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Intense exercise causes to organisms to have oxidative stress and inflammation at the

gastrointestinal (GI) level. The reduction in intestinal blood flow and the exercise-linked

thermal damage to the intestinal mucosa can cause intestinal barrier disruption, followed

by an inflammatory response. Furthermore, the adaptation to exercise may affect the gut

microbiota and the metabolome of the biofluids. The aim of the present research was

to evaluate the presence of a GI derangement in hunting dogs through a non-invasive

sampling as a consequence of a period of intense exercise in comparison with samples

collected at rest. The study included nine dogs that underwent the same training regime

for hunting wild boar. In order to counterbalance physiological variations, multiple-day

replicates were collected and pooled at each experimental point for each dog. The

samples were collected immediately at rest before the training (T0), after 60 days of

training (T1), after 60 days of hunting wild boar (T2), and finally, at 60 days of rest

after hunting (T3). A number of potential stress markers were evaluated: fecal cortisol

metabolites (FCMs) as a major indicator of altered physiological states, immunoglobulin

A (IgA) as an indicator of intestinal immune protection, and total antioxidant activity

[total antioxidant capacity (TAC)]. Since stool samples contain exfoliated cells, we

investigated also the presence of some transcripts involved in GI permeability [occludin

(OCLN), protease-activated receptor-2 (PAR-2)] and in the inflammatory mechanism

[interleukin (IL)-8, IL-6, IL-1b, tumor necrosis factor alpha (TNFα), calprotectin (CALP),

heme oxygenase-1 (HO-1)]. Finally, the metabolome and the microbiota profiles were

analyzed. No variation in FCM and IgA content and no differences in OCLN and CALP

gene expression between rest and training were observed. On the contrary, an increase

in PAR-2 and HO-1 transcripts, a reduction in total antioxidant activity, and a different

profile of microbiota and metabolomics data were observed. Collectively, the data in the

present study indicated that physical exercise in our model could be considered a mild

stressor stimulus.
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INTRODUCTION

Intense exercise is known to exacerbate body stressors, such
as oxidative stress and inflammation, the latter at both the
muscular (1–3) and the gastrointestinal (GI) (4–6) levels. As a
consequence, in performance sports, there is a high prevalence
of GI problems both in humans, such as endurance runners
(6–8), and in animals, such as horses (9, 10) or dogs (11). In
a review paper by ter Steege et al. (12), several studies were
cited that suggested that the key culprit behind GI symptoms
during exercise was splanchnic hypoperfusion, which could
lead to intestinal ischemia, thus subsequently damaging the
intestinal epithelial cells and compromising the intestinal barrier
function. Multiple studies involving humans have reported an
exercise-induced increase in intestinal permeability (13). The
tight junction (TJ) plays an important role in regulating the
epithelial permeability by means of modifying the multiprotein
complex [claudins and occludin (OCLN)] and/or promoting
dysfunction to TJ regulatory proteins (i.e., zona-occludens) (14).

A downregulation of OCLN expression has been observed
in different intestinal models, in which the permeability was
strongly altered [i.e., inflammatory bowel disease (IBD),
ulcerative colitis], and was downregulated (15, 16). Gut
permeability is also influenced by protease-activated receptor-2
(PAR-2) expressed in the apical and basolateral membranes
of intestinal epithelial cells (17). As described by a review
(17), its activation induces an increase in permeability by
means of impairment of the TJ functions, as shown in several
epithelial and endothelial cell models (18–21). In different
models including colitis and ischemia and reperfusion (I/R),
PAR-2 transcription was upregulated in mouse, rodent,
and horse models (21–23). Other markers of intestinal
inflammation are calprotectin (CALP) and pro-inflammatory
cytokines, which have been shown to be upregulated in IBD
models (24–26).

Heme oxygenase-1 (HO-1) is an inducible cytoprotective
stress-responsive protein induced by various stimuli, including
oxidative stress I/R, heavy metals, and cytokines (27), the
induction of which is usually associated with antioxidant,
anti-apoptotic, and anti-inflammatory effects as reported by a
review paper (28). In studies using murine experimental colitis
models, HO-1 activity and expression were markedly increased,
associated with the development of colitis, and the inhibition
of HO activity potentiates colonic damage and inflammation
(29, 30). Moreover, the relationship between physical exercise
and increased HO-1 mRNA and protein expression/activity in
different cells and tissues has already been demonstrated in
rodents (31–34) as well as in humans (35, 36).

Cortisol is a well-known indicator of the stress response in
the majority of mammals including dogs, with previous studies
showing increased levels after exercise, such as agility work (37)
and training in outdoor conditions (38, 39).

Many factors contribute to the maintenance of GI
homeostasis. One of them is the secretion of immunoglobulin
A (IgA), which coats the bacteria, favoring a tolerant, non-
inflammatory relationship with the host (40) and the homeostatic
control of the intestinal redox environment (41). Previous papers

have reported that exercise may affect the levels of IgA in mice
(42) and cause oxidative stress in dogs (43).

Emerging research has suggested that intense exercise could
also affect the gut microbiota. In particular, cross-sectional
studies have shown an overall increase in biodiversity with
some compositional alterations, mainly in mucin degraders,
lactate utilizers, and short-chain fatty acid (SCFA) producers, in
the intestinal microbial ecosystem of professional athletes (44).
Several factors are likely to be involved, including changes in
diet, hydration levels and metabolic flux, altered gut motility,
and also impaired gut barrier function, as a result of exercise-
induced heat stress and ischemia (44). Given the fundamental
role of the gut microbiota in maintaining host metabolic
and immunological homeostasis (45), its monitoring during
periods of intense physical activity could help to elucidate the
mechanisms underlying the microbial response to exercise and
understand if and how these are related to host performance.

The metabolome of fluids, which is made up of the ensemble
of low-weight organic molecules, results from a complex
interaction between endogenous and exogenous host factors,
including the gut microbiota. As such, it has been shown to give
important information regarding the overall effects of exercise
in both humans and animals, with specific reference to the
inflammatory status. The fecal metabolome seems to be no
exception, at least in rats (46).

The exfoliated enterocytes contained in feces have recently
been used as a tool to investigate the impact of therapies and
nutritional regimens on GI functions (47, 48). In fact, stool
is easy to obtain and has already been used in quantifying
intestinal gene expression profiles from exfoliated epithelial cells
in neonates (49, 50), as well as under pathological conditions
to detect candidate molecular biomarkers (51–53). Exercise
induces multiple biochemical changes, which may affect the
gene expression of the transcripts involved in the mitochondrial
metabolism in muscle (54) and oxidative stress, as assessed non-
invasively (i.e., in saliva) in avalanche military dogs (55).

