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Sea Star Wasting Syndrome (SSWS) is one of the largest marine wildlife die-offs

ever recorded, killing millions of sea stars from more than 20 Asteroid species from

Alaska to Mexico from 2013 to 2015 from yet undetermined cause(s). Coelomic fluid

surrounds the sea star’s organs, playing critical roles in numerous systemic processes,

including nutrient transportation and immune functions. Coelomocytes, which are cellular

components of coelomic fluid and considered functionally equivalent to vertebrate

leukocytes, are responsible for innate cell-mediated immunity. The objectives of this

study were to (1) evaluate changes in coelomic fluid chemistry, coelomocyte counts,

and cytology from ochre sea stars (Pisaster ochraceus) (n = 55) with clinical signs

consistent with SSWS at varying intensity (SSWS score 1: n = 4, score 2: n = 2,

score 3: n = 3, score 4: n = 18, score 5: n = 26) in comparison to coelomic fluid

from clinically normal sea stars (n = 26) and to (2) correlate SSWS score with cellular

and biochemical analytes. SSWS-affected sea stars had wider ranges of all electrolytes,

except calcium; statistically significantly higher chloride, osmolality, and total protein;

lower calcium; and higher coelomocyte counts when compared to clinically normal sea

stars maintained under identical environmental conditions. Free and/or phagocytized

bacteria were noted in 29% (16 of 55) coelomic fluid samples from SSWS-affected

sea stars but were absent in clinically normal sea stars. SSWS score correlated

significantly with increasing chloride concentration, osmolality, and coelomocyte counts.

These chemistry and cytological findings in coelomic fluid of SSWS-affected sea stars

provide insight into the pathophysiology of SSWS as these results suggest osmo- and

calcium dysregulation, coelomocyte responses, and presumptive opportunistic bacterial
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infection in SSWS-affected sea stars. This information provides potential future

research applications for the development of treatment strategies for sea stars in

managed care and for understanding the complexity of various biochemical and cellular

pathophysiological mechanisms involved in sea star wasting.

Keywords: chemistry, cytology, echinoderm disease, invertebrate, ochre sea star, osmolality

INTRODUCTION

Sea star wasting or mass stranding events have been reported
since the 1960s along the North American Pacific (1, 2) and
Atlantic Coasts (3–6) as well as the Mediterranean Sea (7),
Atlantic coast of Europe (8), and East China Sea (9). These
historical wasting events were limited in geographic scope and
impacted only a few species. Sea Star Wasting Syndrome (SSWS)
is one of the largest recorded marine wildlife die-offs, resulting
in death of millions of sea stars from more than 20 species
from 2013 until 2015 (10). Sea Star Wasting Syndrome was first
noted off the coast of the Pacific Northwest in mid-2013 and
later impacted sea stars from Southern Alaska to Baja California,
Mexico (11, 12). The ochre sea star (Pisaster ochraceus), the
keystone species of the rocky intertidal zone (13), was among the
most heavily affected species. The resulting collapse of sea star
populations caused a trophic cascade with large scale, complex
effects on marine invertebrate population dynamics along the
Pacific Coast (14).

Sea Star Wasting Syndrome impacted sea stars begin to show
behavioral changes of abnormally curled rays and inability to
grasp substrate, progressing to exhibit white epidermal lesions,
ray autotomy, loss of turgor (deflation), and loss of structural
integrity leading to disintegration and eventual death (11, 12).
The progression of clinical observations can be rapid, typically
leading to death within days (15). Histologically, wasting sea
stars consistently exhibit epidermal degeneration, necrosis, and
ulceration with dermal separation, necrosis, and inflammation
(16). The etiology for these histological changes has not been
determined to date.

There is evidence that marine echinoderm mass mortality
events may be associated with pathogens and/or environmental
stressors and it is presumed that various underlying etiologies or
inciting causes may result in similar clinical signs characteristic
for SSWS (10). For this reason, we have chosen to use the
terminology Sea Star Wasting Syndrome rather than Sea Star
Wasting Disease as it was initially referred to in previous
publications by various authors (11, 12). Due to limited types of
tissue reactions to pathogens and other stressors in echinoderms,
various disease processes reportedly result in similar clinical and
histopathological manifestations (16). The ultimate cause(s) of
the 2013–2015 SSWS event as well as most historical and more
recent observations of sea star wasting in various geographical
areas are still unknown. No infectious causes were definitively
linked to SSWS, although a densovirus and a novel circular
DNA virus were isolated from Pycnopodia helianthoides (11) and
Asterias forbesi (17), respectively. Associations between increased
ocean temperature and clinical signs of wasting have been

identified for P. helianthoides (18), P. ochraceus (19, 20), and
Astropecten johnstoni (7). In contrast to those reports, wasting
of P. ochraceus along the Oregon coast was linked to decreased
temperature (12), but no clear association between temperature
and SSWS was found based on an analysis of 20 years of data
from 88 geographical sites (15).

