cells and goblet cells migrate
to villi (14). The proliferation, differentiation, and apoptosis
of intestinal epithelial cells play important roles in intestinal
development, maintenance, and recovery from tissue damage (7).

Several recently published research articles revealed the
impacts of weaning stress on the expression of proteins
and metabolites in enterocytes of piglets (15–20). Weaning
significantly down-regulated the expression of proteins involved
in the tricarboxylic acid cycle, β-oxidation, and the glycolysis
pathway in the upper villus and middle villus of the jejunum
in early-weaned pigs, but up-regulated proteins involved in
glycolysis in crypt cells (15). During the post-weaning period,
the expression of proteins related to various cellular metabolic or
biological processes, such as energy metabolism, protein amino
acid glycosylation, ion transport, mTOR signaling pathway,
and differentiation and apoptosis, were reduced in jejunal
differentiated epithelial cells (villus upper cells) of piglets
(17). Proteins involved in the respiratory electron transport
chain, Golgi vesicle transport, protein glycosylation, as well as
the metabolism of nutrient such as lipids, monosaccharides,
and nucleotides were also down-regulated in the jejunal
differentiating epithelial cells (the middle villi cells) of piglets
during the post-weaning period (20). These results indicated that
weaning influenced energy metabolism, cellular macromolecule
organization and localization, and protein metabolism, thereby
further impacted the proliferation of intestinal epithelial cells
in weaned piglets (18). In addition, polyamine metabolism and
ornithine decarboxylase expression were also altered by weaning
and may be used as a marker of intestinal growth and restitution
in pigs (21).

Weaning stress could also induce tremendous
morphological/physiological changes, such as villous atrophy
and crypt hyperplasia (22, 23), which further disturb the digestive
and absorptive capacity and performance of weaned pigs (4, 24).
Brush border enzyme activities and electrolytes secretion in
the small intestine have been used as important indicators of
maturation and digestive capacity in weaned pigs (25, 26). Due
to the change of diet, the activities of enzymes at brush border,
such as lactase, sucrase, and maltase, are dramatically reduced
between 3 and 5 days after weaning (27, 28). The malabsorption
of nutrients in the small intestine is exacerbated by the reduced
electrolytes absorption and secretion in newly weaned pigs (29).

The epithelial cells and the mucin layer in the small intestine
provide the first line of defense to protect weaning pigs from
various harmful microorganisms, toxins, or antigens in the
intestinal tract (30). Gut permeability is straightly regulated by
tight junction proteins, such as zona occludens 1, claudin, and
occludin that are expressed by the epithelial cells (31). It has
been reported that weaning stress reduced goblet cells number
and mucin production, disrupted epithelial barrier function,
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increased intestinal permeability, lowered tight junction protein
expression, and increased disease susceptibility in weaned pigs
(32–34). It was observed that the intestinal barrier damage caused
by weaning stress was not restored and returned to pre-weaning
levels on d 7 post-weaning (35).

Host-Microbial Nutrition Interactions in
Post-weaning Gut Microflora Dysbiosis
and Diarrhea
Porcine gut microbiome exhibits dynamic composition and
diversity that shifts overtime (36, 37). The primary pig gut
microbiota at birth was shaped by the sows’ milk and
featured with more abundance of lactic acid bacteria (38).
However, weaning transition reduced the relative abundance of
Lactobacillus group, increase Clostridium spp., Prevotella spp.,
Proteobacteriaceae, and E. coli, resulting in a loss of microbial
diversity (39–41).