The aim of the present research was to evaluate the presence
of a GI derangement in hunting dogs through a non-invasive
sampling as a consequence of a period of intense exercise
in comparison with samples collected at rest. To reach this
goal, we selected a number of potential stress markers in
fecal samples, including cortisol metabolites [fecal cortisol
metabolite (FCM)], transcripts involved in epithelial integrity
and inflammatory mechanisms [cytokines: interleukin (IL)-8,
IL-6, IL-1β, and tumor necrosis factor alpha (TNFα); OCLN;
CALP; PAR-2; and HO-1], IgA, and total antioxidant capacity
(TAC) levels. Furthermore, we decided to profile the fecal
metabolome, by means of high-resolution proton magnetic
resonance spectroscopy (1H-NMR), and the microbiota, by 16S
rRNA gene-based next-generation sequencing.

MATERIALS AND METHODS

Experimental Design and Exercise
Four experimental time points were set: T0, after 180 days of
complete rest (rest before the training session, September); T1,
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FIGURE 1 | Schedule of the experimental time points. T0, rest before the

training; T1, 60 days of training; T2, 60 days of hunting season; T3, 60 days of

rest after hunting.

after 60 days of training, 3 days a week, 3 h each day (November);
T2, after 60 days of wild boar hunting three times a week, 5–6 h
each day (January); and T3, after 60 days of complete rest (rest
after hunting season, March) (Figure 1). The physical activity
carried out during both the training (T1) and the hunting (T2)
periods was similar and consisted of a first phase of identifying
and locating prey and a subsequent chase phase. The duration
of these phases, due to the nature of the hunting itself, varied
and was therefore impossible to standardize. All the dogs equally
and simultaneously participated in each training/hunting session
The training activity occurred on alternative days and was always
conducted by the same person, the owner (not a professional
trainer but an expert hunter fully aware of the goal of the research
project), without any type of reinforcement.

Animals
The exploratory study was carried out from September 2017 to
March 2018 on nine hunting dogs. The dogs were of various
ages (9.1 ± 5.0 years; mean ± SD), sexes (two unneutered males
and seven spayed females), and breeds (three English Setter,
three Segugio Italiano, two Dachsbacke, one Deutsch Kurzhaar)
(Table 1). T0 body weight (BW) (19.3 ± 3.3 kg; mean ± SD)
and the body condition score (BCS, calculated by using the 1–
9 score proposed by Royal Canine SAS) are reported in Table 1.
BW and BCS were also determined at each experimental point.
The dogs, owned by a single owner, were housed in individual
boxes and fed, once a day, with a commercial diet (Eko Adult,
Russo Mangimi SpA, NA, Italy): crude protein 22%, crude fats
and oils 9%, crude fiber 4.6%, and crude ash 11.2%. The food was
administered in relation to the weight of the dog and to physical
activity, increasing the dose by about 15% in T1 and T2 with
respect to the rest periods. All the dogs underwent a physical
examination by a veterinarian at the beginning of and during the
trials. Only those who were clinically healthy were included in
the study.

TABLE 1 | Dogs included in the study.

Dog Breed Gender Age BW (kg) BCS 1–9

1 Segugio Italiano SF 4 18 6

2 Dachsbracke M 14 20 6

3 Deutsch Kurzhaar SF 4 25 5

4 English Setter M 13 22 6

5 Segugio Italiano SF 7 18 4

6 Segugio Italiano SF 16 20 5

7 Dachsbracke SF 2 13 5

8 English Setter SF 12 18 5

9 English Setter SF 10 20 6

M, unneutered male; SF, spayed female; BW, body weight; BCS, body condition score at

T0 (rest before training).

Collection of the Fecal Sample
The samples were collected during the last week of each
experimental period. In order to counterbalance the
physiological fluctuations that occur within individuals,
three samples for each time point were collected on different
days. Specifically, at T1 and T2, the three samples were collected
during the last week of physical activity on the day after the
exercise session, while at T0 and T3, the three samples were
collected on 3 consecutive days. The sample collection time
was the same at each experimental point (after feeding in the
late afternoon).

In agreement with the Italian law transposition of European
Directive 2010/63 (DL 26/2014), the collection of fecal samples
is not classified as a procedure, and it did not require any
kind of authorization. This non-invasive sampling method was
performed without any discomfort for the animals.

In total, 108 samples were collected: three for each dog at
each of the four experimental times. The aforementioned three
samples were pooled for the assays, leading to an overall sample
number of 36 (one for each dog at each experimental time point).

Fresh fecal samples were collected by the owner within 1 h
of defecation (late afternoon) and immediately stored at −20◦C
until analysis.

RNA Extraction and Reverse Transcription
Lyophilized fecal samples (Modulyo EF4 1044, Edwards) were
weighed and resuspended with Dulbecco’s phosphate-buffered
saline (DPBS) (w/v; 100 mg/ml) by vortex mixing (3min). RNA
extraction was performed using PureZol RNA isolation reagent
(BioRad, Bio-RAD Laboratories Inc., California, USA) and a
NucleoSpin RNA II kit (Macherey Nagel, Duren, Germany).
Briefly, 1ml of PureZol RNA isolation reagent was added to
100 µl of each sample and vortex mixed (3min). Two hundred
microliters of chloroform was then added to the suspension and
mixed well. After incubation at room temperature (10min), the
samples were centrifuged (12,000 g for 10min), and the aqueous
phase was recovered. One volume of ethanol was added, and the
resulting solution was loaded onto a NucleoSpin RNA Column
(light blue ring) (NucleoSpin RNA II kit, Macherey Nagel).
The RNA was then purified according to the manufacturer’s
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instructions and spectrophotometrically quantified (A260 nm)
(DeNovix Inc., Wilmington, DE, USA). RNA (1 µg) was then
reverse-transcribed to cDNA using an iScript cDNA Synthesis
Kit (Bio-RAD), arriving at a final volume of 20 µl. An
additional sample of canine intestinal biopsy, collected from
the duodenum of a dog with IBD (derived from a diagnostic
procedure, performed at DIMEVET, with the express consent
of the owner; endoscopy code 9290, March 19, 2018, sample
code 14873), underwent RNA extraction, reverse transcription,
and subsequent analysis (quantitative real-time PCR assay) as a
positive control of inflammatory gene expression.