Coelomic fluid fills the coelomic cavity and surrounds the
internal organs of asteroid sea stars, so it can provide information
on systemic biochemical and cellular processes and potential
response mechanisms to disease. Coelomocytes, the invertebrate
counterpart to vertebrate leukocytes, are an integral part of
the sea star immune system and circulate in coelomic fluid.
They are responsible for cellular innate immune defense through
interactions with the complement system, cytokines, lectins,
antimicrobial peptides, proteins, clotting factors, and protein
mediators that facilitate cellular adhesion (21–23). Sea stars are
osmoconformers when placed in hypertonic and hypotonic sea
water, equilibrating inorganic ions within 24 h (24). Sea stars
are isoionic with seawater and appear capable of minimally
maintaining ionic homeostasis for potassium and calcium (25–
27). They are able to regulate their coelomic fluid volume through
unknown mechanisms (28, 29).

While coelomocyte concentrations (30–32) and chemistry
data (24, 32) have been published for clinically normal sea stars,
no comparisons between SSWS affected and clinically normal
sea stars have been published to date. The objectives of this
study were to (1) evaluate changes in coelomic fluid chemistry,
coelomocyte counts, and cytology from ochre sea stars (n = 55)
with clinical signs consistent with SSWS at varying intensity score
on a grading scale of 1–5 in comparison to coelomic fluid from
clinically normal sea stars (n = 26) and to (2) correlate SSWS
score with cellular and biochemical analytes.

MATERIALS AND METHODS

Coast-inhabiting ochre sea stars were collected from Puget Sound
ranging from several days to several weeks prior to this study
during spring 2015. Sea stars were categorized as early-adult
if their arm radius was 8–10 cm and late-adult if their arm
radius was >10 cm. The sea stars were clinically normal at
time of collection and the entire cohort of these collected sea
stars began to show signs consistent with SSWS once under
managed care. This was expected and considered a progression of
disease in these animals collected from areas knowingly affected
by this syndrome. The occurrence and progression of clinical
signs observed for these sea stars was consistent with those
concurrently reported for free-ranging sea stars (20). The sea
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stars were adults of unknown age at time of coelomic fluid
sampling when showing clinical evidence of SSWS in June
and July 2015. The sea stars were maintained in several well-
established, natural sea water flow-through quarantine tanks with
an average temperature 10◦C (50◦F) and average pH 7.8 and
species-appropriate husbandry (33) at the Seattle Aquarium, an
Association of Zoo and Aquariums-accredited facility. Water
quality parameters, including salinity, were measured at least
every 7 days. Clinically normal sea stars (n = 26) that were
collected several years before SSWS in the area and well-
established at the aquarium were maintained in a similar manner
but in display tanks separate from the sea stars with clinical
evidence of wasting (32).

Sea stars were scored at the time of coelomic fluid sampling
on a SSWS grading scale of 1–5 adapted from a scoring system
proposed by Bates et al. (19) as briefly outlined in the following
and Table 1. Grade 0 sea stars were clinically normal on visual
and physical examination and displayed appropriate activity
and feeding behaviors. Grade 1 sea stars had mild disease
without white lesions. These sea stars often displayed central
disc flattening, lack of adherence to substrate, mild swelling of
arms, and abnormal wrapping of arms at rest. Grade 2 sea stars
had mild disease with small white lesions. These lesions were
restricted to one arm or only the central disc. Grade 3 sea stars
had moderate disease with white lesions found on one arm plus
the central disc or two arms or an arm/disc interface. Grade 4
sea stars had severe disease. These sea stars had lesions found on
three or more arms or two arms plus central disc or arm/disc
interface plus arm or central disc or more than one arm/disc
interface lesion. Grade 5 sea stars had severe disease with one
or more arms detached from the central disc or the sea star was
found unresponsive, unattached to the substrate and with no tube
foot movement.

