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Early introduction of a nutritional substrate is a promising biomimetic strategy for

controlling the implantation of the microbiota and preserving the health of young animals.

In this study, we provided experimental solid substrate in a gel form to stimulate

suckling rabbits’ intake and to investigate its effects on microbiota implantation and

colonization. All the rabbits had access to solid feed outside the nest as of 15 days

of age. Except for the control group, rabbits were offered starter feed gels inside the

nests from 3 to 18 days of age. These gels were either free of additives (AF_GEL) or

contained 4% of fructo-oligosaccharides (FOS_GEL) or 4% of mannan-oligosaccharides

and β-glucans mixtures (MOS_GEL). The cecal content of 160 rabbits was sampled

at 18, 29, 38, and 57 days of age and analyzed using 16S rRNA gene sequencing.

Pups consumed an average of 3.95 ± 1.07 g of starter feed gel with a higher intake

when it was supplemented with fructo-oligosaccharides (+1.2 g; P < 0.05). Starter

feed gel consumption increased the ensuing intake of pellets (+17g from 15 to 21

days; P < 0.05). Alpha-diversity indexes were similar between groups and prebiotic

supplementation did not induce a clear shift in microbiota pattern. Conversely, when

considering rabbits that consumed more starter feed, the highest proportions of

bacteria with plant-degrading abilities, such as species from the Lachnospiraceae and

Ruminococcaceae families, were observed at 18 days of age. However, fermentative

activities were not affected by starter feed intake at 29, 38, and 57 days of age. By

providing comprehensive results on the regulation of microbial community structure at

the onset of solid feed intake, this research paves the way for further studies on digestive

ecosystem maturation.
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INTRODUCTION

Young mammals are prone to enteritis around weaning (e.g., pigs, ruminants, rabbits, etc.), which
represents a stressful period due to the end of milk consumption and the separation from the
mother. Although the etiology of these digestive disorders is not yet clear, gut microbiota may play
a pivotal role. Indeed, disruption of the gut microbiota homeostasis, characterized by the greater
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abundance of opportunistic and pathogenic species and the
decreased abundance of fibrolytic and butyrate-producing
bacteria, appears to predispose the young animals to enteric
infections (1–3). On the contrary, when an equilibrium
between mammalian host and gut microbiota is established, the
microbiota will contribute to host defense in different ways (4).
In particular, the gut microbiota prevents the establishment of
detrimental bacteria through competition for shared nutrients
and niches (5). In addition to this “barrier” function, numerous
studies have underlined the action of the gastrointestinal
microbiota on the immune system (6). Early-life exposure to the
gutmicrobiota is determinant, in particular, for the establishment
of a normal immune function (7, 8).

Longitudinal studies in young mammals underlined highly
variable gut taxonomies between neonatal animals, followed
by the establishment of “climax” communities with greater
uniformity in late post-weaning states [humans: (9); rabbits: (10);
pigs: (11); calves: (12)]. As a consequence of this immaturity,
the early post-natal stage represents a period of permissiveness
that has been described as a “window of opportunity” for
microbiota and immune system engineering (13). Gutmicrobiota
manipulation in early life can be performed with different tools,
including dietary interventions. Indeed, numerous studies have
shown that the introduction of solid feed strongly affects the gut
microbiota (14–16) since dietary nutrients provide substrates for
microbial growth.

The rabbit pup is a good model to study early dietary
intervention incidence on gut microbiota installation. Unlike
other altricial species, wild rabbit pups are able to ingest solid
substrates shortly after birth in the burrow (17). Under controlled
breeding conditions, it was demonstrated that pups exhibit a
coprophagous behavior within the first week of life (18, 19) and
consume the feed provided in the nest as of 8 days of age (20, 21).
The ability of the suckling rabbit to consume feed at an early
stage can therefore be used as a biomimetic strategy to study the
intestinal colonization of commensal bacterial communities.

Little is known about the effects of the quality of solid feed
ingested in early life on gut microbiota, but the use of prebiotics
to target bacterial groups of interest appears promising.
Prebiotics contribute to digestive health preservation by
functioning as anti-adhesives, preventing pathogen implantation,
stimulating immune maturation and gut barrier function, and
serving as fermentable substrates for gut bacteria. The use
of mannan-oligosaccharides (MOS) in pre- and post-weaning
rabbit diets effectively promotes cecal fermentation and gut
barriers (22–24). Moreover, prebiotics are present in mammal’s
milk (25–27) and are essential to support the development
of the commensal microbiota in infants. In humans, fructo-
oligosaccharides (FOS) are routinely added to infant formulas
to mimic the beneficial effects of milk oligosaccharides on
the commensal microbiota (28). Consequently, maintaining
prebiotic supplementation at the milk/solid diet transition by
providing non-digestible carbohydrates in the starter diet might

Abbreviations: AF, additive-free; DM, dry matter; FOS, fructo-oligosaccharides;
MOS, mannan-oligosaccharides; OUT, operational taxonomic units; PLS-DA,
partial least squares discriminant analysis; VFA, volatile fatty acids.

ensure the installation of a proper ecological succession of
bacterial species.

We hypothesized in this study that an early solid dietary
intervention would drive microbiota establishment toward the
installation of beneficial microorganisms and that prebiotic
supplementations would potentiate those effects. In agreement
with our previous findings (29), a hydrated starter diet was given
to suckling rabbits to stimulate early solid ingestion. The effects
of solid feed supplemented or not with prebiotics (FOS or MOS)
from 3 to 18 days of age were assessed in terms of animal
development, microbiota colonization, and fermentative activity
up to 57 days of age. To our knowledge, this study is the first to
investigate the effects of post-natal solid feed supplementation on
rabbit microbiota structure.

MATERIALS AND METHODS

Ethics Statement
This study was carried out at the PECTOUL Experimental Unit
(INRAE, Castanet-Tolosan, France). Animals were raised and
handled according to the European Union’s recommendations
concerning the protection of animals used for scientific purposes
(2010/63/EU) and in agreement with French legislation (NOR:
AGRG1238753A 2013). The experiment received the approval of
the local ethics committee (SSA_2019_001).

