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Climate change involves different dramatic phenomena including desertification and

wildfires, severe storms such as hurricanes and blizzards, increased sea levels resulting

in flooding coastal cities and rise of atmospheric CO2 concentration. The alteration of

the climate in a specific region affects the life of indigenous animals and humans. The

climate changes influence living beings both directly and indirectly. The immune system

of animals dramatically suffers the climate instability, making animals more susceptible

to infectious and not infectious diseases. Different species of livestock animals respond

with similar mechanisms to global warming, but some of them are more susceptible

depending on their age, metabolism, and genetic conditions. The selection and study

of autochthonous species and breeds, more easily adapted to specific environmental

conditions could be an interesting strategy to face livestock rearing in the future.
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INTRODUCTION

Climate changes dramatically increased over the past 20 years. First of all, a global warming has
caused the increase of 1◦C of the Earth’s global surface temperature compared to the average in the
mid XX century (1). This phenomenon leads to weather anomalies that drastically affect indigenous
plant and animal life. The unstable weather patterns lead to desertification and wildfires, severe
storms such as hurricanes and blizzards, increased sea levels resulting in flooding coastal cities and
rise of atmospheric CO2 concentration (2). The result of all these events is that warm areas of the
planet can cross cool seasons and cold areas of the planet can experience very hot temperatures.
Plants and animals are able to face unexpected acute modifications of their environment thanks to
their resilient ability, but when such a modification becomes chronic, or too extreme, they can be
seriously affected. Moreover, the climate change can spread pathogens and pathogen vectors in new
areas where plant and animals are not equipped to fight them. Finally, the climate changes and all
the following weather anomalies represent a strong stress for the immune system and finally can
put at risk the health of humans and animals. The immune system of animals can be affected both
directly and indirectly by climate changes. For example, high environmental temperature directly
affects the immune system causing an increase of the body temperature and indirectly, causing a
reduction of the food intake, limits the energy sources for the immune responses that are known
to be very energy consuming. This review aims to update all the knowledge’s on immune system
alterations caused by different phenomena of the climate change, focusing on the need to consider
multi-stressor effects when evaluating climate change impacts upon animal immune system.
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GLOBAL WARMING AND IMMUNE
SYSTEM OF MAMMALS AND AVIAN
LIVESTOCK

Global warming is the main and strongest phenomenon
associated to climate change. The Earth’s temperature is
increasing by 0.2◦C per decade and it is estimated that by
2100 it will be increased by 1.4–5.8◦C (3). Most of the studies
on climate change effects on immune system focus on the
increasing temperatures worldwide. In fact, livestock animals
are homoeothermic animals, they can maintain a constant body
temperature through the exchange of heat produced by their
metabolism and the external environment (4). Farm animals
have a thermoneutral zone (TNZ) between 16 and 25◦C where
they manage to maintain a body temperature between 38.4
and 39.1◦C. When the external temperature reach values below
or above the TNZ, animals have to actively adapt by playing
out physiological, morphological and behavioral adaptation
mechanisms (5, 6). The majority of the response to heat stress
are common to different species of vertebrates.

The first consequence that heat stress has on livestock is
the decrease in daily food intake. Indeed, high environmental
temperatures negatively affect the hypothalamic appetite center
by reducing food intake (7). The reduction of food intake is a
mechanism that aims to reduce the production of heat due to
the metabolism, both in the polygastric and in the monogastric
animals (8, 9).

Among farm animals, goats are the ruminants that better
resist to temperature variations (10). Despite the decrease in dry
matter intake (DMI) in goats, there is only a slight reduction in
milk production (3–10%), compared to other dairy ruminants.
The reduction of milk fat is not accompanied by a reduction
in glucose levels or an increase of insulin levels as in cows
(11, 12). In lactating cows the food intake begins to decrease
at an environmental temperature around 25–26◦C and the
reduction can reach the 40% when it reaches 40◦C (13). At these
temperatures, the food intake in dairy goats can be reduced
by 22–35% (11) and in buffaloes by 8–10% (14). Also in
pigs the caloric intake is reduced when they are subjected to
thermal stress (9). Heat stress also affects poultry’s behavior. At
high temperature the time devoted by chickens to nourishment
decreases, they drink less, spend more time on the care of their
wings, moving, and walking less (15). The nutrients administered
with feed to poultry provide the substrates for cell proliferation
and differentiation (also leukocytes); moreover, they can act as
immunomodulators. Antigens supplied with the diet stimulate
the production of immunoglobulin’s in the bursa (16–18). Food
intake is than necessary for a correct and efficacious immune
response (19).