The composition and diversity of gut microbiota of weaned
piglets is also highly impacted by the levels and sources of
dietary proteins or fibers that are offered to post-weaning pigs
(42). Nutritional interactions between intestinal cells and gut
microflora are remarkably important for the recycling and
maintenance of gastrointestinal tract nutrient pool (Figure 1)
(43–46). In contrast, a balanced nutrient pool is also critical
for the renewal and proliferation of intestinal cells, as well as
maintaining a balanced microbial community (12, 47). During
the post-weaning period, piglets often have sharply reduced
feed intake due to weaning stress. Hence, the nutrients for
bacterial survival and proliferation is also limited. Pathogenic
bacteria are able to utilize special nutrients (i.e., ethanolamine)
that cannot be catabolized by commensal bacteria, thereby,
enhance the expression of their virulence factors (48, 49).
For instance, both Salmonella and enterohemorrhagic E. coli
could use ethanolamine as carbon or nitrogen source to gain
nutritional advantages in competing with other microflora
(12, 48, 50). Enterohemorrhagic E. coli can also utilize fucose
to activate type III secretion system, which facilitates the
adhesion of those pathogenic bacteria to host enterocytes
(46, 51). As a result, weaned piglets are more susceptible to
intestinal inflammation and post-weaning diarrhea due to rapid
proliferation of pathogenic bacteria and the loss of microbial
diversity (52).

Weaning Stress on Intestinal Mucosal
Immunity
The barrier-related mucosal homeostasis is very important for
the recognition of exogenous dangerous stimuli, but the same
time it has to make sure our body is not hypersensitive to
innocuous antigens (53). For example, in the intestine, epithelial
cells are primarily responsible for fluid secretions and nutrients
absorption, as well as providing a selective barrier against
noxious antigens in the lumen. The cross-talk between intestinal
epithelial cells and underlying lamina propria cells transfers
immune-related signals to the local adaptive immunity, which
subsequently help to maintain gut immune homeostasis (54).

The neonates are born with few lymphocytes and relatively
low expression of co-stimulatory molecules (55, 56). In addition,
the neonates also have a biased intestinal adaptive immunity due
to a comparatively higher T helper 2 immune response rather
than T helper 1 (57). To develop a stable number of lymphocytes
in un-weaned pigs, it may take about 6 weeks (58). Therefore,
newly weaned pigs at age of 2 to 4 weeks do not have mature
intestinal immunity, which increase their disease susceptibility.

The impacts of weaning stress on intestinal immunity has
been thoroughly revealed by McCracken et al. (59) and Pié
et al. (60). Briefly, there are several major changes in intestinal
immunity of weaned pigs compared with pre-weaning pigs. First,
weaning sharply increases both intestinal CD4+ and CD8+ T
lymphocytes in pigs on d 2 post-weaning (59) and enhances
mRNA expression of inflammatory cytokines (e.g., TNF-α, IL-
1β, IL-6, and IL-8) in the middle of jejunum during the first 2
day post-weaning (60). Those observations indicate that weaning
induced a transient gut inflammation in pigs. Second, weaning
stress up-regulates matrix metalloproteinase (i.e., stromelysin)
by activating immune cells in the lamina propria, which may
contribute to villus atrophy (59). Third, weaning stress may
down-regulate the MHC I expression in jejunal mucosa of
pigs, which is possibly due to the increased plasma cortisol
concentration (59, 61). Fourth, the concentration of fecal IgA
is continuously decreased from day 5 after birth and remained
very low until at least 50 days of age, which may enhance the
vulnerability of pre- and post-weaning piglets (62).

Weaning Stress on Intestinal Oxidative
Status
Weaning stress is also associated with increased oxidation
processes, which leads to a high release of free radicals, also called
reactive oxygen species [ROS; (63)]. The excessive production
of ROS could modify certain cellular proteins and activate
the up-regulation of pro-inflammatory cytokines, which may
further negatively affect the expression of tight junction proteins
and cause increased gut permeability (64, 65). Animal cells
generally have complex and protective mechanisms to against
the formation of oxidative stress, including prevention of ROS
formation, ROS scavenging antioxidant systems, and elimination
and/or reparation of damaged molecules (66). Therefore, the
balance between oxidation and anti-oxidation is very important
to cell integrity and health.