Animal Management
Animal Handling and Housing
Commercial rabbits raised for meat production were used in
the experiment (crossbreed of the maternal line Hyplus PS19
and the paternal line Hyplus PS59; Hypharm, France). Before
weaning, the does were housed individually with their pups in
wire cages (width: 62 cm; length: 69 cm; height: 62 cm) equipped
with nests for the pups (width: 25 cm; length: 38 cm; height:
20 cm), as previously reported (29). Two days after parturition
(d2), nest quality was assessed on a 3-point scale, i.e., a nest
of good quality corresponded to a nest that was fully covered
by doe fur. After nest quality assessment, the litter size was
standardized to ten pups per doe by cross-fostering or culling.
From 3 to 21 days, nursing was controlled and pups had access to
milk once a day. All the rabbits received commercial feed pellets
ad libitum from 15 to 35 days in a feeder designed for young
rabbits (30) that the doe could not reach. At weaning (d35), pups
were assigned to collective cages of 5 rabbits and mixing rabbits
from different litters was prevented. Until d64, they were fed the
same commercial post-weaning diet restricted at 79% of the ad
libitum intake (31). No antibiotics were provided to pups and
their mothers throughout the experiment. Chemical composition
analysis was performed on the commercial diets using ISO
methods (DM and ash for dry feed: ISO 6496:1999; nitrogen
content: ISO 16634-1:2008; crude fat content: ISO 6492:1999;
gross energy: ISO 9831:1998) and the procedures described by the
European Group on Rabbit Nutrition [(32); Table 1]. The litter
weight after suckling was recorded at 3, 14, 21, and 28 days of
age. Rabbits were individually weighed at weaning (d35), 50, 64,
and 71 days of age.

Frontiers in Veterinary Science | www.frontiersin.org 2 May 2020 | Volume 7 | Article 261

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Paës et al. Early-Fed Rabbit Microbiota Diversity

TABLE 1 | Ingredients and chemical composition of the commercial diets

provided.

Before weaning After weaning

Ingredients (g/kg as-fed basis)

Wheat bran 301 251

Wheat 84

Sunflower meal (high protein) 236 101

Sunflower meal (low protein) 77

Sunflower husk 89 100

Barley 174

Sugar beet pulp 95 187

Sugar beet molasses 50 50

Alfalfa 80

Rapeseed meal 30 30

Rapeseed oil 2 3

Calcium carbonate 12 19

Salt 6 7

Fortibut + 5

L-Lysine monochloride 1 1

Mineral and vitamin premix 5 5

Chemical composition (g/kg as-fed basis)

Ash 64 87

Crude protein 176 154

Neutral detergent fiber (NDF) 319 375

Acid detergent fiber (ADF) 165 205

Acid detergent lignin (ADL) 51 64

Hemicellulose (NDF-ADF) 154 171

Cellulose (ADF-ADL) 114 140

Starch 131 78

Fat content 25 19

Gross energy (kcal/kg) 3,917 3,803

Experimental Groups
A total of 44 litters were equally distributed between four
experimental groups at 3 days of age by stratified randomization
based on the does’ parity (multiparous does, an average of
five parities), litter weight at standardization (72 ± 7 g) and
the allocation in the farm (n = 3 rooms). In the CONTROL
group, rabbits had access to solid feed as of day 15 with
commercial pellets. An additional starter feed was offered to
the three other groups in a hydrated gel form from 3 to
18 days in two plastic cups (volume: 30mL; Ø = 40mm;
height: 32mm; GOSSELIN R©, Le Mans, France) that were
vertically clipped to each side of the nest (Figure 1). The gels
were removed before suckling to prevent the doe from eating
them. The starter feed gels were renewed every day and their
consumption was measured as of 7 days of age. To process the
gels, the commercial pellets provided during the pre-weaning
period were first mashed (particle sizes smaller than 2mm).
An attractive flavoring additive was added to the mash (vanilla
flavor at 0.06%, supplied by Phodé, Terssac, France). For diets
including prebiotics, the corresponding additive (powder form)
was also mixed with the mash at this stage. Dry products
were then thoroughly mixed with hot water (80–90◦C) and
agar to shape the gels (mash-to-water ratio of 1:4 with 0.6%

FIGURE 1 | Experimental design: three groups of 11 rabbit litters were

provided with a starter feed in a gel form from 3 to 18 days of age in addition

to doe milk. The additive composition of the gels varied according to

treatments (CONTROL, no starter feed gel provided; FOS,

fructo-oligosaccharides; MOS, a mixture of mannan-oligosaccharides and

β-glucans; AF, no additive in the starter feed gel).

of agar). Litters that received starter feed gels without an
additive belonged to the AF_GEL (Additive-Free Gel) group. The
prebiotics used were either fructo-oligosaccharides (FOS_GEL
group) or a mixture of mannan-oligosaccharides and β-glucans
(MOS_GEL group). Short chain fructo-oligosaccharides were
provided as Profeed R© (Tereos, Lille, France). This product is
obtained from beet sugar through a bio-enzymatic process. It
is characterized by a degree of polymerization between 3 and 5
and is composed of three glucose-fructose chains, resulting in
a final concentration of 95% of FOS. Mannan-oligosaccharides
and β-glucans combinations such as AGRIMOS R© were provided
by Lallemand Animal Nutrition (Blagnac, France). This additive
is obtained by the autolysis of yeast cell walls of Saccharomyces
cerevisiae, leading to a final concentration of 45% of MOS.
Manufacturers’ recommendations for inclusion levels for post-
weaned rabbits are typically close to 2 kg per ton of feed (0.2%).
Considering the specificity of our experimental design, the
additives constituted 0.9% of the gels, the equivalent of 4% of
dry matter (DM). The DM content of starter feed gels obtained
by freeze-drying for 48 h was similar between gel types (25.6–
26.3%). Given the highmoisture content of starter feed gels, water
losses due to evaporation were evaluated daily for each type of
gel. Those autogenic changes in gel mass were taken into account
with a correction factor based on the quantity of gel supplied.
Feed intake before weaning was measured at the litter level and
expressed per rabbit. For feed consumption after 18 days of age,
the number of pups was adjusted assuming that dead animals did
not consume feed 2 days before their death.