Native coelomic fluid was collected from the perivisceral
coelomic cavity using a 23-ga. 2.5 cm needle and syringe ∼1 cm
from the distal tip of a ray on the aboral surface of the sea star. A
total volume of at least 1.0ml was collected per individual. Prior
to performing necropsies of deceased sea stars (SSWS score 5),

TABLE 1 | Clinical observations based on a 1–5 grading scale in sea stars

affected by Sea Star Wasting Syndrome, adapted from Bates et al. (19).

Score Description

0 Clinically normal

1 Mild disease, no white lesions; often central disc flattening, lack of

adherence to substrate, mild swelling of arms, and abnormal wrapping

of arms at rest

2 Mild disease with small white lesions restricted to one arm or only the

central disc

3 Moderate disease with white lesions on one arm plus the central disc

OR two arms OR an arm/disc interface

4 Severe disease; white lesions on three or more arms OR two arms plus

central disc OR arm/disc interface plus arm or central disc OR more

than one arm/disc interface lesion

5 Severe disease; one or more arms detached from the central disc OR

non-responsive, detached from substrate and lacking tube foot

movement

all collectable coelomic fluid was aspirated. Coelomic fluid was
transferred into aliquots with and without additives as outlined
in the following.

Samples of 200 µl native, undiluted coelomic fluid were
transferred into lithium heparin microtubes and analyzed for
magnesium, sodium, potassium, chloride, calcium, and total
protein (Ortho Vitros 250 analyzer, Ortho Clinical Diagnostics,
Rochester, New York 14626 USA). Osmolality was measured in
coelomic fluid aliquots without any additives or anticoagulants
using a freezing point depression osmometer (Advanced
Instruments Osmometer, model 3320, Norwood, MA) at Cornell
University’s Animal Health Diagnostic Center.

After coelomic fluid collection, direct smears were
immediately prepared for dry mount cytology using native
coelomic fluid. Coelomic fluid was placed in both lithium
heparin and ethylenediaminetetraacetic acid (EDTA) micro
tubes (Sarstedt Inc., Princeton, NJ). Formalin preparations of 50
µl coelomic fluid in 200 µl 10% neutral buffered formalin and 50
µl EDTA coelomic fluid in 200 µl 10% neutral buffered formalin
were prepared for coelomocyte counts for comparison (34).
Sediment smears were prepared after centrifugation of 200 µl of
coelomic fluid at 605 relative centrifugal force (RCF) for 10min,
drawing off the supernatant, re-suspending the pellet in 50 µl
supernatant, and preparation of smears from this concentrated
cellular material for dry mount cytology. Direct and sediment
dry mount smears were air-dried and stained with Wright-
Giemsa (Harleco R©, EMD Millipore, Billerica, Massachusetts,
USA) for cytological evaluation by one investigator who was
blinded to animal ID and SSWS score. Manual coelomocyte
counts were performed on native (non-EDTA preserved)
and EDTA-anticoagulated formalin fixed preparations as
described for lobster hemolymph and fish blood in due
consideration of the dilution factor resulting from formalin
dilution (34).

Statistical analyses were performed in the programming
language Python (Version 3.7.3) using the numerical library
SciPy (Version 1.3.0). The full source code is freely available
for review at https://bit.ly/2OmrMt1. To determine if there was
a statistically significant difference in salinity between different
systems and sampling dates, a Kruskal Wallis H-test (one-way
ANOVA on ranks) was performed as this data did not meet
the assumption of normality. The assumption of normality was
only met in clinically normal sea stars for magnesium, sodium,
potassium, chloride, and calcium (32) and for sodium, chloride
and calcium in SSWS-affected sea stars per D’Agostino and
Pearson’s test. To determine if there was a statistically significant
difference (P≤ 0.05) between the distributions of tested analytes,
osmolality, and coelomocyte counts from SSWS-affected sea stars
and those from clinically normal sea stars, a Welch’s t-test was
selected for analytes that met the assumption of normality and
a non-parametric Kruskal-Wallis H-test for those that did not.
A paired t-test was used to evaluate if there was a difference in
cell counts between formalin preparations with EDTA and those
with native coelomic fluid. To evaluate the correlation between
SSWS-score and analytes, a Spearman’s rank-order correlation
coefficient was computed and its statistical significance was
determined using the t-distribution.
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RESULTS

Coelomic fluid was collected from 55 SSWS-affected early-adult
(n = 22) and late-adult (n = 33) sea stars. The following SSWS
scores were identified: score 1: n = 4, score 2: n = 2, score
3: n = 3, score 4: n = 18, score 5: n = 26. The distribution
of sea stars among SSWS scores represented the rapid disease
progression (typically within several days) and severity observed
in the collection.

