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Growth differentiation factor 9 (GDF9) is a high-fertility candidate gene that plays a crucial

role in early folliculogenesis in female mammals. In this study, direct sequencing was used

to screen possible SNP loci in the goat GDF9 gene. Three SNP loci, p.proline27alanine

(P27R), p.leucine61leucine (L61L), and p.alanine85glycine (A85G), were identified in

Shaanbei white cashmere (SBWC) goats. Among the three SNPs, two rare missense

SNP loci (P27R and A85G) were discovered to be strongly linked with each other (D′ value

= 0.926, r2 value = 0.703). Both P27R and A85G loci had two genotypes: wild type and

heterozygous type. A85G exerted a significant effect on litter size (P = 0.029) in SBWC

goats, and the heterozygous genotype was superior in comparison with the wild type.

The heterozygous genotype was also superior in P27R but no significant association

was found. However, the combination genotypes of P27R and A85G were identified

to have superior effects on litter size (P = 3.8E−15). This information suggested that

these two SNPs influenced litter size in goats synergistically. Combining this information

with our previous studies, we propose that the GDF9 gene is the principal high-fertility

candidate gene and that the A85G locus is a promising SNP that affects litter size in

goats. These results may fill a research gap regarding rare mutations as well as provide

crucial molecular markers that could be useful in marker-assisted selection (MAS) goat

rearing when selecting superior individuals.

Keywords: goat, growth differentiation factor 9 (GDF9) gene, litter size, association, linkage disequilibrium

INTRODUCTION

The growth differentiation factor 9 (GDF9) gene is a unique member of the transforming growth
factor β (TGFβ) superfamily (1), as its protein has six Cys, being different from others in this
superfamily that have seven or nine Cys (2, 3). Moreover, its greatest expression is in the ovary while
it is widely expressed in 20 different tissues such as the hypothalamus, pituitary, and uterus (4, 5);
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this indicates that it affects different physiological pathways and
metabolism, as well as phenotypic expression to some degree (6).
Along with being a powerful intra-ovarian regulator during early
folliculogenesis, the GDF9 gene is expressed throughout follicle
development, and its mutations may contribute to increased
ovulation rates or infertility in female mammals (7, 8).

Based on relevant study and data from the National Center for
Biotechnology Information Search database (NCBI), 45 SNP loci
have been identified in the goat GDF9 gene (9). Among these, 15
SNPs were identified to have significant associations with litter
size in more than 30 goat breeds (10–12). Furthermore, there
were some controversial and promising SNPs that had different
impacts in different goat breeds (13–16). For instance, three
missense mutations, A240V (17), Q320P (18–20), and V397I (21,
22), and three synonymous mutations, L61L (23), N121N (24),
and L141L (25, 26), were found to have high mutant frequencies
and be significantly associated with litter size in different breeds.
However, due to breed-specific effects, several of the above results
were not consistent. For instance, in Shaanbei white cashmere
(SBWC), Lubei White, Jining Gray, Inner Mongolia cashmere,
and Laiwu black goat breeds, the G allele is the major allele in
V397I (22, 23, 26), but among the Xinong Saanen dairy goat,
Big foot black goat, Guanzhong dairy goat, Jintang black goat,
and Yimeng black goat, the A allele is associated with larger
litter sizes (27, 28). However, almost all the abovementioned
studies focused on a single SNP locus and neglected the fact that
quantitative traits are controlled by multiple loci. Therefore, the
gap in research regarding the combined effects of multiple loci
needed to be addressed.

A combination of whole-genome sequencing and marker-
assisted selection (MAS) could satisfy the demand to screen
pivotal genes accurately and rapidly (29–31), as well as to
assess relationships between their variations and growth and
reproductive traits (32–35).

As a powerful high-fertility candidate gene, our group
previously found that two strongly linked SNPs, Q320P and
V397I, and a 12-bp indel within the GDF9 gene were significant
associated with litter size in goats (20, 36). Furthermore, we
summarized all reported SNPs within the GDF9 gene (9). Hence,
based on our preliminary work, this study aimed to verify a
greater number of SNP loci within the GDF9 gene as well as to
analyze their relationships with goat litter size, thus providing
more information for selecting a population with a high fertility
using MAS method in goat rearing.