Another common response to heat stress in different farm
animal species (cattle, goats, sheep, pig, poultry) is the increase
in peripheral cortisol levels (19–22). Indeed, the heat stress
causes the activation of the two axes hypothalamic-pituitary-
adrenal (HPA) and sympathetic-adrenal-medullar (SAM), with
the final release of cortisol and catecholamines that are known
to influence the biology of leukocytes. Lymphocytes, monocytes,

macrophages, and granulocytes have receptors for cortisol and
catecholamines that mediate a negative alteration of their
trafficking, proliferation, cytokine secretion, immunoglobulin
(Ig) production, and cytotoxic activity (23).

Poultry subjected to heat stress showed a reduction of the
volume and weight of lymphoid organs, low levels of circulating,
and intestinal Ig and reduced phagocytosis (24–26). The reduced
capability of leukocytes to produce proteins (cytokines and Ig)
was mainly due to the phosphorylation of EF2 protein that
blocks the protein production by altering the elongation phase
of translation (21).

In dairy cows the activation of HPA and SAM axes induce the
release of glucocorticoids and catecholamines and the following
reduction of cytokine levels, particularly IL-4, IL-5, IL-6, IL-
12, IFN-γ, and TNF-α (19). High levels of cortisol lead to
immune suppression, overall on T cell compartment, cytokine
production, and phagocytosis. Also, catecholamines negatively
affect the immune system by inhibiting IL-12 production and
promotion of IL-10 release, finally promoting a Th2 response.
The hyperthermia concurs to the inhibition of Th1 response,
favoring the Th2 mediated humoral response (19). Cortisol
aggravates the immunosuppression by inhibiting the activation of
T cell, the production of cytokines and the phagocytosis (19). In
these conditions of immunosuppression vaccination of animals
is inefficacious and some latent viruses can reactivate (19).
Once cortisol binds to glucocorticoid receptors on the surface
of leukocytes, the activation of proinflammatory transcription
factors AP-1 and NFkB on the MAPK signaling pathway
(19). The immunosuppression involves also the downregulation
of complement system component (19). In dairy cows the
majority of the data describes after prolonged heat periods an
increase of total leukocytes with an altered differential count,
where neutrophils increase, recruited from the bone marrow
by cortisol, and lymphocytes decrease (19). Cortisol induces
a downregulation of L-selectin which, in turn, reduces the
activity of neutrophils and upregulates heat shock proteins (HSP)
(27–29). It is interesting to note that if the heat stress occurs
during the dry off period, the following lactation is compromised
and the animal is more susceptible to production diseases,
suggesting the existence of a sort of immunologic memory in the
innate immune cells, likely mediated by epigenetic mechanisms
(29, 30). Moreover, the reduced production of Ig following the
heat stress, compromise the passive immunity transfer from the
cow to its calf (19).

Another response common in vertebrates after heat stress
is the production of HSPs. In poultry the attempt to maintain
a correct body temperature induces the production of reactive
oxygen species (ROS) and a consequent oxidative stress in the

animal. The oxidative stress stimulates the liver of chicken to

produce increased levels of HSPs to protect the tissues against the

free radicals (31, 32). In dairy cattle increased levels of HSPs have

been described (19). HSP70 and HSP90 activate an inflammatory
response mediated by TLR4 (19). Dairy ruminants can activate
antioxidant pathways to counteract the negative effects due
to excessive production of reactive oxygen species (ROS).
Indeed, high levels of catalase, superoxide dismutase (SOD),
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glutathione reductase (GSH) and malondialdehyde (MDA) have
been observed in buffaloes and cows in summer months (33, 34).
In sheep subjected to heat shock HSPA2, a member of HSP70
family, resulted upregulated. HSPA2 is known to induce the
production of IL-1β that through IL-1R1, also upregulated in
sheep under heat stress, can trigger an inflammatory response
(35). Also, pigs subjected to prolonged heat stress develop signs of
inflammation at the hepatic level (36). Indeed, their hepatocytes
present an upregulation of HSPs and TLRs genes, signs of
oxidative stress (increased GSH:GSSG ratio) and increased
apoptosis (upregulation of PDIA3, P4HB, IRF9, VIM, NDGR2)
(37, 38). These responses are partly directly induced by the high
environmental temperature and partly indirectly by the reduced
feed intake (36).