Measurement of Digestive Tract
Development and Cecal Content Sampling
At days 18, 29, 38, and 57, 10 pups per group (one pup per litter)
were randomly selected, weighed and killed by electronarcosis
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and exsanguination (n = 160 pups in total). Blood samples were
collected at exsanguination in EDTA tubes immediately stored
on ice. After centrifugation (800 g for 10min at 4◦C), the plasmas
were stored at −20◦C until further analysis. The cecum was
isolated and weighed before collection of the digesta in sterile
tubes (storage at −80◦C). At days 29, 38, and 57, cecal pH
was measured by introducing a glass electrode at the ileocecal
junction (VWR Collection SP225; Radnor, PA, USA) and fresh
cecal contents were in sufficient quantities to be sampled for
the following analyses: DM (2 g), volatile fatty acids (VFA) (1 g
diluted in 2mL of H2SO4 at 2% w/v), and ammonia (1 g diluted
in 3mL of H2SO4 at 2% w/v). The cecum was then emptied and
weighed with an OHAUS scale (Parsippany, NJ, USA). Finally,
the stomach, small intestine and colon were isolated andweighed.

Evaluation of the Fermentative Activity of
the Cecal Microbiota: Determination of the
Concentration of Ammonia and Volatile
Fatty Acids
Ammonia (NH3) andVFAwere analyzed after centrifugation and
dilution at 1:10. Ammonia concentrations were quantified using
a colorimetric method with a continuous flow analyzer (SAN++;
Skalar, Norcross, GA, USA), as previously described (33). Volatile
fatty acids were determined by gas chromatography (CPG HP
7890A; Agilent, Santa Clara, CA, USA) following a method
previously reported (34). Results were expressed according to the
liquid phase of cecal content after determination of cecal sample
DM by drying at 103◦C for 24 h.

ELISA Measurements of IgG and IgA
Total plasma IgG or cecal content IgA levels were determined
in duplicates by sandwich ELISA in 96-well plates coated
with specific polyclonal goat anti-rabbit IgG or IgA antibody
(Bethyl Laboratories, Montgomery, Texas, USA) with further
plate reading at 450 nm as previously described (35). IgG were
quantified by using a reference IgG serum (Bethyl Laboratories).
Regarding IgA, 10 samples were pooled to build a reference
sample for the standard curve construction.

DNA Extraction and PCR Amplification of
Bacterial 16S Ribosomal Genes for
Illumina Sequencing
Total genomic DNA was extracted from 50mg of cecal digesta
using the Quick-DNA Fecal/Soil Microbe 96 Kit (ZymoResearch,
Irvine, CA, USA) according to the manufacturer’s instructions
after mechanical lyses at 30Hz for 15min (TisueLyzer II, Qiagen,
Hilden, Germany). The 16S rRNA V3-V4 region was amplified
by PCR and paired reads were sequenced by MiSeq Illumina
Sequencing at the Genomic and Transcriptomic Platform
(INRAE, Toulouse, France), as previously described (36).

Sequence Analysis
The Galaxy-supported FROGS pipeline (37) was used to process
the 7,503,813 16S ribosomal DNA amplicon sequences obtained.
Amplicons without any ambiguous base, with a length between
350 and 500 nucleotides and matching V3 and V4 proximal

PCR primer sequences, were kept for clustering. Reads were
clustered into OTUs (operational taxonomic units) using the
iterative growth process SWARM (aggregation distance = 3)
(38). Chimera were detected using VSEARCH (39) and then
discarded (15.3% of the total sequences corresponded to 41.8%
of the total OTUs determined). Remaining OTUs were filtered to
keep OTUs present in at least three samples, representing more
than 0.005% of all of the sequences.

The mean number of reads per sample was 30,025 (min:
14,110; max: 61,030). OTU taxonomic affiliation was performed
using the BLAST algorithm against the SILVA SSU Ref NR 132
database with a pintail quality of 80 (40). Within-community
diversity metrics (α-diversity), including Shannon and Inverse
Simpson, were calculated after rarefaction of the OTU table
at 14,110 sequences (41). In order to evaluate the repeatability
of the relative abundances of the OTUs, 16S rDNA sequences
from 15 cecal samples extracted, sequenced and processed
twice according to the same procedure were compared. As
previously observed (42), the quantification of OTUs with
low abundances is poorly repeatable (Figure 2A). We chose
the threshold of 0.5% of relative abundances for quantitative
repeatability, according to Figure 2B. With such a filter, OTU
relative abundance differed by an average of 1.4-fold between
two DNA extractions and 16S sequencing analyses of the same
sample. As a consequence, the OTUs with average relative
abundances below 0.5% within each age∗treatment group were
removed before further statistical analysis.

Statistical Analysis
All statistical analyses were performed using R software (version
3.5.1). Differences were considered to be significant when P
≤ 0.05. The Partial Least Squares Discriminant Analysis (PLS-
DA) multivariate regression model was used to identify the
OTUs that allow discrimination of the response variable using
mixOmics package (43). This model uses OTU counts after
Total Sum Scaling normalization and Centered Log Ratio
Transformation as input to predict the response variable (either
experimental group or early feed intake level). The effects of
the groups on the discriminant OTUs identified with PLS-DA
were analyzed with multiple regression models by controlling
the false discovery rate after fourth root transformation applied
on relative abundances. Taxonomic assignments to family and
genus level obtained by BLAST were considered with a cutoff
of 80% for coverage and 80 and 97% for identity, respectively.
Taxonomic relative abundances at phylum, family and genus
levels, diversity indexes, cecal and blood parameters, longitudinal
intakes, and performance data were analyzed using the linear
mixed procedure of the nlme package. The mixed model
included age, group and their interaction as fixed effects, litter
as a random effect, and a correction for age heteroscedasticity
was applied when necessary (Supplementary Table S1). Post-hoc
comparisons were made with the emmeans R package. The total
intake in the nest (from 7 to 17 days) was analyzed using nest
quality and experimental group as categorical factors, and litter
weight at equalization as the quantitative covariable. Mortality
data were analyzed using adjusted chi-squares according to the
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FIGURE 2 | (A) Comparison of OTU relative abundances obtained from 15 rabbit cecal samples extracted and sequenced two times. Technical procedures and

bioinformatic treatments were similar for replications. Colors stand for the different rabbit samples. Axes are represented on a log10 scale. (B) Evaluation of a

threshold on OTU relative abundances for quantitative repeatability. Binary log ratio of the relative abundances of each OTU on the two extractions and sequencing

analyses for a given sample were calculated as a function of a selected filter on the relative abundance. Means followed by a common letter are not significantly

different according to the Tukey HSD test at the 0.05 significance level. The minimum threshold filter of 0.5% was selected.