MATERIALS AND METHODS

All experiments were approved by the International Animal
Care and Use Committee of the Northwest A&F University

Abbreviations: GDF9, growth differentiation factor 9; SNPs, single-nucleotide

polymorphisms; PCR, polymerase chain reaction; SBWC, Shaanbei white

cashmere goat; P27R, p.proline27alanine; L61L, p.leucine61leucine; A85G,

p.alanine85glycine; Q320P, p.glutamine320proline; V397I, p.valine397isoleucine;

A240V, p.alanine240valine; N121N, p.asparagine336asparagine; L141L,

p.leucine141leucine; LD, linkage disequilibrium; HWE, Hardy–Weinberg

equilibrium; Ho, homozygosity; He, heterozygosity; Ne, effective allele number;

PIC, polymorphism information content; MAS, marker-assisted selection.

(IACUC-NWAFU; protocol number NWAFAC1008) and
followed local animal welfare guidelines, laws, and policies. The
care and use of animals complied with local animal welfare laws
and policies.

Sample Collection and DNA Isolation
For this study, 309 ear tissue samples were randomly collected
from female SBWC goats (2–3 years) at a goat-breeding farm
in Yulin City, Shaanxi Province, China. All selected goats had
the same diet and rearing conditions after weaning (37, 38),
were healthy, and had records for their first-born litter size and
growth traits (e.g., body height, body length, heart girth, body
weight, and cannon bone circumference index). Additionally,
random selection ensured that individuals were as unrelated as
possible (39, 40).

DNA was extracted from ear tissue samples, diluted to 50
ng/µl, and stored at −20◦C according to Aljanabi’s method (41).
The DNA extraction protocol was as follows: 400 µl of buffer
(0.4M NaCl, 10mM Tris–HCl at pH 8.0, and 2mM EDTA at pH
8.0), 40 µl of 20% SDS (2% final concentration), and 8 µl of 20
mg/ml proteinase K (400µg/ml final concentration) were added
to the fresh tissue and mixed well. The samples were kept at a
constant temperature of 65◦C in a water bath shaker for 12–16 h,
followed by the addition of 300 µl of 6M NaCl (NaCl saturated
H2O) and subsequent centrifugation for 30min at 10,000 r/min.
The supernatant was then transferred to fresh tubes. An equal
volume of isopropanol was added to each sample, mixed well,
and samples were incubated at 20◦C for 1 h. Samples were then
centrifuged for 20min at 4◦C and at 10,000 r/min. The pellet
was washed with 70% ethanol, dried, and finally resuspended in
300–500 µl sterile dH2O.

Primer Design, PCR Amplification, and
Genotyping
Based on the sequence of Capra hircus species
(GenBank Accession No.NC_030814.1), a pair of
primers (F: 5′-TTTGGTTTTGCTGCTTTGCCT-3′; R: 5′-
TCTTTCTTCTTCCCTCCACCCA-3′), which covered P27R,
L61L, A85G, L50P, G40G, N112N, and D129D loci, were
designed to amplify exon 3 of the goat GDF9 gene using Primer
Premier software (Version 6.0). The PCR was carried out in a
25-µl reaction condition containing 1.0 µl of genomic DNA,
0.5 µl of forward and reverse primer separately, 12.5 µl of 2
× MIX (Tsingke, Xi’an, China), and 10.5 µl of ddH2O. The
PCR amplification protocol contained a pre-denaturation at
95◦C for 5min and denaturation at 94◦C for 30 s, followed by
18 cycles of denaturation for 30 s at 95◦C, annealing for 30 s at
68◦C (with a decrease of 1◦C per cycle), 30 cycles of elongation
at 72◦C for 30 s, and a final extension at 72◦C for 10min with
subsequent cooling to 4◦C (42, 43). Subsequently, PCR products
were genotyped by electrophoresis using 2.0% agarose gel, which
was stained with ethidium bromide. The PCR product was then
directly sequenced by the Tsingke Biotechnology Company
(Xi’an, China) using Sanger sequencing technology. Finally,
sequence alignment was conducted using BioXM 2.6 (College of
Agriculture, Nanjing Agricultural University, Nanjing, China)
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and Chromas 2.4.1 (Technelysium Pty Ltd, South Brisbane,
Queensland, Australia).