Data on the effect of global warming on the immune
system of livestock sometimes are in contrast and this could
be due to genetic differences of different breeds under study.
For example, in poultry it has been described that different
breeds of broilers and hens respond differently to heat stress
(15, 39). In general, autochthonous breeds can adapt easily to
environmental stress compared to others. Salem Black goats
are known to better adapt to high temperature compared to
Malabari and Osamabadi goats, showing lower levels of HSP70
after a prolonged period of high environmental temperature
compared to the other two breeds (40). On the other hand,
autochthonous animals reared in different condition compared
to their usual ones, can develop dramatic stress responses. For
example, the Tharpakar cow, a dual-purpose breed native to arid
zone, shows an immunosuppression with and increase incidence
ofmastitis cases when reared in hot and humid environment (41).
Different studies aimed to improve the resilience of livestock,
identified genes associated to heat resistance such as heat shock
27 kD associated protein 1 (HSPBAP1) in goats, an inhibitor
of HSP27. SNPs within HSPBAP1 gene were associated to
susceptibility/resistance to heat stress (42). Other studies in cattle
and chicken identified genes involved in different mechanisms
such as immune response (interleukins and cluster differentiation
markers), metabolism (NADH), remodeling of mammary gland
and central nervous system functions confirmed the complexity
of heat shock response in animals (43, 44). All these studies
evidence that the resistance to high temperature negatively
correlate to the production level of the animals (45).

GLOBAL WARMING AND IMMUNE
SYSTEM OF FISH LIVESTOCK

Human activities can have a huge impact on climate changes,
influencing directly, and/or indirectly not only terrestrial
environments but also aquatic ones. In aquatic environments
those changes can be chemical (e.g., acidity, salinity, oxygen
levels), physical (e.g., temperature), or biological (e.g., algae
growth). These modifications of the environment affect the
animals, in particular their immune system, impairing their
capability of protection against pathogens (46–49).

Motile organisms, like fish, can be tolerant to some
environmental changes or can escape from those alterations

moving from one place to another, but aquacultured fish raised
in sea cages, are not able to relocate in order to avoid ecological
alterations. Those changes can be considered stressors, and in
natural environments, those do not normally occur alone but in
combination (49–51).

Water temperature can deeply affect fish immune system.
Acute and chronic changes in temperature have also different
impacts on animals, being short term episodes compensated by
processes such as heat shock protein response, while chronic
temperature variations are less likely to be solved by such
responses (52–55).

Some studies suggest that it polarize the immune responses: at
low temperatures fish may rely more on innate immune system,
while at higher temperatures is the adaptive immunity that is
more efficient (56–60). Pattern recognition by glucan binding
proteins was predominant in perch (Perca fluviatilis) acclimated
at lower temperatures, while, opsonin was more effective at
higher temperatures (61).

A common phenomenon associated to the response of
immune system to high environmental temperature (water
temperature) is the increase of the antibody levels. This has been
reported in several studies with different fish species (60, 62–73),
where high temperatures seem to boost antibody levels
indicating that a potential increment of oceans temperatures
could actually help protecting some aquatic species against
pathogens (73, 74).

Also, innate immunity of fishes is affected by water
temperature; in South Asian carp (Catla catla) Toll Like
Receptors (TLRs) and NOD-like receptors are modulated both
by cold or warm water. TLR2, TLR4 and NOD2 expression
increases with higher water temperatures, while TLR5 andNOD1
expression increases at both high and low temperatures (69).

In three-spined sticklebacks (Gasterosteus aculeatus)
granulocyte respiratory burst activity and lymphocyte
proliferation were inhibited when maintained for short
period at high water temperatures and enhanced at low water
temperatures. When the animals were exposed to a ‘heat
wave’ of 28◦C for 2 weeks, long lasting immune disorders
occurred resulting in the impairment of the immune system
and the following spread of infectious diseases among those fish
populations (70).

Temperature in gene expression changes of immune
molecules. In farm raised Atlantic cod (Gadus morhua), cold
water (up to 16◦C) caused an increase of b2-M, MHCI, and
IgM mRNA expression; on the contrary warmer raising water
induced a downregulation of the same genes, being only IL-1β
upregulated at high water temperatures (48). By the other hand,
in the skin of Atlantic salmon (Salmo salar) low temperatures
induce IL-1β, IL-8, and TNF-α upregulation (73).