Donner and Banting procedure (44) so that litter cluster was
accounted for Reed (45) and Princée (46).

RESULTS

Effects of Starter Feed Gels and Prebiotic
Supplementation on Solid Feed Ingestion
by Suckling Rabbits
The first step of our study was to determine if starter feed gels
provided from 3 to 18 days of age promoted early-life solid
ingestion in suckling rabbits and if these effects were modulated
by prebiotic supplementation (FOS or MOS). Rabbit pups began
to ingest the starter feed gels provided in the nest as early as
7 days of age, with high variability between litters (Figure 3A).
Daily ingestion was significantly affected by the type of gels
provided (P = 0.014). Total gel intake in the nest amounted
to 3.95 ± 1.07 g of fresh matter and 1.03 ± 0.27 g of DM per
pup on average. Total starter feed gel intake in the nest was
significantly higher for the FOS_GEL group compared to the
MOS_GEL group (+1.3 g of fresh matter; P = 0.011) and tended
to be higher for the FOS_GEL group than for the AF_GEL group
(+1.0 g of fresh matter; P = 0.057; Figure 3B). Considering the
initial prebiotic concentration of the additives used and their rate
of incorporation into the gel, pups from the FOS_GEL group
ingested a total of 47 ± 11mg of FOS/rabbit, whereas those
in the MOS_GEL group ingested 16 ± 4mg of MOS/rabbit.
The weight of the litter after standardization (d3, average rabbit
weight of 98 ± 10 g) positively affected the total starter feed
gel intake (P = 0.028; Pearson correlation = 0.41), while the
nest quality score did not affect early feed ingestion. All the
rabbits had access to similar pellets as of 15 days of age but
their intake levels varied according to dietary intervention in
early life (Supplementary Table S2). Pre-weaning pellet intake

was significantly higher in the FOS_GEL group than in the others,
with 17 additional grams of dry matter consumed from 15 to
21 days (P < 0.05; Figure 3C). Altogether, our results show that
starter feed gels promoted pre-weaning solid feed ingestion in
suckling rabbits and that these effects were amplified when the
gels were supplemented with the FOS prebiotic.

Effects of Starter Feed Gels and Prebiotic
Supplementation on the Growth and Health
of Young Rabbits
In the next step, we analyzed the consequences of the stimulation
of solids’ ingestion induced by starter feed gels and prebiotics on
the growth and health of young rabbits. Thirteen rabbits were
found dead shortly after equalization and before rabbit pups
began to eat starter gel feed (3–6 day). After this period, mortality
was 2.8% from 7 to 35 days and 0.6% after weaning. Survival
between 7 and 35 days was numerically lower in the litters from
the MOS_gel group (Figure 4A) but this was not significant (χ2

= 2.9, df = 3, P = 0.403). Relative to the CONTROL group, the
odds ratios calculated in the FOS_GEL, MOS_GEL, and AF_GEL
groups were 0.5 ( 1/892/88 ), 2.7 ( 5/822/88 ), and 1 ( 2/882/88 ), respectively.

Animal weight before and after weaning and average daily weight
gain were not affected by experimental treatments (Figure 4B
and Supplementary Table S3). We analyzed immunoglobulins
in plasma and cecal content as markers of the young rabbits’
immune status. IgA relative concentration in cecal content was
the highest at 18 days (P < 0.05), probably due to passive
immunity (Figure 4C). Indeed, relative IgA concentration in
cecal content dropped as milk ingestion decreased and reached
the lowest level at day 38 (when rabbits eat only solid feed).
Cecal IgA concentration then increased at day 57 (P < 0.05),
probably in association with the development of the young
rabbits’ adaptive immune system. IgA levels were affected by
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FIGURE 3 | Ingestion of starter feed gels during early life according to treatment and long-term effects of early dietary interventions on subsequent pellet intake before

weaning in rabbits. (A) Kinetics of starter feed gel ingestion from 7 to 17 days of age in rabbit pups in the nest, where each point stands for one litter’s intake. (B) Total

starter feed gel intake in the nest from 7 to 17 days of age, means with different letters differ at P < 0.05. (C) Daily Intake of pellets from 18 to 28 days of age in young

rabbits. Significant differences between experimental groups found within ages are represented with an asterisk. Error bars represent standard deviation data.

CONTROL, no starter feed gel provided; FOS_GEL, fructo-oligosaccharides; MOS_GEL, a mixture of mannan-oligosaccharides and β-glucans; AF_GEL, no additive

in the starter feed gel.

the interaction age∗experimental group (P = 0.009), with effects
visible as of 29 days of age (Figure 4D). At 29 and 57 days,
cecal IgA levels were significantly higher for rabbits from the
FOS_GEL group compared to the AF_GEL group. Similarly,
higher cecal IgA concentrations were found for the FOS_GEL
group compared to the MOS_GEL group at 57 days. Plasma
levels of IgG varied with age (P < 0.001) but were similar
between groups (Figure 4E). Similarly to relative cecal IgA
concentrations, IgG plasma levels were the highest at 18 days
of age and reached the lowest level at days 29–38 before an
increase at day 57. Overall, our results show that the stimulation
of early-life solid feed ingestion by the supply of starter feed gels
without an additive had no effect on the growth and health status
of young rabbits. In contrast, supplementation of the starter
feed gel with the FOS prebiotic increased IgA concentration in
the cecum.