A series of antioxidant enzymes play critical roles to protect
organisms against harmful pro-oxidants (67). For example,
superoxide dismutase provides an efficient dismutation of O−

2
into H2O2, which is scavenged by glutathione peroxidase
and catalase (68). A study from Yin et al. (69) thoroughly
investigated the impacts of weaning on the development of
antioxidant system of pigs. They observed that plasma superoxide
dismutase activity was decreased 1 day post-weaning and then
gradually recovered at 3, 5, and 7 day post-weaning. They also
observed that weaning down-regulated the expression of genes
encoded superoxide dismutases (i.e., CuZnSOD and MnSOD)
and glutathione peroxidases (i.e., GPx1 and GPx4) in jejunum
of piglets (69). A likely reason is that excessive ROS inhibits
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FIGURE 1 | Maintenance of intestinal nutrient pool and the pathogenic baceterial specific nutrition metabolism.

the phosphorylation and degradation of IκBs and Keap1, which,
therefore, stimulates proteasomal degradation of Nrf2 and p65
and suppresses Nrf2 and p65 signals (69, 70).

HOW TO DEFINE A HEALTHY GUT

A healthy gut is critically important to the overall metabolism,
physiology, disease defense, and growth performance of weaned
pigs. Recently, the item “gut health” has attracted much attention
in the newly weaned pigs due to the negative effects of weaning
stress. However, it still lacks a precise and unifying definition
of “gut health.” Several review articles have comprehensively
summarized timely information for this particular topic in newly
weaned piglets (71–74) and provided slightly different definitions
on “gut health.” Based on Kogut and Arsenault (71), a healthy
gut was defined as the “absence/prevention/avoidance of disease
so that the animal is able to perform its physiological functions
in order to withstand exogenous and endogenous stressors.”
Celi et al. (72) emphasized the importance of effective digestion
and absorption of feed, effective structure and function of
gut barrier, host interaction with gut microbiota, and effective
immune status. The latest publication from Pluske et al. (74)
stated that gut health should be more general and described as a
generalized condition of homeostasis in the gastrointestinal tract.
They remarked that the generalized criteria to assess gut health
of weaned pigs could include effective nutrient digestion and
absorption, effective waste excretion, a functional and protective
gut barrier, a stable and appropriate microbial community, a
functional and protective gut immunity, a minimal activation of
stress/neural pathways, and the absence of diseases (74). It is not
our intention to reiterate all details included in these publications
and compare their definitions. In this regard, we completely agree

that a healthy gut should enhance the overall capacity/ability
of the host to respond and adapt to challenges/stress and
should be concomitant with optimal performance as described by
Pluske et al. (74).

NUTRITIONAL INTERVENTION ON
INTESTINAL DEVELOPMENT AND HEALTH
OF WEANED PIGS

Many nutritional strategies have been applied to improve health
and maximize the production of weaned pigs (75–78). Those
strategies include but not limited to: optimization of feed
formulation, utilization of low protein diet in post-weaning
period, enhancement of feed processing and manufacturing, and
supplementation of different feed additives. They are targeting
different aims: (1) improvement of nutrient digestion and
absorption, (2) regulation gut microbiota to more favorable
bacterial species, and (3) immune modulation to enhance disease
resistance of weaned pigs. In this review article, we will only
focus on the impacts of several selected feed ingredients or
additives (functional amino acids, phytochemicals, antimicrobial
peptides, and short-chain fatty acids) on intestinal health of
weaned pigs. Those feed additives may or may not have
nutritional contribution to human or animal, but they play very
important roles in health maintenance or regulation. Many other
ingredients or additives are also shown promising results in
weaned pig health, but will not be covered in the current article.

Functional Amino Acids
A growing body of literature indicates that some of traditionally
classified dispensable amino acids, such as, arginine, glutamine,
glutamate, and proline play important roles in the regulation
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of gene expression, intracellular signaling pathways, nutrient
metabolism, and oxidative defense (79–81). This group of amino
acids is defined as functional amino acids (82). It has been
known that the deficiency of a functional amino acid may impair
the whole-body homeostasis. For example, dietary deficiency of
arginine could result in metabolic, neurological, or reproductive
dysfunction (83). The importance of functional amino acids has
been thoroughly reviewed by Wu et al. (81) and Wu (84, 85).
The major objective of this review section is to highlight recent
published research articles focusing on the effects of functional
amino acids on intestinal health and development of weaned pigs.