Quantitative Real-Time PCR
Real-time quantitative PCR was carried out using a CFX 96 Real
Time System (Bio-RAD) and SsoAdvancedTM Universal SYBR R©

Green Supermix (Bio-RAD). All the samples were analyzed in
duplicate (10 µl/well), and the qPCR assays were carried out for
different references [glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), TATA-box binding protein (TBP), tight junction
protein 1 (TJP1), ribosomal protein L32 (RPL32), succinate
dehydrogenase (SDHA), and interest genes (Il-8, IL-1β, IL-
6, TNFα, OCLN, CALP, PAR-2, HO-1]. Primer sequences are
reported in Table 2.

Real-time efficiency was evaluated by amplification of a
standardized amount of cDNA, starting from 150 ng with
subsequent 5-fold dilutions (75, 15, 3, 0.6, and 0.12 ng),
derived from both fecal sample–derived and intestinal cDNA
(duodenal biopsy). The specificity of the amplified PCR products
was verified by analysis of the melting curve and agarose gel
electrophoresis. The relative gene expression was calculated as
the fold increase using the 2−11Ct method (58) in relation to T0
(11Ct= 1Ct T1 or T2 or T3 group –1Ct T0).

Fecal Cortisol Metabolites Determination
Extraction from the feces was performed as previously described
(59). Briefly, a methanol:water (v/v 4:1) solution was added to
the feces in capped glass tube vials. The vials were then vortex
mixed for 30min using a multitube pulsing vortexer. Following
centrifugation (1,500 g for 15min), ethylic ether and NaHCO3

(5%) were added to 1ml of supernatant. This preparation was
then vortex mixed for 1min on a multitube pulsing vortexer
and centrifuged for 5min (1,500 g). The ether portion was
then separated and evaporated to dryness under an air-stream
suction hood at 37◦C; finally, the dry residue was dissolved into
phosphate-buffered saline (PBS) 0.05M, pH 7.5.

TABLE 2 | List of primer pairs, amplicon size (bp), and accession number (AN) in the NCBI (National Center of Biotechnology Information) database.

Gene Primer sequence (5′->3′) PCR (bp) AN References

HO-1 F GCCAGTGCCACGAAGTTC 164 NM_001194969 Present study

R TCCTCAGTGTCCTTGCTCAG

CALP F ACCATGCTGACGGAACTGGAGAG 244 NM_001146144 Present study

R CCACGCCCACCTTTATCACCAATATG

OCLN F CAGAGTCTTCCTATAAATCAAC 196 NM_001003195.1 Present study

R GTGTAGTCTGTCTCATAGTG

PAR-2 F TGAAGATCGCCTACCACATCCG 137 AB_458680 (56)

R CCAATACCGTTGCACACTGA

IL-8 F CTTCCAAGCTGGCTGTTGCTC 173 NM_001003200 (56)

R TGGGCCACTGTCAATCACTCTC

IL-1β F GCTGCTGCCAAGACCTGAAC 112 XM_005630074 Present study

R GCTACAATGACTGACACGAAATGC

TNFα F CCCAAGTGACAAGCCAGTAGCTC 146 NM_001003244 (56)

R ACAACCCATCTGACGGCACTATC

IL-6 F AAAGAGCAAGGTAAAGAATCAGGATG 126 NM_001003301 Present study

R CGCAGGATGAGGTGAATTGTTG

GAPDH F TGTCCCCACCCCCAATGTATC 100 NM_001003142 (57)

R CTCCGATGCCTGCTTCACTACCTT

TBP F CTATTTCTTGGTGTGCATGAG G 96 XM849432 (56)

R CCT CGG CATTCAGTCTTTTC

TJP1 F GCTGTGGAAGAAGATGAAGATG 175 NM_001003140 Present study

R CTCGGCAGACCTTGAAGTAG

RPL32 F GGCACCAGTCAGACCGATATG 209 NM_001252169 Present study

R GCACATCAGCAGCACTTCAAG

SDHA F CGCATAAGAGCCAAGAAC 194 XM535807 Present study

R CCTTCCGTAATGAGACAAC

HO-1, heme oxygenase-1; CALP, calprotectin; OCLN, occludin; PAR-2, protease-activated receptor-2; IL, interleukin; TNFα, tumor necrosis factor alpha; GAPDH, glyceraldehyde-3-

phosphate dehydrogenase; TBP, TATA-box binding protein; TJP1, tight junction protein 1; RPL32, ribosomal protein L32; SDHA, succinate dehydrogenase.
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Radio immunological assay (RIA) was carried out according
to Tamanini et al. (60). Analysis was carried out in duplicate.
The parameters for analysis validation were: sensitivity 0.23
pg/mg; intra-assay variability 6.4%; inter-assay variability
9.7%; and specificity (%) of cortisol 100, corticosterone
9.5, 11α-hydroxy-progesterone 8.3, cortisone 5.3, 11α-
deoxycortisol 5.0, progesterone 0.6, deoxycorticosterone
0.5, 20α-dihydrocortisone 0.4, testosterone 0.3, aldosterone 0.1,
and dehydroepiandrosterone, 5α-pregnenolone, 17β-estradiol,
and cholesterol <0.0001.

Determination of Total IgAs and TAC
The IgA extraction was performed essentially as reported by
Peters et al. (61).

Briefly, the lyophilized fecal samples were placed in 1ml
(w/v; 100 mg/ml) of extraction buffer (PBS containing 0.5%
Tween 20 (Sigma-Aldrich, St. Louis, MO, USA) and a protease
inhibitor cocktail (Sigma, 1 tablet/25ml), and after the addition
of three 3mm glass beads, the samples were homogenized for
1min with TissueLyser (50Hz) (QIAGEN, Hilden, Germany).
The homogenates were then centrifuged (1,500 g for 15min),
and the recovered supernatants were additionally centrifuged
(15,000 g for 20min). The supernatants were frozen at −20◦C
until analysis.

The IgA level was measured by a specific enzyme-
linked immunosorbent assay (ELISA) kit (Dog IgA ELISA
Quantitation Set, Bethyl Laboratories Inc., Montgomery,
TX, USA). The analyses were carried out in duplicate. The
parameters for analysis validation were: intra-assay variability
2.1% and inter-assay variability 12.8%. After checking the
parallelism (R2 = 0.9849, unpublished data), we diluted the
sample 1:75,000 and carried out the assay according to the
manufacturer’s instructions.

The TAC level was assayed by using an Antioxidant Assay Kit
(item no. 709001; Cayman Chemical Company, Ann Arbor, MI,
USA) according to the manufacturer’s instructions and expressed
as a Trolox equivalent.