Statistical Analyses
Genotype and allele frequencies, Hardy–Weinberg equilibrium
(HWE), homozygosity (Ho), heterozygosity (He), effective allele
numbers (Ne), and polymorphism information content (PIC)
were calculated using PopGene version 1.3.1 (Molecular Biology
and Biotechnology Center, University of Alberta, Edmonton,
Canada) (44).

Linkage disequilibrium (LD) analysis was conducted on the
SHEsis online platform (http://analysis.bio-x.cn) (45). The case
of D′ = 1 or r2 = 1 indicated a complete LD. Values of D′

< 1; r2

> 0.33 indicated strong LD (46, 47).
The general linear models were established to analyze

correlations between SNP loci and litter size and growth traits
using R3.2.0 software. For litter size, model I: Yijlm = µ + Ki

+HYSj + Gl + εijlm, where Yijlm is the litter size phenotypic
value, µ is the mean of the overall population, Ki is the
effect of kidding years, HYSj is the mean of population, Gl

is the fixed effect of the genotype, and εijlm is the random
error (36).

Considering that growth traits had a positive correlation with
litter size (39), association between SNP loci and growth traits
were analyzed. The association between SNPs and growth traits
was considered. Model II: Yklm = µ2 + Ak + Gl + εklm, where
Yklm is the observation of growth traits on each of the klmth
animal, µ2 is the population mean, Ak is the fixed effect of age
of the kth animal, Gl is the fixed effect of genotypes of the lth
animal, and εklm is the random error.

t-test and the analysis of variance (ANOVA) were conducted
to analyze the association between SNP loci and quantitative
traits. Moreover, the t-test directed to two group analyses and
ANOVA were available for >2 group analyses.

Function Prediction of P27R and A85G
Within the Goat GDF9 Gene
As P27R and A85G are missense SNP loci, they may contribute
to amino acid type change during encoding of the goat GDF9
gene. Herein, potential effects of SNP loci on protein structures

TABLE 1 | Name information of SNPs within the goat GDF9 gene.

Names ref SNP No. HGVS names Other names Regions

SNP1 rs671913497 NC_030814.1: g.66025839C>G g.1902C>G/c.79C>G/p. P 27R Exon 3

SNP2 rs669811820 NC_030814.1: g.66025943C>A g.2006C>A/c.183C>A/p. L61L Exon 3

SNP3 rs654628150 NC_030814.1: g.66026014C>G g.2077C>G/c.254C>G/p. A85G Exon 3

HGVS, Human Genome Variation Society. The refSNP No. and HGVS names were from the Ensembl database (http://asia.ensembl.org/index.html).

FIGURE 1 | Sequence chromatograms of seven SNPs in the goat GDF9 gene run on Chromas. (A) P27R; (B) A85G; (C) L61L; (D) G40G; (E) L50P; (F) N112N;

(G) D129D.
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TABLE 2 | Genotypic and allelic frequencies of seven SNPs within the GDF9 gene in Shaanbei white cashmere (SBWC) goats.

Loci names Observed genotypes (N) Genotype frequencies Allele frequencies Ho He Ne PIC HWE

P27R CC (292) 0.951 0.976 (C) 0.952 0.048 1.050 0.047 0.661

CG (15) 0.049 0.024 (G)

GG (0) 0

L61L CC (114) 0.373 0.639 (C) 0.539 0.461 1.857 0.355 0.006

CA (163) 0.533 0.361 (A)

AA (29) 0.094

A85G CC (297) 0.971 0.990 (C) 0.981 0.019 1.020 0.019 0.727

CG (12) 0.039 0.010 (G)

GG (0) 0

Ho, homozygosity; He, heterozygosity; Ne, effective allele numbers; PIC, polymorphism information content; HWE, Hardy–Weinberg equilibrium.