Arginine is remarkably deficient in sow milk (86, 87), but
the concentration of arginine in tissue proteins in piglets are
relatively higher compared with other amino acids (88). This
observation has remarkably increased the research attention in
the nutritional significance of arginine. It has been reported
that supplementation of L-arginine (0.2 to 1%) enhanced growth
performance and alleviated the negative effects of different insults
or challenges in young pigs (81, 89–91). Supplementation of
0.4 to 0.8% L-arginine in pre-weaning diet enhanced intestinal
growth and development in early post-weaning period (92). In
addition, supplementation of 0.6% L-arginine enhanced small
intestinal growth, goblet cell number in intestinal mucosa,
intestinal heat shock protein-70 expression in weaned pigs
(81). Increasing evidence confirmed the positive impacts of
arginine on preventing intestinal dysfunction as a substrate for
the synthesis of nitric oxide, polyamines, creatine, and protein
(93). It was also reported that arginine could improve DNA
synthesis and mitochondrial bioenergetics of intestinal epithelial
cells, therefore improve the regeneration and repair of the small
intestinal mucosa in animals (94). The underlying biochemical
mechanisms may be closely related to the activation of PI3k-
Akt pathway, mTOR and TLR4 signaling pathways, and/or the
enhanced intracellular protein turnover (94, 95). Moreover, the
increased nitric oxide from arginine metabolism could also
regulate intestinal blood flow, integrity, secretion, and epithelial
cell migration (96).

Besides arginine, other functional amino acids in the arginine
family, have been also well investigated in the last decades,
including glutamine, glutamate, aspartate, proline, etc. For
example, it was reported that the administration of proline
improved mucosal proliferation, intestinal morphology, as well
as tight junction and potassium channel protein expression in
early-weaned piglets (97). Dietary supplementation of glutamine
was also shown to prevent intestinal atrophy, increase enzyme
activities, and promote growth performance of weaned pigs (98).
One dipeptide that is composed of glutamine (glycyl-glutamine),
appear a great substitute for glutamine to increase intestinal
integrity and enzyme activities and growth performance of
weaned pigs (99–101). Another dipeptide, alanyl-glutamine, also
has the biological effects similar to free glutamine, as regarding
their effects on proliferation, mitochondrial respiration, and
protein turnover in the porcine intestinal cells (102). Alanyl-
glutamine may be another effective substitute for glutamine as
energy and protein sources in the intestinal tract, which has
to be further investigated with in vivo animal model. Several
mechanisms are highly involved in the benefits of glutamine

or glutamine dipeptides on intestinal health. First, glutamine,
glutamate, and aspartate could provide major fuel for small
intestinal epithelial cell proliferation and provide energy required
for intestinal ATP-dependent metabolic processes (103). Second,
catabolism of glutamine provides precursors for polyamine
synthesis, which is important for proliferation, differentiation,
and repair of intestinal epithelial cells (104). Third, glutamine
is also a major precursor for the synthesis of glutathione, an
important antioxidant in cells regulating the homeostasis of
free radicals (105, 106). Fourth, glutamine supplementation
may enhance intestinal secretory IgA production via regulating
the intestinal microbiota and/or T cell-dependent and T cell-
independent pathways (107).

Although it is beyond the scope of functional amino acids,
several indispensable amino acids, such as tryptophan and sulfur
amino acids, have also attracted large attention recently (108–
110). A growing evidence has revealed that supplementation
of these amino acids beyond the current NRC requirement
brought positive effects on intestinal health of weaned pigs by
regulating host physiology, metabolism, oxidative status, and
immunity (108–110). The modification of gut microbiota and
their metabolites by these amino acids was also highly correlated
to the enhanced gut barrier functions of weaned pigs (109).