Metabolomics
The fecal samples were prepared for 1H-NMR analysis by vortex
mixing for 5min (80mg of stool with 1ml of deionized water).
The mixtures were then centrifuged for 15min at 18,630 g and
4◦C. The supernatants (700 µl) were added to a D2O solution
of 3-(trimethylsilyl)-propionic-2,2,3,3-d4 acid sodium salt (TSP)
10mM and NaN3 2mM, set at pH 7.00 ± 0.02 with 1M
potassium phosphate buffer. Before analysis, the samples were
centrifuged again at the above conditions.

The 1H-NMR spectra were recorded at 298K using an
AVANCE III spectrometer (Bruker, Milan, Italy) operating at
a frequency of 600.13 MHz. In accord with Ventrella et al.
(62), the signals from broad resonances originating from large
molecules were suppressed by a Carr–Purcell–Meiboom–Gill
(CPMG) filter composed by 400 echoes with a τ of 400 µs and
a 180◦ pulse of 24 µs, for a total filter of 330ms. The HOD
residual signal was suppressed by means of pre-saturation. Each
spectrum was acquired by summing up 256 transients using 32K
data points over a 7,184Hz spectral window, with an acquisition

time of 2.28 s. To apply NMR as a quantitative technique (63),
the recycle delay was set to 5 s, taking into consideration the
relaxation time of the protons under investigation. 1H-NMR
spectra were baseline-adjusted by means of the peak detection
according to the “rolling ball” principle (64) implemented in
the baseline R package (65). A linear correction was then
applied to each spectrum, so as to make the points pertaining
to the baseline randomly spread around zero. Spectra have
been horizontally aligned by employing the signal of TSP as
a reference. The differences in water and fiber content among
the samples were taken into consideration using probabilistic
quotient normalization (66), applied to the entire spectra array.

The signals were assigned by comparing their chemical shift
and multiplicity with the Human Metabolome Database (67)
and Chenomx software data bank (Chenomx Inc., Canada,
version 8.1).

Microbial DNA Extraction and 16S rRNA
Gene Sequencing
Microbial DNA was extracted from the fecal samples using the
DNeasy Blood & Tissue kit (QIAGEN), with a modified protocol
as previously described (68). Briefly, 250mg of feces were
resuspended in 1ml of lysis buffer (500mM NaCl, 50mM Tris-
HCl pH 8, 50mM EDTA, 4% SDS). Four 3mm glass beads and
0.5 g of 0.1mm zirconia beads (BioSpec Products, Bartlesville,
OK) were added to the fecal samples and homogenized with
three bead-beating steps using the FastPrep instrument (MP
Biomedicals, Irvine, CA) at 5.5 movements/s for 1min, keeping
the samples on ice for 5min after each treatment. The samples
were heated at 95◦C for 15min and centrifuged for 5min at
13,000 g to pellet stool particles. The supernatants were collected,
and 260 µl of 10M ammonium acetate was added; the samples
were then incubated on ice for 5min and then centrifuged for
10min at 13,000 g. One volume of isopropanol was added, and
the supernatants were incubated on ice for 30min. The nucleic
acids were collected by centrifugation for 15min at 13,000 g and
washed with 70% ethanol. The pellets were then resuspended in
100 µl of Tris-EDTA (TE) buffer and treated with 2 µl of DNase-
free RNase (10 mg/ml) for 15min at 37◦C. Protein removal
and DNA purification using QIAamp Mini Spin columns
(QIAGEN) were carried out according to the kit protocol. The
DNA extracted was quantified using a NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, DE).

For each sample, the V3–V4 region of the 16S rRNA gene
was sequenced as previously reported (69). Briefly, the DNA
was amplified using the S-D-Bact-0341-b-S-17/S-D-Bact-0785-
a-A-21 primers (70) with Illumina overhang adapter sequences.
PCR products of ∼460 bp were purified using a magnetic bead-
based system (Agencourt AMPure XP; Beckman Coulter, Brea,
CA), indexed by limited-cycle PCR using Nextera technology,
and were additionally purified using Agencourt AMPure XP
magnetic beads. Indexed libraries were pooled at an equimolar
concentration, denatured, and diluted to 6 pmol/L before loading
onto the MiSeq flow cell. Sequencing was carried out on
an Illumina MiSeq platform using a 2 × 250 bp paired-end
protocol, according to the manufacturer’s instructions (Illumina,
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San Diego, CA). Sequencing reads were deposited in the National
Center for Biotechnology Information Sequence Read Archive
(NCBI SRA; BioProject ID PRJNA 589580).

Bioinformatics and Statistical Analysis
Statistical analysis was carried out in R computational language
(71). Differences among sampling points were assessed using
the analysis of variance (ANOVA) test for repeated measures
(P-value < 0.05 was considered statistically significant). Robust
principal component analysis (rPCA) models were calculated as
described by Hubert et al. (72), namely, by accepting an alpha
value of 0.75. Differences in the mRNA data were evaluated
using one-way ANOVA (P-value < 0.05 was considered
statistically significant).

As for the gut microbiota analysis, raw sequences were
processed using a pipeline combining PANDAseq (73) and
QIIME 2 (74). High-quality reads were filtered and clustered
into amplicon sequence variants (ASVs) at 99% similarity by
means of an open-reference strategy carried out using dada2 (75).
Taxonomy was assigned using the vsearch classifier (76) and the
Greengenes database as a reference (release May 2013). Alpha
rarefaction was carried out using Faith’s phylogenetic index and
the number of observed ASVs, while beta diversity was estimated
by computing weighted and unweighted UniFrac distances. All
the statistical analyses were carried out using R (version 3.1.3)
and the packages vegan and made4. UniFrac distances were
used for the principal coordinate analysis (PCoA), and the
significance of data separation was tested using a permutation
test with pseudo-F ratios (function adonis of vegan) and the
ANOSIM test. The Wilcoxon test for paired data was used to
assess significant differences in alpha diversity and taxon relative
abundance between groups, while the Kruskal–Wallis test was
used for multiple comparisons. A P-value < 0.05 was considered
statistically significant.

RESULTS

Animals
In Figure 2, we report the variation in BW of the dogs during
the trial.

The physical activity induced a statistically significant
decrease of BW after 60 days of hunting season (T2, 16.9 ± 3.4)
with respect to the rest periods (T0, 19.3 ± 3.3, and T3, 18.8 ±

3.2) (P = 0.017, repeated measures ANOVA, Tukey’s multiple
comparison test, P < 0.05). On the contrary, the training period
did not significantly influence the BW (T1, 18.7 ± 3.6) (repeated
measures ANOVA, Tukey’s multiple comparison test, P < 0.05).
The percentages of BW reduction at T1, T2, and T3 with respect
to T0 were 3.2, 12.7, and 2.9%, respectively.