TABLE 3 | Linkage disequilibrium parameters (D′ and r2 ) among P27R, L61L, and

A85G loci of the GDF9 gene in Shaanbei white cashmere (SBWC) goats.

D′/r2 value P27R L61L A85G

P27R - 0.016 0.703

L61L 0.985 - 0.012

A85G 0.926 0.973 -

D′ and r2 values are shown in the lower and upper triangles of the table, respectively.

and functions were predicted using three prediction tools, SIFT,
PolyPhen-2, and PROVEAN (48–50).

RESULTS

Genotyping of SNP Loci Within the Goat
GDF9 Gene
A total of three SNP loci (Table 1; Figure 1) in exon 3 of the
GDF9 gene were detected in this study. Based on sequence
chromatograms, three SNP loci (P27R, L61L, and A85G) were
genotyped in the analyzed SBWC goat population. For both
P27R—-where TGC (proline) transformed to TGG (alanine)—
-and L61L loci, two genotypes, CC and CG, were identified.
For the A85G locus where CCT (alanine) transformed to CCG
(glycine), three genotypes (CC, CA, and AA) were verified.

Genotypic and Allelic Frequencies of SNP
Loci of the GDF9 Gene
Based on PIC values, P27R and A85G displayed low genetic
diversity and PIC values were 0.047 and 0.019, respectively
(Table 2). The PIC value of L61L was 0.355, demonstrating a
medium genetic diversity. Additionally, CC and CG genotypes
were identified in the P27R locus, and frequencies of C and
G alleles were 0.976 and 0.024, respectively. For the L61L
locus, three genotypes (CC, CA, and AA) were identified, and
frequencies of C and A alleles were 0.639 and 0.361, respectively.
For the A85G locus, in which CC and CG genotypes were
detected, the frequency of C and G alleles were 0.990 and 0.010,
respectively. Furthermore, both P27R and A85G loci met the
HWE principle, whereas L61L did not (Table 2).

Linkage Disequilibrium Analyses
Based on LD analysis results (Table 3; Figure 2), the P27R and
A85G loci were discovered to be strongly linked; the D′ and r2

values were 0.926 and 0.703, respectively. For L61L with P27R
locus, and L61L with A85G locus,D′ values were 0.985 and 0.973,
respectively, and r2 values were 0.016 and 0.012, respectively.

Furthermore, in our previous study, two strongly linked SNPs,
Q320P and V397I, were identified to be significantly associated
with litter size, using the same population as those in this
study (20). Combining our previous data regarding two missense
SNPs (Q320P and V397I) within the goat GDF9 gene (20), the
LD analysis of P27R, L61L, A85G, Q320P, and V397I (Table 4;
Figure 2) revealed that neither P27R nor A85G was strongly
linked to Q320P or V397I; our previous study verified that
these were strongly linked, and significantly affected litter size.
Interestingly, L61Lwas almost found to be strongly linked to both
the Q320P and V397I loci. For L61L with Q320P, and L61L with
V397I,D′ values were 0.573 and 0.741, respectively, and r2 values
were 0.306 and 0.324, respectively.

Association Analyses Between SNP Loci
and Litter Size
The association analysis between SNP loci and litter size
(Table 5) illustrated that the A85G locus was significantly
associated with litter size (P = 0.029), with the heterozygosity
genotype displaying a superior phenotype over the homozygosity
genotype. However, the P27R locus did not exert a remarkable
effect on litter size. In combination genotype analysis of the
P27R and A85G loci (Table 6), combination genotypes were
significantly correlated to litter size (P = 3.8E−15) and the CG-
CG produced the largest litter size. Furthermore, based on our
previous data of Q320P and V397I (20), we did a combination
genotype analysis, which showed that combination genotypes
of P27R, A85G, Q320P, and V397I also exerted significant
impacts on litter size (P = 0.001) with the CC-CC-CC-AA
being dominant.

