@ARTICLE{10.3389/fvets.2020.00562, AUTHOR={Caffarena, Rubén Darío and Meireles, Marcelo Vasconcelos and Carrasco-Letelier, Leonidas and Picasso-Risso, Catalina and Santana, Bruna Nicoleti and Riet-Correa, Franklin and Giannitti, Federico}, TITLE={Dairy Calves in Uruguay Are Reservoirs of Zoonotic Subtypes of Cryptosporidium parvum and Pose a Potential Risk of Surface Water Contamination}, JOURNAL={Frontiers in Veterinary Science}, VOLUME={7}, YEAR={2020}, URL={https://www.frontiersin.org/articles/10.3389/fvets.2020.00562}, DOI={10.3389/fvets.2020.00562}, ISSN={2297-1769}, ABSTRACT={Cryptosporidium parvum, a major cause of diarrhea in calves, is of concern given its zoonotic potential. Numerous outbreaks of human cryptosporidiosis caused by C. parvum genetic subtypes are reported yearly worldwide, with livestock or water being frequently identified sources of infection. Although cryptosporidiosis has been reported from human patients in Uruguay, particularly children, epidemiologic information is scant and the role of cattle as reservoirs of zoonotic subtypes of C. parvum has not been explored. In this study, we aimed to (a)-identify C. parvum subtypes infecting dairy calves in Uruguay (including potentially zoonotic subtypes), (b)-assess their association with calf diarrhea, (c)-evaluate their spatial clustering, and (d)-assess the distance of infected calves to surface watercourses draining the farmlands and determine whether these watercourses flow into public water treatment plants. Feces of 255 calves that had tested positive for Cryptosporidium spp. by antigen ELISA were selected. Samples had been collected from 29 dairy farms in seven Uruguayan departments where dairy farming is concentrated and represented 170 diarrheic and 85 non-diarrheic calves. Selected samples were processed by nested PCRs targeting the 18S rRNA and gp60 genes followed by sequencing to identify C. parvum subtypes. Of seven C. parvum subtypes detected in 166 calves, five (identified in 143 calves on 28/29 farms) had been identified in humans elsewhere and have zoonotic potential. Subtype IIaA15G2R1 was the most frequent (53.6%; 89/166), followed by IIaA20G1R1 (24.1%; 40/166), IIaA22G1R1 (11.4%; 19/166), IIaA23G1R1 (3.6%; 6/166), IIaA17G2R1 (3%; 5/166), IIaA21G1R1 (2.4%; 4/166), and IIaA16G1R1 (1.8%; 3/166). There were no significant differences in the proportions of diarrheic and non-diarrheic calves infected with any of the C. parvum subtypes. Two spatial clusters were detected, one of which overlapped with Uruguay's capital city and its main water treatment plant (Aguas Corrientes), harvesting surface water to supply ~1,700,000 people. Infected calves on all farms were within 20–900 m of a natural surface watercourse draining the farmland, 10 of which flowed into six water treatment plants located 9–108 km downstream. Four watercourses flowed downstream into Aguas Corrientes. Calves are reservoirs of zoonotic C. parvum subtypes in Uruguay and pose a public health risk.} }