Coelomic Fluid Chemistry
Biochemical analysis was performed of coelomic fluid from 41
and of osmolality from 8 SSWS-affected sea stars (Figure 1).
Diseased sea stars demonstrated wider ranges of all chemistry
data than clinically normal sea stars, except for calcium.
SSWS-affected sea stars had wider ranges of electrolytes, with
statistically significantly higher chloride (P = 1.3 × 10−7). Total
protein (P = 0.03) was significantly higher and calcium (P =

0.048) significantly lower when compared to clinically normal sea
stars. SSWS-affected sea stars (n = 8) had higher osmolality (P
= 3.4 × 10−3) than clinically normal sea stars (n = 6). SSWS-
affected sea star coelomic fluid chemistry and coelomocyte count
data are presented in Table 2.

Coelomocyte Counts
Coelomocyte counts of SSWS-affected sea stars were highly
variable, ranged from 0 to 60,750/µl (median: 900; mean: 6,126),
and had significantly higher coelomocyte counts (P = 1.5 ×

10−7) compared to clinically normal sea stars (median: 0; mean:
13; Table 2). Both formalin preparations (with and without
EDTA) were consistent with each other across all samples for cell
counts (P = 0.36). Several (n = 15, 27%) SSWS-affected sea stars
had 0/µl coelomocyte counts; their SSWS scores were score 1: n
= 3; score 2: n= 1; score 3: n= 2; score 4: n= 7; score 5: n= 2.

Cytological Evaluation
Cytological evaluation was performed on all 55 SSWS-affected
sea stars. There was consistently one coelomocyte type present
with morphology of the mononuclear phagocyte morphotype
based on previous descriptions of coelomocyte morphology
(23, 31). The coelomocytes were vacuolated in 10 samples
(18%) and/or had phagocytized pink or basophilic material
of undetermined origin in 32 samples (58%). Free (n = 3),
phagocytized (n = 5), or both free and phagocytized (n = 8)
bacteria were present in 16 samples (29%). The bacteria were
predominantly plump or bipolar bacilli (n = 14), coccobacilli
with concurrent bacilli (n = 1), or coccobacilli with concurrent
bacilli and diplococci (n = 1). Unknown extracellular basophilic
material was noted in 20 samples (36%) and material suggestive
of proteinaceous origin or nucleoproteinaceous necrotic debris in
36 samples (65%). There were frequently lysed and disintegrated
cells in 35 samples (64%). Crystals suggestive of cholesterol
crystals were seen in 9 samples (16%), crystals suggestive of salt
origin in 17 samples (31%), and mineral material in 7 samples
(13%). Representative images of cytological findings are included
in Figure 2.

Clinically normal sea stars reportedly have the same
predominant coelomocyte morphotype suggestive of
the mononuclear phagocyte morphotype, extracellular
crystals suggestive of salt origin, and no bacteria or other
microorganisms (32).

Sea Star Wasting Syndrome Score
SSWS score was significantly correlated with higher chloride
concentration (rho= 0.63, P = 2.44× 10−8), coelomocytes (rho
= 0.67, P = 1.54 × 10−11), and osmolality (rho = 0.85, P = 2.54
× 10−4). The association between SSWS score and analytes is
included in Figure 3.

Tank Water Salinity
Salinity was maintained between 29 and 32 ppt during the
sampling period. There was no significant difference in salinity
between different systems and sampling dates (P = 0.12),
including comparisons of tank systems of SSWS-affected seas
stars and those holding clinically normal sea stars.

DISCUSSION

This is the first report of comprehensive coelomic fluid
analysis in SSWS-affected sea stars showing evidence of
biochemical and cellular alterations pointing toward potential
underlying pathophysiological processes associated with
the syndrome.