Association Analyses Between SNP Loci
and Growth Traits
Previous studies by our group report a significant positive
correlation between litter size and growth traits in our SBWC
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FIGURE 2 | Linkage disequilibrium plots of the GDF9 gene in Shaanbei white cashmere (SBWC) goats. (A,C): D′ of SBWC goats; (B,D): r2 of SBWC goats. The three

loci in the red dotted box were detected in this study and the two loci in the black dotted box were detected in our previous study.

TABLE 4 | Linkage disequilibrium parameters (D′ and r2 ) among P27R, L61L,

A85G, Q320P, and V397I loci of the GDF9 gene in Shaanbei white cashmere

(SBWC) goats.

D′/r2 P27R L61L A85G Q320P V397I

P27R - 0.016 0.703 0.005 0.030

L61L 0.985 - 0.012 0.306 0.324

A85G 0.926 0.973 - 0.002 0.025

Q320P 0.557 0.573 0.391 - 0.364

V397I 0.998 0.741 0.998 0.813 -

D′ and r2 values are shown in the lower and upper triangles of the table, respectively.

TABLE 5 | Relationship between SNP loci of the GDF9 gene and litter size in

Shaanbei white cashmere (SBWC) goats.

SNP loci Genotypes Litter size (n) P-values

P27R CC a1.70 ± 0.48 (n = 292) 0.404

CG a1.80 ± 0.41 (n = 15)

A85G CC b1.70 ± 0.48 (n = 297) 0.029

CG a1.91 ± 0.28 (n = 12)

Values with different letters (a,b) within the same row differ significantly at P < 0.05.

goat cohorts (20, 36); therefore, the relationship between these
two missense SNPs (P27R and A85G) was addressed here.
Association analyses between P27R and A85G loci as well as
growth traits of SBWC goats revealed that the A85G locus
was significantly related to body length (P = 0.001) and heart
girth (P = 0.002). Furthermore, the heterozygosity genotype

TABLE 6 | Least squares mean and standard error for litter size of different

combination genotypes of the GDF9 gene in Shaanbei white cashmere (SBWC)

goats.

SNP loci Genotypes Litter size P-values

Combination

genotypes with the

P27R and A85G

CC-CC B1.72 ± 0.02 (n = 300) 0.036

CG-CG A1.77 ± 0.22 (n = 13)

Combination

genotypes with the

P27R, A85G,

Q320P, and V397I

CC-CC-AA-AG A1.77± 0.07 (n = 30) 0.001

CC-CC-AA-GG A1.69± 0.07 (n = 42)

CC-CC-AC-AA B1.52± 0.10 (n = 23)

CC-CC-AC-AG A1.75± 0.05 (n = 64)

CC-CC-CC-AA A1.78± 0.10 (n = 18)

Values with different letters (A, B) within the same row differ significantly at P < 0.01.

TABLE 7 | Relationship between the A85G locus of the GDF9 gene and growth

parameters in Shaanbei white cashmere (SBWC) goats.

Parameters Genotypes (N) P-values

CC CG

BL (cm) B68.72 ± 0.26 (n = 288) A71.33 ± 0.58 (n = 12) 0.001

HG (cm) B90.14 ± 0.47 (n = 297) A95.17 ± 1.28 (n = 12) 0.002

BL, body length; HG, heart girth. Values with different letters (A, B) within the same row

differ significantly at P < 0.01.

was superior when compared with the wild type (Table 7). No
significance was found for P27R and growth traits. However,
combination genotypes of P27R and A85G were proved to be

Frontiers in Veterinary Science | www.frontiersin.org 5 July 2020 | Volume 7 | Article 406

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Bi et al. GDF9 Variants and Goat Fecundity

TABLE 8 | Least squares mean and standard error for growth parameters of

different combination genotypes of the SNPs P27R and A85G within the GDF9

gene in Shaanbei white cashmere (SBWC) goats.