The BCSs of the dogs recorded during the trial were (median,
min–max): T0 (4, 5, 5, 6); T1 (4, 5, 5, 6); T2 (3, 4, 4); and T3 (4,
5, 5, 6). Similarly to BW, only T2 (60 days after hunting season)
was statistically different from rest periods (T0 and T3) and the
period after 60 days of training (T1) (repeatedmeasures ANOVA,
Friedman test, Dunn’s multiple comparison test, P < 0.05).

FIGURE 2 | Body weight (BW) of dogs at the different time points. The

physical activity induced a statistically significant decrease in BW after 60 days

of hunting season (T2) (mean ± SEM) (P = 0.017). *Indicates P < 0.05

(repeated measures ANOVA, Tukey’s multiple comparison test, P < 0.05).

Real-Time Quantitative Reverse
Transcription PCR for PAR-2, HO1, CALP,
OCLN, IL-8, IL-1β, IL-6, and TNFα
RNA was extracted from all the samples with a yield of 336.35
± 147.8 ng/10mg dry feces. Of the reference genes analyzed,
only GAPDH was always detectable; therefore, it was used
as a reliable internal reference for qPCR normalization. To
evaluate the matrix effect, we determined qPCR efficiency for
GAPDH in the stool and tissue samples. The results showed
that the efficiency was similar in both samples (97 and 91.7%,
respectively) (Figure 3), indicating that RNA isolated from feces
did not contain particular PCR inhibitors.

The presence and specificity of the PCR products were verified
using melting curve analysis and agarose gel electrophoresis.
The transcripts of GAPDH, HO-1, CALP, OCLN, and PAR-
2 were detectable in the majority of the samples analyzed
(GAPDH 33/36, HO-1 29/36, PAR-2 27/36, CALP 21/36, OCLN
26/36), although with a huge variability regarding the range
of gene expression both between the dogs and regarding the
time points.

The expression levels of OCLN and CALP did not show
significant differences among groups (P= 0.6338 and P= 0.1704,
respectively) (one-way ANOVA, Tukey’s multiple comparison
test, P < 0.05, Figure 4). On the contrary, a statistically
significant increase was observed at T2 (after 60 days of
hunting season) for PAR-2 and HO-1 as compared to T0
(P = 0.042 and P = 0.028, respectively) (one-way ANOVA,
Tukey’s multiple comparison test, P < 0.05, Figure 4). Very
low or undetectable expression levels were observed for the
genes encoding the cytokines (IL-8, IL-1β, IL-6, TNFα) (very
low 7/36, undetectable 29/36) and for the other reference
genes (TPB, TJP1, RPL32, SDHA) (very low 8/36, undetectable
level 28/36).
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FIGURE 3 | Quantitative real time PCR (qRT-PCR) efficiency for the reference gene [glyceraldehyde-3-phosphate dehydrogenase (GAPDH)]. Five different 5-fold

dilutions of the stool (A) or tissue (B) samples were assayed. Cq, cycle quantification; E, efficiency.

FIGURE 4 | Gene expression of protease-activated receptor-2 (PAR-2), heme oxygenase-1 (HO-1), calprotectin (CALP), and occludin (OCLN) evaluated by qRT-PCR,

at the different time points. Relative gene expression of PAR-2, HO-1, CALP, and OCLN in the fecal samples of dogs at rest before training (T0), after 60 days of

training (T1), after 60 days of hunting season (T2), and at 60 days of rest after hunting (T3). The mRNA data are expressed as fold change with respect to T0.

*Indicates P < 0.05 (one-way ANOVA, P < 0.05, post-hoc Tukey’s test). P-values: P = 0.042 for PAR-2; P = 0.028 for HO-1; P = 0.1704 for CALP; P = 0.6338 for

OCLN. Error bars represent the range of gene expression.

FCM Determination
No statistically significant differences were observed in FCM
content during the trial (P= 0.270) (repeated measures ANOVA,
P < 0.05). The concentration of FCMs at T0 was 0.31 ± 0.03
pg/mg feces, while at T1, the level was 0.63 ± 0.29 pg/mg feces
(Figure 5).

Determination of Total IgA in Stools
The IgA content in the canine fecal samples at the
different time points is reported in Figure 6. No
statistically significant differences among the groups
were observed (P = 0.065) (repeated measures
ANOVA, P < 0.05).
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FIGURE 5 | Fecal cortisol metabolites (FCMs) at the different time points. The

concentration of cortisol metabolites (mean ± SEM) in the fecal samples of the

dogs at rest before training (T0), after 60 days of training (T1), after 60 days of

hunting season (T2), and at 60 days of rest after hunting (T3). No statistically

significant differences (P = 0.2760) were observed (repeated measures

ANOVA, Tukey’s multiple comparison test, P < 0.05).

FIGURE 6 | Immunoglobulin A (IgA) concentrations in the stool at the different

time points. The IgA concentrations (mean ± SEM) in the fecal samples of

dogs at rest before training (T0), after 60 days of training (T1), after 60 days of

hunting season (T2), and at 60 days of rest after hunting (T3). No statistically

significant differences (P = 0.065) were observed (repeated measures ANOVA,

Tukey’s multiple comparison test, P < 0.05).

Determination of Total Antioxidant Activity
TAC showed a slight variation during the study, with a
statistically significant difference between T1 (19.82± 0.79, mean
± SD) (after 60 days of training) and the rest after the hunting
season, T3 (22.89 ± 0.89, mean ± SD) (60 days of rest after
hunting) (P = 0.0213) (repeated measures ANOVA, P < 0.05,
Figure 7).

FIGURE 7 | Total antioxidant capacity (TAC) in the fecal samples at the

different time points. The TAC value (mean ± SEM) in the fecal sample at rest

before training (T0, 22.74 ± 0.46), after 60 days of training (T1, 19.82 ± 0.79),

after 60 days of hunting season (T2, 22.16 ± 0.56), and at 60 days of rest

after hunting (T3, 22.89 ± 0.89). The TAC was significantly lower at T1 than at

T3 (P = 0.0213). *Indicates P < 0.05 (repeated measures ANOVA, Tukey’s

multiple comparison test, P < 0.05).

Metabolomics of the Feces
In order to explore the changes in the fecal metabolome of the
dogs involved in the study, the 1H-NMR spectra were registered.
Seventy-three molecules could be quantified. Seventeen
molecules, reported in Table 3, showed a concentration that
differed among the time points investigated.