Dysregulation of Critical Biochemical
Regulatory Processes Are Presumptively
Involved in Sea Star Wasting Syndrome
Pathophysiology
The significant increases in chloride, total protein, and
osmolality suggest osmodysregulation. The increase in coelomic
fluid osmolality may indicate that SSWS-affected sea stars
are actively concentrating one or more active osmolytes;
additional considerations include that energy-dependent cross-
membranal transport mechanisms and/or pumps may be
affected by wasting, or that protein may leak into the coelom
due to cellular apoptosis and/or necrosis. If sea stars are
truly becoming hyperosmotic to seawater by a yet unknown
mechanism or cumulative mechanisms, this could explain
why relatively hypoosmotic seawater could penetrate tissues
and cause biochemical homoeostatic imbalances as seen in
SSWS. Histopathology of sea stars with clinical signs consistent
with SSWS showed extensive necrosis, epidermal ulceration,
and dermal separation (16). In a study with ochre sea
stars exposed to changes in salinity, coelomic fluid chloride
concentrations approximated those of seawater, thus suggesting
sea stars may not actively regulate chloride homeostasis (27).
Although the sample size tested for osmolality was limited,
our results provide evidence for osmodysregulation in sea
stars affected by SSWS and an incentive for further study of
osmoregulatory pathways.

Season and reproductive cycle stage have been associated
with effects on the ionic regulation in Asterias (25, 35, 36).
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FIGURE 1 | Box plots comparing coelomic fluid chemistry data (A–F), osmolality (G), and coelomocyte counts (H) of Pisaster ochraceus showing clinical signs

consistent with Sea Star Wasting Syndrome compared to clinically normal P. ochraceus. *Denotes statistical significance (P < 0.05).
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TABLE 2 | Coelomic fluid chemistry data and coelomocyte counts of Pisaster ochraceus showing clinical signs consistent with Sea Star Wasting Syndrome.

Analyte Units n Mean SD Median Range 90% CI*

Magnesium mmol/L 41 46 7.5 48 16–54 43–53

Sodium mmol/L 41 412 15.8 407 381–463 396–442

Potassium mmol/L 41 8.8 1.9 8.2 7.8–19.1 8.0–9.0

Chloride mmol/L 39 473 25.7 479 427–553 416–461

Calcium mmol/L 41 8.7 1.0 8.9 4.2–10.3 7.4–13.7

Total Protein g/L 38 21 69.6 20 <10–50 Range: <10–20

Coelomocytes #/µl 55 6126 12393.1 900 0–60,750 Range: 0–180

Osmolality mOsm/kgH2O 8 875 4.3 875 870–882 NA

CI, Confidence Interval for clinically normal sea stars*; NA, not available.
*Wahltinez et al. (32). #Number of cells.

FIGURE 2 | Image composite of coelomic fluid sediment smear preparations from ochre sea stars (Pisaster ochraceus) affected by Sea Star Wasting Syndrome. (A)

Presumptive salt crystal (black arrowhead) and mononuclear phagocyte morphotype cells showing variable vacuolation. (B) Presumptive cholesterol crystals (one

example shown by white arrowhead) and two presumptive salt crystals (black arrowheads). (C) Extracellular and phagocytized bacilli (white arrowheads) in close

association with mononuclear phagocyte morphotype cells. (D) Mononuclear phagocyte morphotype cells with variable amounts of phagocytized material of

undetermined origin. (E,F) Two mononuclear phagocyte morphotype cells with phagocytized small bacilli (white arrowheads). Scale bars = 10µm.
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FIGURE 3 | Correlation plots comparing coelomic fluid chemistry data (A–F), osmolality (G), and coelomocyte counts (H) of Pisaster ochraceus showing clinical signs

consistent with Sea Star Wasting Syndrome (SSWS) compared with clinically normal P. ochraceus grouped by SSWS Score (0–5). *Denotes statistical significance

(P < 0.05).
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Season is unlikely to have contributed to the differences described
in this study as coelomic fluid from SSWS and clinically
normal sea stars was sampled in the boreal summer. Sea stars
with clinical signs consistent with SSWS were often noted
to spawn in later stages of wasting. Spawning may occur
as a terminal behavior in response to electrolyte changes or
other stressors.