Phytochemicals
Phytochemicals, naturally occurring plant
chemicals/metabolites, are one of most powerful candidates
as potential alternatives to in-feed antibiotics because of various
biological functions. First, most of phytochemicals exhibit a wide
spectrum of antibacterial activities against both gram-negative
and gram-positive bacteria, including E. coli, Salmonella,
Clostridium, Mycobacterium, etc. (111, 112). Second, certain
phytochemicals have been recognized as potential anti-viral
agents (113, 114), which is probably beyond provision of
antibiotics. Third, the immune-regulatory activities of certain
phytochemicals have been identified in both human and animal
models (114–118). Last but not the least, phytochemicals could
act as antioxidants to remove free radicals from the body
and protect animals from oxidative damage (119). Several
commonly used phytochemicals and their main components are
summarized in Table 1.

The protective effects of phytochemicals on poultry and
livestock have been thoroughly reviewed in Lillehoj et al.
(121). Previous research revealed that dietary supplementation
of phytochemicals enhanced disease resistance (i.e., reduced
frequency of diarrhea) and growth performance (114, 122, 123).
These benefits were likely driven by improved gut health, such
as, improved intestinal barrier integrity (122, 123). For example,
supplementation with phytochemicals extracted from different
seasonings improved intestinal villi height and upregulated
mRNA expression of the MUC2 gene in ileum (118). Feeding
capsicum oleoresin from pepper, turmeric oleoresin or curcumin
extracted from ginger up-regulated the expression of genes
related to tight junction (e.g., genes encode claudins and
occludin) and cell-cell junctions in the ileum of E. coli challenged
pigs (118, 124). A recent publication from Yuan et al. (125) also
reported that the flavones extracted from the leaves of Eucommia
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TABLE 1 | Several commonly used phytochemicals and their main components exhibiting different biological activities, modified from Liu (120).

Scientific name Common name Main components Biological activities

Allium saticum Garlic Allicin Antimicrobial

Anti-inflammatory

Capsicum Pepper Capsaicin Antimicrobial

Anti-inflammatory

Cinnamomum verum J. Presl

Cinnamomum osmophloeum

Cinnamon Cinnamaldehyde Antimicrobial

Anti-inflammatory

Antioxidant

Eugenia caryophyllus Spreng.

Eugenia caryophylata Thunb

Clove Eugenol Antioxidant

Foeniculum vulgare Fennel Anethol Antioxidant

Funicular vulgare Fennel Anethol

Eugenol

Antimicrobial

Origanum vulgare spp.

Origanum onites

Origanum minutiflorum

Oregano

Thyme

Carvacrol Antimicrobial

Anti-inflammatory

Antioxidant

Punica granatum Pomegranate Ellagic acid Anti-inflammatory

Syzygium aromaticum (L.)

Eugenia caryophyllata

Cloves Fennel Anethol

Eugenol

Antimicrobial

Anti-inflammatory

Thymus vulgaris L.

Thymbra spicata

Thyme

Fennel

Thymol

Carvacrol

Terpinene

Antimicrobial

Anti-inflammatory

Antioxidant

Zanthoxylum schinifolium Rutaceae Citronellal

β-Phellandrene

Anti-inflammatory

Zingiber officinale Ginger Curcumin

Gingerol

Antimicrobial

Anti-inflammatory

Antioxidant

ulmoides enhanced intestinal morphology and integrity of diquat
challenged pigs by improved intestinal barrier function.