ALTERATIONS OF SALINITY AND ACIDITY
OF OCEANS AND IMMUNE SYSTEM OF
FISH LIVESTOCK

The climate change has induced modification of water
environment in terms of salinity and pH.
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Ocean acidity can change as a result of natural environmental
sources (71), but different studies consider anthropogenic
activities as the main contributors for water acidification.
Approximately one third of the CO2 released since the industrial
revolution has been taken up by the oceans (72), leading to
the drop of pH (72). Recent studies estimated an average
decrease in ocean pH of 0.1 in the last two centuries (75).
Atlantic halibut (Hippoglossus hippoglossus) exposed to different
water temperatures and pH levels showed signs of inflammatory
responses with increased expression of complement component
C3 and fibrinogen β chain precursor at high CO2 concentrations
(reduced pH), without the influence of the temperature,
suggesting that these changes are directly a consequence of the
decrease of pH (74, 76).

In some species (Squalius carolitertii and Squalius torgalensis)
the combination of low pH and high temperature of the water
triggers the downregulation of Interferon-induced guanylate-
binding protein 1 (GBP1) gene in liver, an antiviral and
antimicrobic factor (49).

The alteration of the salt composition of waters is mainly
due to the increased evaporation and strongly influences
the life of fishes (77). In turbot (Scophthalmus maximus)
Hsp70 and IgM expression was correlated to both temperature
and salinity, temperature being the dominant factor (62).
Freshwater fish are naturally tolerant to salinity alterations, but
in seawater the complex variations of salinity can alter fish
immune functionality, especially in stenohaline fish (78). A study
developed inNile tilapia (Oreochromis niloticus), a freshwater fish
that prefers brackish waters, demonstrated that slowly increasing
salinity in the environment did not have any significant impact
on monocyte and lymphocyte number and phagocytotic process,
yet a continuous decrease in water salinity was correlated with
an increment in leukocyte number and phagocytosis (79, 80).
In a different tilapia species (Oreochromis mossambicus), the
increased salinity water caused a gain in lysozyme activity in
plasma and head kidney homogenate (81).

A study on gilthead sea bream (Sparus aurata), a commonly
aquacultured species with a wide range of salinity tolerance,
demonstrated that hyper-saline water highly increases IgM
production, while a decrease on water salinity do not (82). In
another work, pipefish (Syngnathus typhle) kept in high salinity
conditions and infected with Vibrio spp. presented significantly
higher phagocytosis values compared to controls. When the
fishes remained for a longer period in high salinity environment
increased energy was required for osmoregulation leading
to both lymphocyte and monocyte proliferation reduction,
suggesting that during longer high salinity periods animals can
be immunocompromised (47).

Water oxygen levels is another important parameter for
aquatic animals’ survival, and this parameter is clearly related
to water temperature, salinity, and ionic concentration. Among
the few studies published, hypoxia, and water temperature
were investigated on Atlantic cod (Gadus morhua), and the
expression of HSP70 was significantly higher in hypoxic
conditions and at low temperatures (51). Macrophages of
Atlantic salmon in vitro stimulated with poly I:C (TLR ligand)
showed a significant increase of IFN-α mRNA levels in

non-hypoxic conditions compared to normoxic conditions. This
difference suggests that chronic hypoxia can modulate the innate
immune response, altering the susceptibility of those animals to
infections (83).

ALTERATION OF WATER CYCLE AND
IMMUNE SYSTEM OF LIVESTOCK
ANIMALS

The increased salinity of the oceans has been demonstrated to
alter the water cycle of the earth leading to dramatic phenomena
such as rainfalls, floods, and dust storms (77). The consequence of
the alteration of the water cycle is that “arid regions have become
drier and high rainfall regions have become wetter” (84).

So, the climate change, including alteration of water cycle
and atmospheric CO2, concurs to the modification of the plant
composition and accordingly to the reduction of food quality
and quantity (85). The poor quality and low quantity of food
negatively influences the immune response of animals, that is
highly energy demanding and continuously requires adequate
immune stimulation (19, 85). In these conditions, animals are
more susceptible to infections and infestations.

