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The rumen microbiome plays a fundamental role in all ruminant species, it is involved

in health, nutrient utilization, detoxification, and methane emissions. Methane is a

greenhouse gas which is eructated in large volumes by ruminants grazing extensive

grasslands in the tropical regions of the world. Enteric methane is the largest contributor

to the emissions of greenhouse gases originating from animal agriculture. A large

variety of plants containing secondary metabolites [essential oils (terpenoids), tannins,

saponins, and flavonoids] have been evaluated as cattle feedstuffs and changes in

volatile fatty acid proportions and methane synthesis in the rumen have been assessed.

Alterations to the rumen microbiome may lead to changes in diversity, composition,

and structure of the methanogen community. Legumes containing condensed tannins

such as Leucaena leucocephala have shown a good methane mitigating effect when

fed at levels of up to 30–35% of ration dry matter in cattle as a result of the effect

of condensed tannins on rumen bacteria and methanogens. It has been shown that

saponins disrupt the membrane of rumen protozoa, thus decreasing the numbers of both

protozoa and methanogenic archaea. Trials carried out with cattle housed in respiration

chambers have demonstrated the enteric methane mitigation effect in cattle and sheep

of tropical legumes such as Enterolobium cyclocarpum and Samanea saman which

contain saponins. Essential oils are volatile constituents of terpenoid or non-terpenoid

origin which impair energy metabolism of archaea and have shown reductions of up to

26% in enteric methane emissions in ruminants. There is emerging evidence showing

the potential of flavonoids as methane mitigating compounds, but more work is required

in vivo to confirm preliminary findings. From the information hereby presented, it is clear

that plant secondary metabolites can be a rational approach to modulate the rumen

microbiome and modify its function, some species of rumen microbes improve protein

and fiber degradation and reduce feed energy loss as methane in ruminants fed tropical

plant species.
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INTRODUCTION

A rise in the demand of beef and milk in a time horizon to
the year 2050 has been predicted due to increasing population,
urbanization and the rise in income by some strata of society (1).
In the forthcoming years, ruminant production systems will be
affected by occasional shocks such as emerging diseases, trade
wars, but more regularly by climate change (causing droughts,
floods, etc.), which results from the increasing concentrations of
greenhouse gases such as carbon dioxide (CO2) methane (CH4)
and nitrous oxide (N2O) among other gases in the atmosphere.
Ruminant production systems contribute significantly to the
emissions of enteric CH4 (2) to the atmosphere. Considerable
research efforts are being invested in the attempt to mitigate this
potent greenhouse gas which is 28 times a higher global warming
potential compared to that of CO2 (3).

Tropical pastures are characterized by a high concentration
of structural carbohydrates (cellulose, hemicellulose) and low
concentrations of crude protein (N x 6.25). A fact which
constrains anaerobic fermentation of organic matter and induces
long retention times of digesta in the reticulo-rumen (4), leading
to high emissions of enteric CH4 (5). Under those circumstances,
it has been claimed that secondary metabolites contained in a
wide variety of plants may mitigate CH4 emissions through a
variety of mechanisms involving the rumen microbiome (6–8).
Although secondary metabolites may be usually considered
beneficial, the concentration of certain ergot alkaloids such
as ergosine and ergocristine in pastures may lead to toxicity
under certain circumstances in grazing animals such as sheep
and horses (9). Maximal anaerobic fermentation of structural
carbohydrates in the rumen is paramount in the transit toward
sustainable intensification of tropical animal agriculture by
extracting the largest possible amount of useful energy from
the rumen which is limited thermodynamically (only 4–5
ATP/mol glucose fermented), for productive purposes. Rumen
anaerobiosis dictates that only a limited amount of ATP can
be generated from glucose fermentation to volatile fatty acids,
heat, CO2, and CH4 (10). The rumen microbiome is strongly
associated to economically and environmental variables which
affect feed efficiency and sustainability of ruminant production
(11, 12). Increasing the flow of H2 in the rumen away from
CH4 formation toward propionic acid synthesis increase the
efficiency of metabolisable energy utilization at the whole
animal level while reducing the environmental impact of animal
production. It has been recently demonstrated that propionic
acid bacteria increase feed degradability and decrease methane
production under in vitro conditions thus shifting the H2 flow
away from CH4 synthesis toward propionate formation (13), a
gluconeogenic precursor.

Other rumen microorganisms are the anaerobic fungal
communities, eighteen species from six genera, including
monocentric Neocallimastix, Caecomyces, Piromyces, and the
polycentric Anaeromyces, Orpinomyces, and Cyllamyces. These
groups of microorganisms serve to expose cellulosic components
to bacteria to synthesize VFA, but the relationship of fungal
abundance with methane emission is still uncertain (14, 15).
Rumen metagenome sequencing studies reveal that the higher

abundance of Bacteroidetes in the rumen improves feed
efficiency, combined with a lower abundance of Firmicutes
and methanogenic archaea (16). It has been shown that the
reduction of genera such asMethanobrevibacter and Acetobacter
are potential targets for the reduction of CH4, on the other
hand, an increase in the abundance of the generaMethanosphaera
and Eubacterium led to reductions in CH4 emissions in heifers
(17). The diversity of the rumen microbiome is related to a
myriad of factors such as breed, age, rumen volume and passage
rate, geographical location, physiological stage, but essentially
to the chemical composition of the ration consumed which
is reflected in the resulting pattern of fermentation (15, 18).
It is in this context, that plant secondary metabolites (PSM)
such as tannins, saponins, essential oils, and flavonoids play
an important role in the efforts to mitigate the emissions of
CH4 from ruminant species. There is a large number of shrub
and trees, both legume and non-legume species with great
potential for ruminant production in the tropics (19–21) among
them, Leucaena leucocephala is one of the most promising (22),
which contain a wide variety of secondary compounds (23–
27) with potential methane-suppressing properties. Secondary
metabolites display different mechanisms of action either direct
or indirect on the ruminal fermentation and rumen microbiome
which decreases CH4 synthesis, but an important factor to
consider is the persistency of the effect. The aim of the present
review is to critically examine the mechanisms of action of
secondary compounds contained in a number of tropical plant
species on CH4 mitigation in ruminants.