The immuno-regulatory and antioxidant properties of
phytochemicals are also responsible for their positive effects on
animal health. Lang et al. (126) reported that garlic extract could
inhibit the secretion of chemokines from intestinal epithelial
cells, thus suppress the recruitment of various circulating
leukocytes into the inflamed tissue. Dietary supplementation
of phytochemicals (10 mg/kg of capsicum oleoresin, garlic,
or turmeric oleoresin) downregulated the expression of genes
related to antigen processing and presentation and other immune
response-related pathways, indicating that these phytochemicals
may attenuate the immune responses caused by E. coli infection
(118). Supplementation of flavones extracted from the leaves of
Eucommia ulmoides also alleviated the inflammatory responses
of weaned pigs induced by diquat (125). Several commonly used
phytochemicals (extracts from oregano, thyme, ginger, fennel,
pepper, clove, basil, cinnamon, garlic, mint etc.) are also showing
strong antioxidant activities in both in vitro cell culture and
in vivo animal models (127–130). The antioxidant property
of phytochemicals is mainly associated with the phenolic
compounds that have high reactivity with peroxyl radicals,
which are free radical species for the oxidation of proteins and
lipids (131, 132). Otherwise, surfur-containing volatiles in garlic
extracts express strong antioxidant activity due to the formation
of unstable degradation products as radicals-trapping agents
(129). However, limited research have been reported the effects

of phytochemicals on intestinal oxidative status/responses of
weaned pigs.

Antimicrobial Peptides
Antimicrobial peptides, also known as host defense peptides,
have been considered as potential alternatives to antibiotics
in livestock and poultry (133–135). Antimicrobial peptides
are polypeptides, naturally produced by different organisms
from prokaryotes to mammals. Therefore, antimicrobial
peptides could be directly isolated from bacteria, insects,
plants, and vertebrates, or could be synthesized as recombinant
molecules (136). They are small and positively charged,
and contain both hydrophobic and hydrophilic regions.
The majority of antimicrobial peptides are belonged to
either defensins or cathelicidin family, whereas defensins are
further divided into α-, β-, θ-defensins on the basis of the
spacing patterns of their cysteine residues (134). Compared
with cathelicidins that are highly expressed in mammalian
neutrophils, defensins are more abundant in epithelial and
phagocytic cells in different tissues, including intestinal
mucosa (137).

Antimicrobial peptides possess a strong and large-spectrum
activity against gram-negative and gram-positive bacteria,
fungi, parasites, and viruses (138). Compared with traditional
antibiotics, one obvious advantage of antimicrobial peptides
is they could kill pathogenic bacteria (e.g., P. aeruginosa and
Staphylococcus aureus) that are resistant to specific antibiotics
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(134, 139). As mentioned above, most antimicrobial peptides
are small, positively charged, and amphipathic molecules that
allow them to actively interact with bacterial membranes through
different models (barrel-stave model, carpet model, or toroidal-
pore model) (140, 141). As a consequence, antimicrobial peptides
could disturb the structure of cell membrane, penetrate into cells,
regulate intracellular pathways, and/or cause cell death. Other
mechanisms may be also involved in the antibacterial properties
of antimicrobial peptides, such as inhibiting cell wall synthesis,
suppressing protein and nucleic acid synthesis, and inhibiting
enzymatic activities in bacteria (142).

The protective effects of antimicrobial peptides on intestinal
health have been reported in weaned pigs. Supplementation of
recombinant lactoferrin increased gut morphology (e.g., greater
villi height) and growth performance of piglets (143). Xiao et al.
(144) reported that feeding 0.4% of a mixture of antimicrobial
peptides (including bovine lactoferrin and plant defensins)
and active yeast alleviated the negative effects of mycotoxin
by increasing intestinal integrity and reducing intestinal
permeability of weaned pigs. Several defensins were shown to
enhancemucosa barrier function by up-regulating the expression
of mucin and tight junction proteins (145). The potential benefits
of antimicrobial peptides are also related to other modes
of action, such as regulating immune responses and gut
microbiota (146). Supplementation of recombinant lactoferrin
or lactoferramoin-lactoferricin increased Lactobacillus and
Bifidobacterium counts but reduced total E. coli and Salmonella
in the small intestine of weaned pigs (146, 147). Addition of
cecropin A/D reduced incidence of diarrhea and enhanced
intestinal Lactobacilli counts in E. coli challenged piglets
(148). As reviewed in Zasloff (136), fully processed active
peptides probably act as epithelial “preservatives” to protect
host against intestinal infectious agents. They may also work
as effector molecules of innate and adaptive immunity by
regulating inflammatory responses and chemotactic activity
in pigs (149, 150).