Effects of Starter Feed Gels and Prebiotic
Supplementation on the Microbiota of
Young Rabbits
We evaluated the effects of starter feed gel intake and prebiotics
on gut microbiota diversity and composition in young rabbits.
In addition to the expected increase of observed OTUs and
diversity indexes (Shannon and InvSimpson) with age, no
significant difference could be seen regarding early nutritional
intervention at the different time points of the analysis (Table 2).
For analyses at the OTU level, we focused on the earliest time
point (i.e., day 18) corresponding to the end of the gel supply.
A Venn diagram was built to represent the shared OTUs in
each experimental group of 18-day-old rabbits based on the
OTUs present in at least 75% of individuals of each group,
e.g., representative of the core bacterial community at this age
(Figure 5A). Among the 354 OTUs studied, 31% were shared
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FIGURE 4 | Health parameters and growth of the rabbits according to early dietary interventions in the nest in the form of a starter gel feed. (A) Mortality from 7 to 35

days of age. (B) Rabbit weight from 18 to 57 days. (C,D) Cecal IgA and (E) plasma IgG levels in rabbits. The animals sampled for immunoglobulin analyses were

healthy and had comparable live weights between groups (B). Significant differences between experimental groups found within ages are represented with an

asterisk. Black letters are meant to indicate age effects. Error bars represent standard deviation data. The additive composition of the gels varied according to

treatments (CONTROL, no starter feed gel provided; FOS_GEL, fructo-oligosaccharides; MOS_GEL, a mixture of mannan-oligosaccharides and β-glucans; AF_GEL,

no additive in the starter feed gel).

Frontiers in Veterinary Science | www.frontiersin.org 7 May 2020 | Volume 7 | Article 261

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Paës et al. Early-Fed Rabbit Microbiota Diversity

TABLE 2 | Effects of early nutritional interventions on the alpha-diversity metrics of

rabbit microbial cecum ecosystems (mean ± standard deviation).

Age (days) Experimental

group

Number of

observed OTUs

Shannon

index

InvSimpson

index

18 CONTROL 259 ± 52 3.47 ± 0.35 16.1 ± 6.0

FOS_GEL 272 ± 64 3.61 ± 0.28 17.2 ± 4.6

MOS_GEL 248 ± 53 3.44 ± 0.31 14.5 ± 4.3

AF_GEL 259 ± 67 3.42 ± 0.42 14.1 ± 6.2

29 CONTROL 411 ± 110 4.21 ± 0.59 30.2 ± 11.6

FOS_GEL 418 ± 71 4.47 ± 0.21 38.8 ± 9.3

MOS_GEL 444 ± 64 4.57 ± 0.26 44.6 ± 10.9

AF_GEL 425 ± 83 4.39 ± 0.43 36.5 ± 13.0

38 CONTROL 489 ± 89 4.68 ± 0.27 48.0 ± 13.9

FOS_GEL 468 ± 105 4.58 ± 0.47 47.8 ± 28.9

MOS_GEL 530 ± 95 4.77 ± 0.33 52.6 ± 16.8

AF_GEL 506 ± 65 4.80 ± 0.21 55.6 ± 17.8

57 CONTROL 593 ± 46 5.04 ± 0.19 66.4 ± 16.3

FOS_GEL 579 ± 59 5.11 ± 0.14 73.4 ± 14.8

MOS_GEL 596 ± 55 5.07 ± 0.20 64.8 ± 17.4

AF_GEL 581 ± 52 5.12 ± 0.14 75.0 ± 12.7

P-value

Age <0.001 <0.001 <0.001

Group 0.926 0.759 0.691

Age * Group 0.616 0.326 0.125

The additive composition of the starter feed gels varied according to treatments

(CONTROL, no starter feed gel provided; FOS, fructo-oligosaccharides; MOS, a mixture

of mannan-oligosaccharides and β-glucans; AF, no additive in the starter feed gel).

among all the rabbit cecal ecosystems, which accounted for 82%
of total relative abundances. Only five OTUs were specific to
the CONTROL group, while the other groups exhibited more
specific taxa patterns. Animals from FOS_GEL and MOS_GEL
groups had 12 and 18% of specific OTUs, respectively, but the
latter only represented 0.4 and 0.9% of total relative abundances,
respectively. The 35 OTUs that were shared between groups
with early nutritional interventions (FOS_GEL, MOS_GEL, and
AF_GEL) accounted for 6% of relative abundances. As for
the OTUs not present in the CONTROL group (219 OTUs),
they accounted for 12% of total relative abundances. A PLS-
DA procedure was performed to determine if experimental
groups had their own microbial composition signature based
on OTUs with relative abundances >0.5% (Figure 5B). The
PLS-DA individual plot at 18 days suggested two clusters:
CONTROL/MOS_GEL and FOS_GEL/AF_GEL (Figure 5B).
Among the discriminant OTUs, OTU_61, affiliated to the
Ruminococcus genus, was significantly higher in the FOS_GEL
group than in the MOS_GEL group (P < 0.05), while OTU_48,
affiliated to the Lachnospiraceae NK4A136 group, had a higher
level in the AF_GEL than in the CONTROL and MOS_GEL
groups (Figure 5C and Supplementary Figure S1). As expected,
OTU taxonomic assignation revealed that the shift in gut
microbiota composition was coincident with aging and increased
levels of solid feed in rabbit diets, with a progressive decrease
in Bacteroidetes and Proteobacteria phyla (resp. from 46 and

9% at 18 days to 9 and 1% at 57 days) and a sharp increase
in the Firmicutes phylum (from 44% at 18 days to 89% at
57 days) (Figure 5D). The Tenericutes phylum tended to be
affected by the experimental group (P = 0.08). A total of
99.5 and 68.1% of the sequences could be assigned at the
family and genus levels, respectively. The proportions of families
with relative abundances >0.5% were similar between the four
experimental groups (Figure 5E). Overall, our results show that
the stimulation of early life solid feed ingestion by starter feed
gels had no effect on alpha diversity but seemed to allow the
implantation of specific OTUs, some of them related to the
prebiotic supplementation. However, their abundances in the
ecosystems remained moderate.