To observe the overall trends driving the changes that these
molecules underwent, their concentrations were used as a basis
for an rPCA model, as depicted in Figure 8. Along PC1 of
its score plot (Figure 8A), representing as much as 62.7%
of the entire sample’s variability explained by the PCA, the
metabolomes of the dogs at T0 and T1 were characterized
by the highest and the lowest scores, respectively, while the
fecal metabolomes of the dogs at T2 and T3 appeared in
intermediate positions. Specifically, the samples at T0, T1, and
T2 appeared to be significantly separated from one other,
while the metabolome at T3 was not distinguishable from
that at T1 or T2. Figure 8C is a pictorial representation
that highlights how all the molecules that have changed
significantly over time tended to have the lowest concentrations
at T0. The molecules mainly responsible for grouping the
samples in this respect were proline, galacturonate and formate,
1,3-dihydroxyacetone, uridine, malate, 3-hydroxyphenylacetate,
methylamine, and fucose.

The Structure and the Variations of the Gut
Microbiota of Hunting Dogs as Related to
Physical Activity
The 16S rRNA gene-based next-generation sequencing yielded
a total of 1,390,231 high-quality reads, with an average of
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TABLE 3 | Temporal dynamics of the fecal metabolome of hunting dogs following physical activity.

T0 T1 T2 T3 P-value

Formate 4.95 × 10−5 ± 1.47 × 10−4 b 2.32 × 10−4 ± 5.96 × 10−5 a 2.37 × 10−4 ± 4.25 × 10−5 a 2.82 × 10−4 ± 1.76 × 10−4 a 6.72E-04

Uridine 1.85 × 10−4 ± 8.83 × 10−5 b 3.65 × 10−4 ± 1.14 × 10−4 a 3.89 × 10−4 ± 1.30 × 10−4 a 3.98 × 10−4 ± 1.71 × 10−4 a 3.89E-04

3-Hydroxyphenylacetate 2.63 × 10−4 ± 4.25 × 10−4 b 1.69 × 10−3 ± 9.38 × 10−4 a 1.71 × 10−3 ± 8.45 × 10−4 a 1.26 × 10−3 ± 7.45 × 10−4 ab 1.13E-05

Galactose 3.02 × 10−5 ± 9.33 × 10−5 c 5.16 × 10−4 ± 3.48 × 10−4 b 2.78 × 10−4 ± 1.07 × 10−4 a 3.39 × 10−4 ± 2.84 × 10−4 ab 4.16E-06

Arabinose 8.57 × 10−4 ± 4.92 × 10−4 b 2.99 × 10−3 ± 1.16 × 10−3 a 2.50 × 10−3 ± 8.47 × 10−4 a 2.05 × 10−3 ± 1.11 × 10−3 a 1.13E-05

Fucose 4.52 × 10−5 ± 2.02 × 10−4 b 5.88 × 10−4 ± 2.30 × 10−4 a 4.72 × 10−4 ± 3.19 × 10−4 a 4.36 × 10−4 ± 1.89 × 10−4 a 6.88E-05

1,3-Dihydroxyacetone 1.23 × 10−5 ± 2.44 × 10−5 b 1.39 × 10−4 ± 1.24 × 10−4 a 9.51 × 10−5 ± 7.63 × 10−5 a 9.42 × 10−5 ± 8.98 × 10−5 a 3.35E-04

Galacturonate 6.51 × 10−5 ± 9.02 × 10−5 c 1.94 × 10−4 ± 8.84 × 10−5 b 1.08 × 10−4 ± 6.96 × 10−5 abc 1.35 × 10−4 ± 5.67 × 10−5 a 1.30E-05

Malate 7.92 × 10−4 ± 6.07 × 10−4 b 1.83 × 10−3 ± 9.29 × 10−4 a 1.46 × 10−3 ± 1.01 × 10−3 ab 2.32 × 10−3 ± 1.93 × 10−3 a 3.48E-02

Threonine 8.07 × 10−4 ± 5.81 × 10−4 b 2.14 × 10−3 ± 6.66 × 10−4 a 1.91 × 10−3 ± 3.42 × 10−4 a 1.99 × 10−3 ± 5.16 × 10−4 a 1.17E-03

Glycine 2.07 × 10−3 ± 4.68 × 10−4 b 4.82 × 10−3 ± 4.85 × 10−3 ab 2.80 × 10−3 ± 7.04 × 10−4 ab 3.33 × 10−3 ± 9.62 × 10−4 a 1.70E-03

Methanol 2.37 × 10−4 ± 2.06 × 10−4 b 6.02 × 10−4 ± 2.77 × 10−4 a 4.48 × 10−4 ± 1.29 × 10−4 ab 4.98 × 10−4 ± 2.82 × 10−4 ab 2.02E-02

Proline 2.39 × 10−4 ± 1.31 × 10−4 b 6.64 × 10−4 ± 1.49 × 10−4 a 6.58 × 10−4 ± 3.27 × 10−4 ab 6.57 × 10−4 ± 1.36 × 10−4 a 2.10E-05

Trimethylamine (TMA) 3.99 × 10−4 ± 2.36 × 10−4 ab 2.65 × 10−4 ± 1.44 × 10−4 b 4.04 × 10−4 ± 1.27 × 10−4 a 4.44 × 10−4 ± 3.00 × 10−4 ab 4.53E-02

Homocystine 3.17 × 10−4 ± 5.05 × 10−4 b 2.42 × 10−3 ± 1.56 × 10−3 a 2.17 × 10−3 ± 1.41 × 10−3 a 1.52 × 10−3 ± 8.90 × 10−4 a 6.01E-05

Methylamine 1.84 × 10−4 ± 8.64 × 10−5 b 4.20 × 10−4 ± 2.34 × 10−4 ab 3.81 × 10−4 ± 1.08 × 10−4 a 3.02 × 10−4 ± 1.21 × 10−4 b 1.13E-03

Valine 1.80 × 10−3 ± 7.53 × 10−4 b 2.51 × 10−3 ± 8.29 × 10−4 ab 2.66 × 10−3 ± 5.34 × 10−4 ab 2.85 × 10−3 ± 9.57 × 10−4 a 4.42E-02

Concentration (mmol/g, mean ± SD) of the molecules significantly differed among groups (Repeated Measure ANOVA, P < 0.05).

*For each molecule, different superscript letters identify significant differences among the groups (P < 0.05). For each molecule P value was reported.