There are two ways to incorporate the benefits of
antimicrobial peptides into animal health and nutrition.
One is direct supplementation of exogenous antimicrobial
peptides to animal feed, while the other one is to use
dietary supplements/ingredients to stimulate the secretion of
endogenous antimicrobial peptides by the host (135). Although
exogenous or recombinant antimicrobial peptides have shown a
great potential to be used as alternatives to replace antibiotics,
the effectiveness of those candidates should be carefully verified
because the majority of exogenous antimicrobial peptides would
be digested in the upper gastrointestinal tract without reaching
to the lower part where most pathogens reside. Therefore, the
stimulation of endogenous antimicrobial peptides secretion by
nutritional manipulation may be a better approach. For instance,
Robinson et al. (135) have completely reviewed the regulation
of antimicrobial peptides synthesis by butyrate and vitamin
D in livestock and poultry and pointed out the importance of
antimicrobial peptides-inducing compounds in antibiotic-free
animal production.

Short-Chain Fatty Acids
Short-chain fatty acids (SCFAs) are fatty acids with a chain of
<6 carbon atoms, which are primarily produced by hindgut
fermentation of dietary fiber. The SCFAs are a major fuel
source for colonocytes, and are essential for maintaining the
normal metabolism of colon mucosa, including colonocyte
growth and proliferation (151, 152). In particular, as much
as 90% of butyric acid is metabolized by colonocytes (153).
However, the benefits of SCFAs is probably not limited to the
colon: (1) SCFAs may function as a direct energy source for
enterocytes, thus, increase proliferation and reduce apoptosis
of enterocytes (154, 155), (2) SCFAs may modulate the
expression of genes involved in gut motility, host defense, and
inflammatory responses (154, 156), (3) SCFA could stimulate
the formation of intestinal barrier and protect intestinal barrier
disruption (157), and (4) SCFA may affect the composition
of gut microbiota (158–160). The most abundant SCFAs in
the gastrointestinal tract are acetate, propionate, and butyric
acid. Despite being the least abundant of the 3 primary SCFAs,
butyric acid has attracted significant research attention due
to its’ importance of maintaining gut health in both human
and animals.

Butyric acid, also known as butanoic acid, is one of the
SCFAs that are produced by microbial fermentation in the
gastrointestinal tract of pigs (161). Especially, the propionic
and butyric acids produced in the gastrointestinal tract are
considered important metabolites that have antibacterial
effects on pathogenic bacteria (162). In particular, butyrate
has received particular attention and has been widely
investigated as an attractive potential alternative to replace
in-feed antibiotics. Addition of butyric acid directly to a
swine diet may be limited because of its highly volatile and
corrosive characteristics (163). Therefore, some products of
butyric acid have been used in combined forms with calcium
or sodium.

It has been reported that dietary supplementation of
0.1% sodium butyrate reduced diarrhea, enhanced gut
integrity, increased serum IgG, but decreased serum pro-
inflammatory cytokines in weaned pigs under normal conditions
(158, 159, 164, 165). Machinsky et al. (166) also observed a
positive effect of sodium butyrate on the protein digestibility
of pigs. Another alternative form of butyrate is glyceryl
tributyrate, also called tributyrin. Tributyrin is a naturally
present triglyceride in butter at the minute amounts. The
major advantage of tributyrin vs. sodium butyrate is that
tributyrin is a delayed release source of butyrate. Tributyrin
stays intact in the stomach and is slowly released as butyrate
and/or monobutyrin in the small intestine where pancreatic
lipase appears. Feeding 0.1% tributyrin reduced intestinal
injury caused by intrarectal administration of acetic acid,
as indicated by improved tight-junction formation and
activated epidermal growth factor receptor signaling (167).
Supplementation of tributyrin also improved the growth and
intestinal barrier functions in intrauterine growth-restricted
piglets (168).
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FIGURE 2 | Proposed mechanisms of action on the beneficial effects of butyric acid.