Moreover, the alterations of the climate conditions allow the
worldwide distribution of vectors of infectious diseases once
endemic in specific regions. Burden of vector borne diseases
increased in the last years depending on different factors:
short life cycle of the vectors, reduction of incubation period,
increased number of vector populations and extension of the
times of transmission of the pathogen. All this factors are
deeply influenced by the environment in particular temperature
and water/humidity. Indeed both mosquitos and ticks, the
major vectors, are highly susceptible to global warming, floods,
and droughts. In particular the increased temperatures favor
the spread of mosquitos in Northern latitudes where they
find a suitable niche for reproduction and can overwinter,
whereas in the tropical areas very high temperatures and
the alternation of heavy rainfalls and droughts exacerbate
the incidence of vector borne diseases by shortening the life
cycle of vectors and promoting the host-pathogen interaction
due to the livestock overcrowding at the water pools in dry
seasons (86–88). Based on this, prediction models suggest a
wide spread of vector borne diseases such as Rift Valley fever
and Malaria (89, 90). Regarding tick vectors, their movement
toward Northern region has been registered. For example
Ixodes ricinus has been documented in Sweden and Russia,
whereas Ixodes persulcatus in subarctic regions (91–93). The
climate change can also negatively affect the spread of vector
borne diseases. Indeed, the excessive temperature rise and
prolonged dry period in subtropical and tropical areas can
reduce the survival and reproduction rate of specific tick
species such as Riphicephalus sanguineus. For the same reason
epidemiological models predict that Leishmaniosis will decrease
in the future (90).

The spread of vector borne diseases can induce
immunosuppression in livestock and humans, favoring a
further circulation of diseases (19). This add up to the
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FIGURE 1 | Scheme of the impact of climate change on the immune system of livestock animals. Climate change is a complex phenomenon that include different

dramatic event such as global warming, desertification, alteration of water cycle leading to floods and droughts, increase concentration of atmospheric CO2,

acidification, and alteration of the salinity of the oceans. All these events deeply affect the immune system of livestock species (mammals, avian, and fishes) both

directly and indirectly. Many of the responses are common to different animals such as the activation of the HPA axis with the release of cortisol (that is an immune

suppressor), production of HSPs in response to the oxidative stress, reduction of Ig production and increased susceptibility to infectious diseases.

immunosuppression caused by heat stress and sudden
changes of temperatures, aggravating the susceptibility to
infections (19, 94).

Pig farming is largely developing in tropical areas where
climate change causes very hot and humid summers. These
conditions challenge the immune system as previously described
by activating the HPA axis and resulting in the immune
suppression of the animals. The poor hygiene conditions
typical of the tropical areas favor the spread of pathogens
such as Salmonella and Isospora among pigs also in northern
regions (95, 96).

Finally, the increase frequency of dust storm can impact
on animal health. Strong winds transport dust with a complex
and variable composition around very wide areas of the
world. Dust is mainly made up of silicon dioxide, aluminum
oxide, iron and titanium oxides, calcium and magnesium
oxides, sodium and potassium oxides (97). It can also contain
microorganisms such as bacteria, fungi, and viruses (98–100).
The small dimension of the particles (PM 0.1 and PM
2.5) is the main responsible of the tissue damages, causing
apoptosis, autophagy, and oxidative stress in the airway
cells (101, 102).

CONCLUSIONS

Climate change includes several dramatic phenomena such
as global warming, rise of atmospheric CO2 concentration,
alteration of salinity and pH of oceans, reduction of O2

concentration in waters that lead to desertification and wildfires,
severe storms such as hurricanes and blizzards, increased sea
levels resulting in flooding coastal cities. All these phenomena
are tightly linked to one another (Figure 1). So the climate
change should be analyzed as a very complex problem and
should be faced by an integrated strategy at different levels.
Climate change impacts on production and reproduction of
livestock causing important economic losses, being the high
yield animals (with an accelerated metabolism and a genetic
selection based on production) the less resilient and the most
affected by the environment modifications. But it also impacts
on the immune system of the animals inducing immune
suppression and increasing their susceptibility to infections. The
spread of vector borne diseases promoted by climate change
also contribute to the impairment of the animal welfare. On
the other hand, the intensive farming of livestock contributes
to worsen the global warming, mainly by the emission of
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green-house gases such as CO2, CH4, and N2O (livestock
sector concurs directly and indirectly with 18% of green-
house gases emissions) (103). Given that climate change will
progressively reduce the quantity and the quality of food
for humans and animals, one strategy for future livestock
management could be the valorization of autochthonous
livestock breeds known to be highly resilient and disease
resistant, to have low dietary needs (they have good production
levels also with a frugal ration) and to produce high quality
products (104).
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