FIGURE 8 | Diversity of the fecal metabolome in hunting dogs. The robust principal component analysis (rPCA) model built on the space constituted by the molecules

listed in Table 3, the concentration of which at T0 was subtracted from the other time points. In the score plot (A), the empty circles highlight the medians of the

samples collected at each time point. The position of the samples along PC1 is summarized in the box plots in (B), where the different superscript letters identify the

significant differences among the groups (repeated measures ANOVA, P < 0.05). The loading plot (C) reports the correlation between the concentration of each

substance and its importance over PC1. The significant correlations (repeated measures ANOVA, P < 0.05) are highlighted with gray bars.
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39,720 ± 12,005 sequences per sample, binned in 1,460 ASVs at
99% similarity.

The PCoA of inter-sample variation based on weighted and
unweighted UniFrac distances showed significant separation
among the study groups (P < 0.03, permutation test with
pseudo-F ratios; P ≤ 0.02, ANOSIM) (Figure 9A). In particular,
according to both the adonis and the ANOSIM statistics applied
to the unweighted UniFrac-based ordination, the samples at T1
and T2 segregated from those at T0 (P < 0.005), while the
T3 samples occupied an intermediate position (Table S1). No
significant differences were found in alpha diversity, even though
Faith’s phylogenetic index showed an increasing trend over time
(Figure 9B).

In line with the literature available regarding the gut
microbiota of healthy dogs (77, 78), the fecal microbial profiles at
the baseline were dominated by the phylum Firmicutes (relative
abundance, mean± SEM, 69.6± 8.1%), with Bacteroidetes (12.0
± 5.2%), Actinobacteria (6.7 ± 3.1%), Proteobacteria (6.0 ±

2.4%), and Fusobacteria (5.5 ± 4.1%) as minor components.
Similar proportions were observed during training, hunting, and

the subsequent rest period, except for a reduction in the relative
abundance of Proteobacteria after training (P < 0.01, Wilcoxon
test). Clostridiaceae, Erysipelotrichaceae, and Lactobacillaceae
were the major families of the baseline microbiota (relative
abundance > 10%). Following training, an increase in the
relative abundance of Streptococcaceae and Enterococcaceae
was observed (P < 0.05). Such an increase persisted for
Streptococcaceae (P = 0.008) until the rest period after
hunting, while for Enterococcaceae, relative abundance values
comparable to the baseline were restored (Figure 10). In contrast,
diminished proportions were observed for Prevotellaceae and
Ruminococcaceae after training (P < 0.04).

Consistent with the above results, the main discriminant
genera were Streptococcus and Enterococcus, the relative
abundance of which was significantly greater at T1 than at T0 (P
< 0.04), and Prevotella, the proportions of which decreased after
training (P ≤ 0.03) (Figure 10).

Although not significant, a decreasing trend was observed
for Faecalibacterium and Bacteroides after physical activity (i.e.,
training and hunting) compared to both rest periods (i.e., before

FIGURE 9 | Diversity of the gut microbiome in hunting dogs. (A) Principal coordinate analysis (PCoA) plots showing the beta diversity of the gut microbial communities

of the study groups (rest before training, T0; after 60 days of training, T1; after 60 days of hunting season, T2; at 60 days of rest after hunting, T3), based on weighted

and unweighted UniFrac distances. A significant separation among groups was found (P < 0.03, permutation test with pseudo-F ratios; P ≤ 0.02, ANOSIM). (B) Box

plots showing alpha diversity, computed with Faith’s phylogenetic index (PD whole tree) and the number of observed amplicon sequence variants (ASVs).
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FIGURE 10 | Temporal dynamics of the gut microbiome in hunting dogs following physical activity. Left, pie charts representing the average values of family-level

relative abundances at each time point (rest before training, T0; after 60 days of training, T1; after 60 days of hunting season, T2; at 60 days of rest after hunting, T3).

Right, box plots showing the distribution of the relative abundances of significantly enriched or depleted bacterial genera over time. *P < 0.04; **P < 0.001 (Wilcoxon

test). For Bacteroides and Faecalibacterium, only a decreasing trend was observed.

the training and after the hunting season). At rest, the baseline
relative abundance of Enterococcus was restored, whereas the
proportions of Streptococcus remained higher than the baseline
(P = 0.008).

DISCUSSION

Inx this study, we evaluated the fluctuations of different stress
markers in fecal samples of hunting dogs during physical activity
and at rest. The main limitation for such studies lies within
the difficulty in standardizing the training protocol (wild boar
hunting) and the management of privately owned animals (diet,
housing, treatments, etc.). In order to try and overcome this
problem, we chose a group of dogs owned by the same person,
in this case, one of the animal technicians of the Veterinary
Department. He is indeed routinely involved in the husbandry
and care of animals for both clinical and experimental purposes,
and he was fully aware of the goals of the experiment and of the

potential biases imputable to variations in the management of
animals enrolled in such trials.

This choice has added a limiting factor to the study, which,
being exploratory, included a low number of dogs of different
breeds and ages, variables known to potentially influence the
results (79); nonetheless, the study design allowed for a high level
of standardization in terms of dogs’ management, making for
reliable results despite the relatively low sample size.

Typically, performance dogs are kept at 4–5/9 BCS due to the
great chance of body condition loss during endurance activity,
and the diet was calculated to support this condition. Weight loss

is known to be related with some of the parameters measured in
this research, for instance, microbiota (80), metabolomics profile

(81), and cortisol (82). The expected weight loss observed during
the trial has to be interpreted as a direct consequence of physical
activity and not of a caloric restriction, so its potential effects
on the measured parameters could be considered as a direct
consequence of the physical activity.
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In the model used in the present study, fecal cortisol,
a well-known marker of stress in dogs, did not show any
difference across the time points. In previous investigations,
increases in cortisol concentration after sustained exercise
had been observed in horses and humans, while the data
regarding dogs were contradictory. In fact, some papers have
reported increased levels of cortisol (83, 84), while others agreed
with the present study in reporting no significant changes
(85, 86). In particular, Pastore et al. (37) and Ando et al.
(39) reported that cortisol increased right after exercise but
returned to baseline levels shortly after, suggesting a mild
transient stress. Similarly, in the present study, cortisol showed
a transient non-significant increase during the first phase of
activity (60 days of training, T1) only. Moreover, all samples
were collected during a short-day period (autumn–winter),
avoiding the reported interference of photoperiod on the cortisol
concentrations (87).