Despite many years of research, the exact mechanism of action
of dietary butyrate supplements has not been fully elucidated,
but the following mechanisms have been proposed (Figure 2).
Butyric acid penetrates into epithelial cells either by simple
diffusion or monocarboxylate transoporter (169). Butyric acid
could also bind to G-protein-coupled receptor expressed in
epithelial cells or immune cells. The binding will mediate a
cascade of immune regulation (170). A brief summary for the
anti-microbial and/or immuno-regualtory effects of butyric acid
is shown below. First, butyric acid regulates a large amount
of gene expression as one of histone deacetylase inhibitors by
removing acetyl groups from the N-terminal tail of the histones
(171, 172). Recent studies also revealed that the inhibition
of histone deacetylase is highly correlated to the regulation
of inflammatory responses and immunity by butyric acid in
both human and rodents (157, 173, 174). Second, butyric
acid and its derivatives have been shown to possess strong
antimicrobial activity against both gram-positive and gram-
negative pathogenic bacteria both in vivo and in vitro (175,
176). The antimicrobial activity of butyric acid is likely due
to the ability of this acid to penetrate the bacterial cell wall

and acidify the cell cytoplasm, thereby causing bacterial death
(177). Third, butyric acid could enhance the expression of
host defense peptides in different types of porcine cells, which
is remarkably important in modulating host immune system
and against a range of pathogens including antibiotic-resistant
strains (178, 179). Last but not least, butyric acid may be
able to alleviate intestinal injury by promoting tight-junction
formation (167, 180).

CONCLUSIONS

A healthy gut is extremely important, as the gut is a nutrient
digestion and absorption organ, a chemo-/nutritional sensing
organ, as well as the largest immune organ in the body.
The young pigs in post-weaning period have limited luminal
nutrition supply and are immediately imposed to tremendous
challenges, which cause changes in the structure and function
of the intestinal tract. These changes may include but not
limited to disrupted intestinal structure, reduced digestive and
absorptive capacity, damaged intestinal barrier, loss of microbial
diversity, and unbalanced intestinal immune homeostasis. A
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large amount of research have been conducted to increase
our understanding of the importance of gut health on animal
production and performance, although the definition of a healthy
gut is still not unified. Currently, the most summarized and
generalized one is that a healthy gut may contain several key
criteria, such as, effective nutrient digestion and absorption,
effective waste excretion, a functional and protective gut barrier,
a stable and appropriate microbial community, a functional and
protective gut immunity, a minimal activation of stress/neural
pathways, and the absence of diseases. To promote gut health
of weaned pigs, particularly under the restriction of the use of
antibiotics in feed, a wide arrange of nutritional interventions
have been proposed and investigated. Increasing evidences show
that supplementation of extra functional amino acids or specific
phytochemicals could provide very positive impacts on intestinal
integrity and immunity of weaned pigs. Antimicrobial peptides
and their inducing compounds such as butyrate derivatives
have also emerged as a potentially viable alternative to replace
antibiotics and to maintain intestinal health. There are much
more candidates of feed additives/nutritional interventions than

the four listed in this review, which may be effective in
regulating intestinal environments and enhancing weaned pig
performance. It is very important to keep in mind that the
efficiencies of each candidate may differ on the basis of their
modes of action, the basal diet formulation, and the health
status of pigs. Moreover, the importance of omics approaches
(i.e., metagenomics, transcriptomics, proteomics, metabolomics,
etc.) should be highly recognized as well, although it is not
discussed in the current review. These novel approaches have
been widely adopted to explore the mechanisms of nutritional
interventions on animal health and production by investigating
the impacts of nutrition on intestinal microbiota and their
metabolites, and the interactions of nutrition, genes and their
encoded products (proteins and peptides, etc.).
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