Parameters Genotypes (N) P-values

CC-CC CG-CG

HW (cm) A31.67 ± 1.85 (n = 283) B20.15 ± 0.61 (n = 13) 6.9E−8

CCI (%) A19.77 ± 0.76 (n = 275) B14.89 ± 0.45 (n = 13) 1.0E−6

HW, hip width; CCI, cannon circumference index. Values with different letters (A, B) within

the same row differ significantly at P < 0.01.

significantly associated with hip width (P = 6.9E−8) and the
cannon circumference index (P = 1.0E−6), with the phenotype
of the homozygosity genotype showing a superior performance
over the heterozygosity genotype (P = 6.9E−8; Table 8).

Protein Function Prediction of SNP Loci
For protein function prediction of the P27R and A85G loci,
the scores of SIFT, PolyPhen-2, and PROVEAN suggested that
their influence on the GDF9 protein was benign and probably
damaging, respectively. The scores implied that A85G had an
impact on protein structure change of the goat GDF9 gene.

DISCUSSION

TheGDF9 gene plays a considerable role in the control of somatic
cell functions such as follicular proliferation, ovulation, and
fertilization, as well as enhancing oocyte development in females
(51, 52). Therefore, study of the GDF9 gene and its mutations is
worthwhile (53, 54). In the current study, three SNP loci (P27R,
L61L, and A85G) were identified within the goat GDF9 gene.
The L61L locus is reported to have a negative association with
litter size in Jining Gray and Yimeng Black goat breeds (55).
However, no significant association has been noted in Wendeng
dairy, Liaoning cashmere, Beijing native, Boer, and Lubei goat
breeds (23), which was consistent with the findings of this study.
This may be due to a breed-specific effect or some degree of
linkage between L61L and other SNP loci (22). Furthermore,
two novel SNP loci, P27R and A85G, were detected to have low
mutation frequencies and be strongly linked. The A85G locus was
found to be significantly associated with litter size in SBWC goats
while the P27R locus was not. However, combination genotypes
of P27R and A85G showed significant association with litter size
of SBWC goats with the heterozygosity genotype having a larger
litter size. This could imply that these two SNP loci may exert
a synergistic effect on litter size in goats. Considering that the
SIFT, PolyOhen-2, and PROVEAN scores of P27R and A85G
were benign and probably damaging, respectively, A85G might
be responsible for changes in protein structure as well as DNA-
binding ability. Additionally, this variation may alter GDF9 gene
outcomes in terms of post-transcriptional regulation, such as
RNA modification (56, 57), alternative splicing (58), and tRNA
processing (56). For P27R, which is suggested to have no effect on
changes in protein structure, it might be linked with other major
polymorphisms exerting indirect effects (20).

In our previous studies, a 12-base pair indel (36) and two
strongly linked SNP loci, Q320P and V397I, were significantly

associated with litter size in goats (20). Q320P&V397I and
P27R&A85G were regarded as block1 and block2, respectively.
To investigate the relationship between block1 and block2,
LD analyses were performed. Results illustrated that no
strong linkage existed between the two blocks, but the
combination genotype of the Q320P&V397I&P27R&A85G loci
was significantly associated with litter size in goats, and it
could be speculated that the two blocks affected litter size
synchronously. Given the fact that quantitative traits are
controlled by multiple loci, and only two strongly linked blocks
have been uncovered to date (20), the identification of novel
strongly linked loci, as well as their combined effects, would be
promising for MAS breeding.

Already knowing that growth traits are positively correlated
with reproductive traits (39), our study set out to determine
whether the two strongly linked SNPs had a significant
effect on growth traits. Association analyses showed that
A85G was significantly associated with growth traits, but
this was not true of P27R. However, combination genotype
analyses further verified that combination genotypes of P27R
and A85G exerted a significant effect on growth traits.
These findings hinted that P27R and A85G might have a
synergistic effect on growth performance. Therefore, both
A85G and P27R could be considered as growth-related loci to
some degree.

CONCLUSION

In conclusion, two novel rare missense SNPs were verified to be
strongly linked in this study. Moreover, A85G was significantly
associated with litter size, and P27R could have a simultaneous
effect. The present study succeeded in establishing a clear and
significant correlation between two SNPs (P27R and A85G)
within the GDF9 gene with litter size in SBWC goat. Further
studies are needed to identify sire effect before the commercial
use of these SNPs in MAS.
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