Effects of the Level of Early-Life Solid Feed
Ingestion on the Microbiota of Young
Rabbits
Based on our observation that the MOS_GEL group had the
lowest solid feed intake compared to the FOS_GEL and AF_GEL
groups and that its microbiota composition clustered with that
of the CONTROL group with no gel supplementation, we
hypothesized that ingestion levels in the nest were a structural
factor of bacterial community implantation rather than our
prebiotic supplementation. Consequently, we added a new
categorial variable in our analysis based on the total starter
feed intake in the nest of the litters sampled: it was either
null (Null group, n = 10 litters), below the median (<3.8 g
of fresh gel consumed/rabbit; n = 15), or above the median
(>3.8 g; n = 15). One litter from the MOS_GEL group, five
from the AF_GEL group and nine from the FOS_GEL group
were classified with high early feed intake (“above the median”)
(Supplementary Figure S2). Pellet intake in feeders was also
the highest in rabbits from the “above the median” group at
18 and 21 days (+15 g of dry matter from 15 to 21 days)
(Supplementary Figure S3).

A new Venn diagram was built based on the OTUs present
in at least 75% of individuals in the three intake level groups
(Figure 6A). This diagram clearly emphasized the presence of
specific OTUs in relation to early solid feed ingestion. They
represented 219 OTUs out of 354, with a higher number of
OTUs belonging to the Ruminococcaceae family and a lower
number belonging to the Bacteroidaceae family compared to
the shared OTUs (χ2 = 4.95, df = 1, P = 0.026, and χ2 =

7.26, df = 1, P = 0.007, respectively; Figure 6B). Cumulated
specific OTUs of the “above median” and “below median”
groups represented 4.2 and 0.5%, respectively, of total relative
abundances (Supplementary Figure S4). Subsequent PLS-DA
two-component projections at 18 days (Figure 6C) suggested
that individuals that consumed the highest quantities of gel in the
nest are clustered in a separate group. Among the 22 discriminant
OTUs (Figure 6D), OTU_67 and OTU_14, affiliated to the
Lachnospiraceae family and the Ruminoclostridium 6 genus,
respectively, exhibited the highest relative abundances in
rabbits with the highest starter feed gel ingestion level in
the nest (“above median” group) (Supplementary Figure S5).
This clustering pattern was also observable at 29 days of
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FIGURE 5 | Venn diagram (A) occurrence of the OTUs across the cecal microbiota of 18-day-old rabbits according to early nutritional intervention in the form of a

starter gel feed. The OTUs present in at least 75% of the samples within each group were kept to build the diagram. Partial least square discriminant analysis

(Continued)

Frontiers in Veterinary Science | www.frontiersin.org 9 May 2020 | Volume 7 | Article 261

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Paës et al. Early-Fed Rabbit Microbiota Diversity

FIGURE 5 | (PLS-DA, B,C) at the onset of early solid feed ingestion (d18) to classify samples according to the experimental group; 80% confidence ellipses are

represented (B). Loadings of the 10 most discriminant OTUs according to component 1 (C). Phylum (D) and family (E) distributions according to early feed intake

level. The heatmap (E) was built with rarefied count data after fourth root transformation. The additive composition of the gels varied according to treatments

(FOS_GEL, fructo-oligosaccharides; MOS_GEL, a mixture of mannan-oligosaccharides and β-glucans; AF_GEL, no additive in the starter feed gel; CONTROL, no

starter feed gel provided).

age (Supplemental Figure S6). Interestingly, several days after
weaning, the levels of early feed ingestion still affectedmicrobiota
composition. Indeed, supervised multivariate analysis at 38
and 57 days (Supplementary Figure S6) revealed that the three
intake level groups still exhibited differences in their microbial
communities. However, as of 29 days of age, PLS-DA total
explained variance was low (≃10% on the two first components).

Analysis of the taxonomic assignation of OTUs revealed that
the abundances of the Tenericutes phylum in the cecum of
29-day-old rabbits with no previous access to starter feed gels
was 36 and 6 times greater than for rabbits with high (P <

0.001) and intermediate early feed intake (P = 0.02), respectively
(Figure 7A). The distribution of the 32 taxonomic families in
the rabbit cecum was similar regardless of early feed ingestion
(Figure 7B) except for Prevotellaceae, which was more abundant
at 29 days (P = 0.009) when suckling rabbits consumed large
quantities of gels. At the genus level, only the Paraprevotella
genus was affected by early feed intake levels, with a greater
abundance in rabbits from the “above median” intake group (P
= 0.02). Altogether, our results show that starter gel feed intake
level was a better explanatory factor of differential microbial
compositions up to 57 days than the original experimental
groups. When rabbits consumed more starter feed, the highest
proportions of bacteria with plant-degrading abilities, such as
species from the Lachnospiraceae and Ruminococcaceae families,
were observed.

Cecal Activity and Gut Morphology
No differences were observed between prebiotic supplementation
groups or early feed intake level groups on cecal fermentative
activity at 29, 38, and 57 days (Table 3). Gut characteristics,
determined with cecum, cecal digesta, stomach, and
intestine weights, did not vary according to prebiotic
supplementation groups or early feed intake level groups
(Supplementary Table S4).

DISCUSSION

In young mammals, progressive implantation of the digestive
microbiota initiates the microbiota-host dialogue that conditions
the development and stimulation of the immune system (8,
47). This process is largely impacted by the substrate that
arrives in the gut. The weaning transition, i.e., the dietary
transition from a milk-based diet to a solid diet, shifts the
microbial balance and contributes to digestive maturation (15,
16, 36). Managing this feed transition is therefore crucial
for the construction of the animal’s health and its future
preservation. The purpose of our study was, on the one
hand, to assess the effects of stimulation of early solid feed
intake on rabbit microbiota establishment and, on the other,

to determine if two selected prebiotics can be relevant tools to
manipulate the developing microbiota. We demonstrated that
the quantity of feed consumed in early life was a stronger
driver of microbiota implantation than the nature of the
prebiotic supplementation.