Intestinal IgA secretion is considered to be an important
indicator of mucosal immunity. Similar to cortisol, the literature
regarding the effect of exercise on IgA secretion is contradictory,
reporting either an increase or a decrease in intestinal IgA in
mice (42, 88, 89). Based on the present data, training might not
influence IgA concentration, confirming that exercise does not
drastically alter canine intestinal immune homeostasis.

A previous paper indicated an increase in oxidative stress in
hunting dogs after exercise (43): in accordance with this paper,
the data in the present study also showed a significant and
transient reduction in TAC during T1 (60 days of training),
in relation to T3 (60 days of rest after hunting), suggesting
an increase in oxidative stress following the resumption of
physical activity.

In agreement with the human results, in the present study,
we were able to detect different biomarkers’ transcripts in dog
stool samples. Among the studied genes, PAR-2 and HO-1
were significantly altered after the hunting period. To date, the
relationship between exercise and increased HO-1 expression
has been well-documented in different tissue and animal models
(31–34). Such an increase is likely to restore HO-1 protein
expression levels after 60 days of training (T1), when oxidative
stress is high, as confirmed by the TAC data. As for PAR-
2, it is well-described in intestinal models of I/R injury that
the receptor is strongly activated by the tryptase released, for
the most part by the mast cell infiltrate, with a consequent
increase in paracellular permeability by means of the activation
of myosin light chain kinase (MLCK) and myosin phosphatase
(MP) (17, 90); once activated, the receptor is translocated
to the lysosomes and degraded (23, 91). In different animal
models regarding intestinal I/R injury, an increase in the
PAR-2 transcript has been observed (21–23), consistent with
the present data showing a slight but significant increase in
PAR-2 mRNA levels at the end of the hunting period (T2).
This similar trend in different models may be due to the
fact that during exercise, the blood flow is diverted from
the gut to the periphery, creating an I/R-like scenario (92)
with the potential consequent activation of PAR-2. It has been
reported that PAR-2 activation may directly affect cytoskeleton
contraction by triggering the phosphorylation of MLCK with

subsequent changes in TJ permeability, as demonstrated in
in vitro epithelial models (19, 20). However, the unchanged
expression level of OCLN suggests that the PAR-2 receptor
activation in our model is insufficient to induce damage at the
TJ level, and so we were unable to predict the impairment of
barrier permeability.

The lack of the detection of cytokine transcripts and the
absence of changes in CALPmRNA levels additionally reinforced
the authors’ assumptions, i.e., that physical exercise in the present
model could be considered mild and did not result in a strong
inflammatory GI response.

Nevertheless, metabolomics data indicate that some intestinal
disorder occurred. A two-step approach regarding the
metabolome of the feces, based on univariate/multivariate
analyses, allowed hypothesizing the overall trends that the
fecal molecule profiles underwent as a consequence of resting,
training, and hunting. The samples collected at T2, T3, and
T0 showed median scores along PC1 of −1.39, −0.12, and
3.69, respectively. From a metabolomic perspective, therefore,
the recovery of baseline conditions seemed to be linearly
related to time. The metabolomes of the dogs at rest before the
training (T0) were markedly different from all the other time
points. The greatest modifications from this long period of rest
were associated with training, while the subsequent activities
seemed to lead to a progressive return of the metabolome to
the baseline characteristics. This confirmed a metabolic shift
between rest and activity. Of the molecules leading to such a
circular trend, some, as expected, pertained to the biochemical
processes connected to energy (46). This was the case for malate,
which is part of the TCA cycle. Interestingly, of the sugars,
glucose showed no significant differences, while fucose and
galacturonate did. Of the molecules that were, for the most
part, modified in the present study, 1,3-dihydroxyacetone,
formate, and uridine should be mentioned. In a previous
experiment (93), these three molecules were found to be
altered in mouse feces after the administration of probiotics,
probably as a result of the modification of the intestinal
microbiota. In particular, the increase in 1,3-dihydroxyacetone,
an intermediate in fructose metabolism, was found to lead
to an increase in intestinal permeability, which is a known
consequence of prolonged strenuous exercise in both dogs (94)
and humans (7).

Consistent with the abovementioned assumptions, the gut
microbiota structure also underwent a rearrangement during
training and tended to approach the initial configuration in the
rest period following the hunt. In line with the literature available
regarding exercise and gut microbiota, this rearrangement was
characterized by: (1) a tendency toward increased biodiversity
(95); (2) decreased relative abundance of widely prevalent
commensals (i.e., Prevotella and Ruminococcaceae members)
(96–98); and (3) increased proportions of subdominant taxa,
including Streptococcus, Enterococcus, and Slackia (96, 99). The
majority of these changes were transient, which additionally
reinforced the hypothesis of a reversible non-drastic alteration
of the intestinal ecosystem. However, this was not true for
Streptococcus, which, similarly to Enterococcus, includes species
known to act as pathobionts, i.e., capable of pathogenic
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expansion under unfavorable conditions, compromising and
eventually translocating across the epithelial barrier, with
potentially severe implications for the host health (100). It
is also worth noting that Streptococcus spp. are capable of
proteolytically interacting with PARs (101) and have previously
been positively correlated with uridine levels, probably by
means of the activity of cytidine deaminase (102), which
suggests a major role for this bacterial genus in exercise
response. On the other hand, negative correlations have
so far been found between uridine as well as DHA and
Bacteroides (103), the relative abundance of which tended
to be gradually reduced over the course of activity and no
longer restored. Although transient and non-significant, the
depletion of Faecalibacterium, a well-known butyrate producer
with multiple health-promoting activities (104), constitutes
another red flag for possible GI (and systemic) complications
and should be monitored in cases of intense and prolonged
physical activity.

CONCLUSION

The aim of the present explorative study was to evaluate the
presence of a GI derangement in hunting dogs through a non-
invasive sampling as a consequence of a period of intense exercise
in comparison with samples collected at rest.

We evaluated a number of potential stress markers in canine
fecal samples. In particular, FCMs, IgA levels, and the TAC
were measured. Moreover, the expression of selected genes was
investigated, and microbiota and metabolomics analyses were
carried out. Exercise induced a variation in gene expression,
a reduction in TAC, and a modulation of the microbiome
and metabolome profiles. Despite the intense physical activity
required for hunting wild boar, the animals did not seem
to show signs of particularly high stress under conditions of
programmed training; all the data were consistent with a limited
degree of alteration of intestinal homeostasis. Despite the limited
statistical power of the study related to the relatively low number
of subjects enrolled, the present findings are encouraging for
the development of a non-invasive monitoring method for

detecting the effect of exercise in dogs using a multidisciplinary
integrated approach.
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