Mutable collagenous tissue (MCT) is unique to echinoderms
and capable of rapid, neuronal-mediated changes in tensile
strength that are not due to muscle fibers (37–39). In
sea stars, MCT has been found in the body wall (40,
41), in ligaments at spine joints, and in the stem of
tube feet (42). The effect of ion concentrations on MCT
variable tensility has been studied extensively on in-vitro
preparations, primarily of holothurian dermis. Samples of
MCT placed in solutions with higher calcium concentrations
display stiffening, while MCT samples placed in solutions
with decreased calcium concentrations result in softening (43–
48). The SSWS-affected sea stars with significantly lower
coelomic fluid calcium concentrations all displayed softening
of the body wall and lesions of the integument, suggesting
MCT involvement in SSWS progression. However, clinically
normal sea stars had wider ranges of coelomic fluid calcium
concentrations, including some calcium values lower than the
SSWS-affected sea stars, and all clinically normal sea stars
displayed normal MCT stiffness. Given the altered calcium
regulation in SSWS-affected sea stars in this study, further
studies could investigate the effect of ion concentrations on
MCT in-vivo, how ion channels impact MCT mutability and
integrity, and mechanisms for changes to ion concentrations in
coelomic fluid.

Sea Star Wasting Syndrome-Affected Sea
Stars Show Active Cellular Immune
Responses
The observed higher coelomocyte counts in SSWS sea stars
suggest active cellular immune responses similar to studies that
have demonstrated that environmental stressors and disease can
result in increased circulating coelomocytes in echinoderms (30,
49, 50). The lack of differences in coelomocyte counts in EDTA-
and heparin-preserved samples indicate that either anticoagulant
can be used. At this time, it is unknown whether the use of
anticoagulants is necessary for coelomic fluid analysis and if
native coelomic fluid can be used for coelomocyte counts. Further
study is warranted.

Several (n = 15, 27%) SSWS-affected sea stars had
coelomocyte counts of 0/µl which was inconsistent with
increased coelomocyte numbers observed in the majority
of SSWS-affected sea stars. This may represent an artificial
decrease due to cellular clumping or aggregation (51);
however, cell clumping was only noted in 12 samples with
counts above 810/µl, none of which had a zero coelomocyte
count. In addition, the observed low coelomocyte counts in
SSWS-affected sea stars may have resulted from individual
variation in disease progression or an individual’s inability
to mount an effective immune response due to external

factors resulting in immunocompromise. Previous studies have
shown that temperature, salinity, and/or parasitism impact
coelomocyte response and sea star immunity, although none
of these factors were noted in the sea stars in the current
study (30).

The free and phagocytized bacteria presumptively represent
secondary infection due to disturbance(s) in body wall integrity
as they were not identified in the majority of SSWS coelomic
fluid samples, but in none from unaffected sea stars. Culture
of coelomic fluid was beyond the scope of this study and not
attempted. The basophilic and proteinaceous material as well
as the presumptive cholesterol crystals noted on cytology are
probably due to apoptosis or necrosis as described by meta-
transcriptomic analysis (52) and histopathology (16) in SSWS-
affected sea stars.

Sea Star Wasting Syndrome Severity
Correlates With Biochemical and Cellular
Changes
The significant correlations between SSWS score with chloride,
osmolality, and coelomocyte counts are consistent with the
direct comparison of SSWS-affected and clinically normal sea
stars. However, due to the low sample size for osmolality
those results should be interpreted cautiously. The SSWS
score appears to have a predictive ability with chloride,
osmolality, and coelomocyte counts and reflect severity of
clinical disease.

CONCLUSIONS

The results of this study provide guidance for future studies
of sea star osmo- and calcium regulatory pathways and
cellular immune functions. This study provides information
on chemical and basic cellular components in coelomic fluid
of SSWS- affected sea stars, furthering our understanding
of the pathophysiology of this devastating syndrome.
Evaluation of calcium, chloride, total protein, osmolality,
and coelomocyte counts in individuals or a cohort of sea
stars, in comparison with the biochemical composition of
their surrounding water, may provide an earlier diagnosis of
onset of disease and advanced disease states. By understanding
that osmoregulation is impacted by SSWS, therapeutic targets
and interventions may be created to stop or reverse disease
progression in individuals under managed care. The evidence
of an opportunistic bacterial infection suggests why there are
anecdotal reports of SSWS-affected sea stars responding to
antimicrobial therapy but failing to respond in other cases.
Treating these secondary infections may allow individual
sea stars to more effectively compensate for the primary
problem. Enrofloxacin has been shown to reach therapeutic
levels via intracoelomic injection (53) and may be useful
depending on antimicrobial sensitivity testing. Furthermore,
the application of the information provided herein provide
insight into potential complex pathophysiological mechanisms
of SSWS and lays the groundwork for future research strategies
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relevant to the conservation of sea stars as keystone species in
marine ecosystems.
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