Stimulation of Early Feed Intake:
Consequences on Rabbit Growth and
Health
In most mammal organisms, the onset of a solid diet intake
depends on their ability to exhibit feed prehension motor,
mastication, and swallowing patterns (48). The beginning of solid
feed intake is variable between species: for example, guinea pigs
are able to process hard feed as of 1 day of age, whereas feeding
activities begin at 18 days in rat pups (49). In commercial rabbit
farms, rabbits start to consume feed at around 17–20 days, once
they are mobile enough to leave the nest (50). However, rabbits
are able to ingest solid substrates at an earlier age: wild rabbits are
known to consume nest material 8 days after birth (17), and in a
situation of choice between pellets differing in size or hardness,
pups consumed them as of 8 days of age and expressed dietary
preferences (21). Considering previous results on young rabbit
feeding behavior (29), we designed a starter feed in a gel form
that was rich in moisture and adapted to the suckling rabbit’s
physiological and physical constraints. It was supplemented with
attractive vanilla flavor to take advantage of the fully-developed
olfactory system of rabbit neonates (51, 52). This starter feed
gel was provided in the nest with easy access in order to mimic
the feed nibbling behavior observed in wild conditions. We
opted to include prebiotics in the experimental starter feed
based on their relevance to modify rabbit microbiota (23, 53)
and phenotypic traits (54, 55), and based on the presence of
oligosaccharides in milk as an essential driver of gastrointestinal
microbiota development (56). Consequently, in one of the
experimental groups, we provided FOS, which are known to
stimulate bifidobacteria and lactobacilli growth but can also
target other species from the Actinobacteria phylum or Olsenella
genus, for example (57). In another group, we distributed MOS,
which were found to block enteric pathogen colonization in
numerous studies (58), in addition to the immunomodulating
β-glucans (59).

In good agreement with the early feed intake kinetics
previously described (21), feed intake started as early as 7
days of age and exponentially increased over time. This study
confirmed that birth weight was a determining factor of early
solid feed intake (29). Interestingly, the nature of the gels
provided affected their intake in the nest, with higher ingestion of
gels containing FOS compared to MOS. Prebiotics are known to
modify sensory feed characteristics, and FOS additives contribute
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FIGURE 6 | Venn diagram (A) occurrence of the OTUs across the cecal microbiota of 18-day-old rabbits according to starter feed gel ingestion level. The OTUs

present in at least 75% of the samples within each group were kept to build the diagram. (B) Distribution among bacterial family affiliations of the OTUs shared by all

the rabbits (upper barplot) and by the rabbits with a starter gel feed ingestion in the nest (lower barplot). The stars represent significant differences of Bacteroidaceae

and Ruminococcaceae distributions. (C,D) Partial least square discriminant analysis at the onset of early solid feed ingestion (d18) to classify samples according to

starter gel feed ingestion level; 80% confidence ellipses are represented (C). Loadings of the 22 discriminant OTUs according to component 1 (D). Null group: no feed

intake corresponding to the 10 CONTROL group litters; “Below median group”: with an intake under 3.8 g of fresh gel consumed/rabbit (n = 15 litters); and “Above

median” group: an intake over 3.8 g of fresh gel consumed/rabbit (n = 15 litters).

to a sweet taste similar to that of sucrose (60). Knowing
that rabbits are attracted by bitter and sweet aromas (61),
this taste difference probably explains the greater attractiveness

of FOS gels. The taste of MOS highly depends on the type
of product (distillery, brewery by-products or primary grown
yeast). The MOS product used in this study was a yeast
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FIGURE 7 | Phylum (A) and family (B) distributions according to early feed intake level. The heatmap (B) was built with rarefied count data after fourth root

transformation. Null group: no feed intake corresponding to the 10 CONTROL group litters: “Below median” group: with an intake under 3.8 g of fresh gel

consumed/rabbit (n = 15 litters); and “Above median” group: an intake over 3.8 g of fresh gel consumed/rabbit (n = 15 litters). Phyla or family with significant

differences of distribution between experimental groups at one sampling date are followed by an asterisk.

cell wall with a low protein content processed from primary
fermentation, and with no specific flavor-contributing properties.
Another hypothesis to explain ingestion level differences due to
prebiotic additives may be linked to their effects on hormone

production (62). These authors demonstrated that prebiotic
supplementation in healthy humans was associated with an
increase in plasmatic gut peptide concentrations that reduced
appetite sensations.
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TABLE 3 | Influence of early dietary intervention and age on cecal fermentation characteristics.

Age

(days)

Experimental group pH NH3

mM

Total VFA

mM

Acetate

%

Propionate

%

Butyrate

%

Ratio C3/C4a

29 CONTROL 5.9 20.0 104 85.9 5.6 8.8 1.10

FOS_GEL 5.9 17.1 107 86.0 4.2 9.8 0.51

MOS_GEL 5.8 15.4 118 86.0 3.9 10.2 0.41

AF_GEL 5.9 20.1 104 87.3 4.3 8.4 0.58

38 CONTROL 5.8 4.3 126 87.9 3.7 8.5 0.47

FOS_GEL 5.7 3.7 134 88.2 3.7 8.2 0.48

MOS_GEL 5.8 5.0 124 88.3 4.1 7.7 0.75

AF_GEL 5.7 3.4 128 88.1 3.4 8.5 0.42

57 CONTROL 5.6 3.4 146 83.6 3.2 13.2 0.25

FOS_GEL 5.5 2.8 152 85.9 3.0 11.1 0.28

MOS_GEL 5.7 3.4 141 85.3 3.3 11.4 0.30

AF_GEL 5.4 4.1 156 84.2 3.2 12.7 0.26

P-value

SEMb 0.5 2.9 43 1.0 0.6 1.0 0.3

Age <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Group 0.139 0.304 0.327 0.517 0.790 0.556 0.972

Age * Group 0.221 0.502 0.244 0.191 0.791 0.108 0.248

The additive composition of the starter feed gels varied according to treatments (CONTROL, no starter feed gel provided; FOS, fructo-oligosaccharides; MOS, a mixture of

mannan-oligosaccharides and β-glucans; AF, no additive in the starter feed gel).
aRatio (C3/C4): propionate/butyrate ratio.
bSEM, Standard Error of the Mean.

To our knowledge, this study is the first one to highlight
variations in cecal IgA content as a function of prebiotic
supplementation in rabbits, although it has been well-described
in infants who were fed formula containing prebiotics (63).
IgA are essential for gut homeostasis since they represent first-
line mucosal defenses by providing non-inflammatory immune
protection (64). Microbiota modulation induced by starter feed
intake could explain the effects on IgA content observed after
weaning since some bacteria can induce the development of
isolated lymphoid follicles (65). Further experiments are now
necessary to determine if the higher levels of IgA after early FOS
intake are due to the prebiotics themselves or the higher level of
solids ingested in this group.

Attempts to Modulate Cecal Microbiota
With Early Nutritional Interventions
When we tried to discriminate rabbit microbiota composition
according to the prebiotic supplementation before weaning,
we obtained unsuccessful partitioning. Nevertheless, when the
analysis was performed by considering the variations in starter
feed intake between litters rather than the nature of the prebiotics
provided, better patterns were evidenced. Limited effects of
the prebiotics used can be explained by the specificity of the
suckling rabbit microbiota. Indeed, in the first 2 weeks of life,
bacterial density and diversity in the cecum are low compared
to older rabbits (10). Lactobacilli, a potential target of FOS,
are rare inhabitants of the digestive tract in rabbits and, even
if their growth is stimulated, they poorly adhere to rabbit
intestinal epithelial cells (18, 66). Moreover, we did not infect
the animals with enteric pathogens during this study whose

sanitary conditions were good, which could explain why MOS
effects on the adhesion of enteropathogenic bacteria were not
evidenced. Thus, the young rabbit gut may not be a relevant
bacterial reservoir for the prebiotics used, which need to target
specific indigenous microorganisms to be effective. Moreover,
it should be pointed out that rabbit diets are naturally rich in
fibrous ingredients, some of them having significant amounts
of oligosaccharides (67), which could have hidden effects of
prebiotic treatments.

Early-life solid feed consumption was associated with 219
specific OTUs at 18 days of age, which mainly belonged to
the Lachnospiraceae and Ruminococcaceae families. Members of
those families are efficient fermenters of complex plant materials
such as cellulose and have been associated with gut health
maintenance (68). The role of some Lachnospiraceae strains in
butyrate production was demonstrated in vivo, a function that
can have subsequent protective health effects, notably through
colonic Treg induction (69). We observed that high proportions
of the Paraprevotella genus were also associated with high
consumption of starter feeds. One of the two species described
from this genus can break down the xylans in plant cell walls
to produce succinate and acetate (70). Taken together, those
findings may indicate that the small amounts of feed ingested
at the onset of a solid diet are sufficient to prepare the weaning
transition by selecting bacteria able to ferment plant-based diets
with end products such as butyrate, a well-known promoter of
the epithelial barrier (71).

It was observed that an early nutritional intervention had
long-term consequences with differential microbiota structures
up to 39 days afterwards. We can hypothesize that those
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subsequent modifications are related to the increase of pellet
intake in the feeders during the middle nursing period, induced
by greater starter feed consumption. This phenomenon has been
well-described in pig farming systems (72) where suckling pigs
offered starter feed in a liquid or gruel form in addition to
milk increased pellet intake later during the nursing period.
Since a similar phenomenon was observed in suckling rabbits
(29) and given the impact of solid feed on bacterial community
structures (15, 73), this posterior effect of early feed intake
stimulation on feeding behavior appears interesting and should
be further explored.

Despite some changes in cecal ecosystems induced by the
amount of starter feed that reached the gut, it is worthwhile
noting that no changes in cecal fermentation activity were
observed. The reason for this lack of functional modifications
could be the functional redundancy within the microbiome since
different bacterial populations within a community can perform
the same functions (74). The fact that alpha and beta diversity
were not modified by early feed intake stimulation and that
limited effects on taxonomic profiles were revealed could also
be possible explanations for the lack of functional changes in
the cecum. It is also likely that few effects were observed due to
predominant milk intake in the young rabbit’s diet up to 25–30
days (50). In a previous experiment, we estimated that a total
pellet intake of 1.8 g of fresh matter in the nest from 8 to 17
days only amounted to 1.3% of the total milk intake over this
period (21). Thus, large amounts of milk may have “diluted”
the effects of solid supplementation since rabbit milk constrains
bacterial community structures (36). Indeed, mammals’ milk
contains its own microbiota, prebiotics (oligosaccharides),
immunoglobulins, and other microbiota-shaping compounds
such as antimicrobial casein-derived peptides or lipids (75, 76)
that probably induce a selective pressure. This dominant impact
of milk consumption was shown in human cohort studies where
the duration of exclusive breastfeeding was a stronger driver for
microbial diversity at 9 months of age than the time when solid
food was introduced into the infant’s diet (77). In accordance,
previous attempts to modulate rabbit microbiota before weaning
with diet change (36, 78); had moderate effects, possibly due to
milk constraint. Another possible explanation for early dietary
intervention limitations is the heterogeneity of the solid intake in
the nest within litters. Competition for feed might have occurred
between rabbits, as observed during nursing (79), and similarly
with pigs whose variability in individual starter feed intake was
demonstrated with a stool marker (80). In our trial, rabbits
were randomly sampled due to the absence of a methodology to
determine “good eater” rabbit up until now.

CONCLUSION

Starter feed provided in a gel form was accepted by suckling
rabbit pups with intake differences depending on the type of gels
offered. Gels preferably consumed in the nest were associated
with increased solid feed intake later in life. Supplementation
with prebiotics in early life did not have a notable effect on the gut

microbiota of suckling rabbits before and after weaning. When
considering the amounts of starter feed ingested instead of the
nature of the prebiotics consumed, more pronounced effects on
bacterial composition could be observed. Increased quantities
of feed consumed at an early age seemed to promote the
development of microorganisms adapted to plant degradation,
which could efficiently prepare the rabbits for weaning transition.
Further studies are now necessary to identify optimal gut-shaping
starter feeds and to confirm subsequent effects on ecosystem
functionalities and gut health.
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