METHANE SYNTHESIS

Ruminants are herbivorous that maintain a symbiotic
relationship with a large consortium of microorganisms which
inhabit the reticulo-rumen. The rumen microbial ecosystem has
not been fully studied; therefore, it is difficult to understand all
the mechanisms of its functioning, complexity, and interaction
among the microbes (28). In the rumen, protozoa, bacteria,
and fungi communities ferment enzymatically structural
carbohydrates, starch, and proteins. During the fermentation
process, volatile fatty acids (VFA), CO2, and metabolic H2 are
produced and used by methanogenic archaea for the synthesis
of CH4 (7). Methanogenic archaea fluctuate between 107 and
109 cells per milliliter of rumen fluid (29) and approximately
two thirds belong to the genus Methanobrevibacter and
Methanosarcina (30) representing 1–4% of the microbial
biomass. Protozoa use starch, cellulose, hemicellulose, pectin,
and soluble sugars to produce VFA and metabolic H2 that is
used by the archaea that are attached to its surface to produce
CH4 (31); thus, there is an association between archaea and
the protozoa in the rumen (26, 32). Archaea produce CH4 as
a metabolic strategy to obtain the energy necessary for their
growth (33). Rumen methanogens use the H2 resulting from
the fermentation of carbohydrates to reduce CO2 to CH4 in a
series of biochemical reactions coupled to ATP synthesis, where
CO2 is used as a carbon source and H2 as the main donor of
electrons. In this process, 4 moles of H2 are used to produce one
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mole of CH4 (34). The chemical reaction for methane synthesis
is CO2 + 4H2 → CH4 + 2H2O.

Methanogenesis is the main biochemical pathway for the
removal of metabolic hydrogen released from fermentation
of carbohydrates in the rumen. A decrease in CH4 synthesis
would be achieved by inhibiting H2-releasing reactions or
promoting alternative pathways, where H2 is removed during
fermentation. The rate of methane production in the rumen
depends particularly on the composition of the ration, being
the type carbohydrate (cellulose vs. starch), protein and lipids,
the components that most influence exert (26, 35), but also on
physiological factors such as retention time of digesta in the
rumen. The main factor from the ration determining methane
synthesis in the rumen is the type of carbohydrate fermented,
either structural (cellulose, hemicellulose) typical of forage
rations or non-structural (starch, soluble sugars) characteristic
of grain (concentrate) rations. The type of carbohydrate being
fermented in the rumen also dominates the composition of the
rumen microbiome (cellulolytic, amylolytic, pectinolytic, types
of bacteria).

Methane is a gas produced in the rumen and is continuously
emitted throughout the day; mostly eructated to the atmosphere
by the mouth and to a lesser extent by the nostrils (and the
anus). CH4 has a heat of combustion of 892.6 kJ/mol (i.e.,
55.65 MJ/kg) (36) and represents an energy loss (3–12% of gross
energy intake) for the animal. There is considerable potential to
manipulate the fate of metabolic hydrogen in the rumen, away
from methane synthesis toward propionic acid formation which
consumes the hydrogen available, by feeding plants containing
secondary metabolites to ruminants. Methanogenesis is the main
molecular H2 sink in the rumen and the partial pressure of H2

thermodynamically controls the oxidation-reduction state in this
organ for fermentation to proceed for the synthesis of volatile
fatty acids, heat, and microbial matter (37). Propionic acid is the
only gluconeogenic volatile fatty acid with potential to improve
the efficiency of utilization of metabolisable energy in the whole
animal for productive purposes (38). The challenge ahead for the
development of low-emission animal production systems lies in
inducing changes in the rumen microbiome by feeding plants
containing secondary metabolites, which will induce alterations
in rumen fermentation, rechannelling H2 into more energetically
efficient biochemical pathways (i.e., VFA synthesis: propionate)
which will concomitantly decrease CH4 formation.

PLANT SECONDARY METABOLITES FOR
THE REDUCTION OF METHANE
SYNTHESIS

PSM have long been considered important for their protective
role against plant predators, their synthesis is regulated by
environmental, seasonal, or external stimuli. For years, secondary
metabolites have been considered toxic to animals and they were
termed anti-nutritional factors (39). However, in the last few
decades those metabolites have gained growing interest in animal
nutrition due to their beneficial effect for the control of parasites,
rumen fermentation, and methane synthesis reduction.

PSM possess ample biological activity in ruminal fermentation
processes involved in herbivory and also by their potential to
affect growth rate of the rumen microbial population so as to
provoke changes that induce mitigation of enteric CH4 emissions
in ruminants (27). Tannins (8, 40), saponins (25, 41) essential oils
(24, 42), and flavonoids (41, 43) have all been evaluated in their
potential for enteric CH4 mitigation in ruminants. Frequently,
their effects on the rumen microbial population are indirect
rather than direct. Plants may have a wide variety of secondary
metabolites in large or small quantities which may determine
their effect on rumen microorganisms. Table 1 describes the
effect of PSM onmethane production and Table 2 show the effect
of secondary metabolites on the microbial population.

TANNINS

Tannins belong a subclass of plant polyphenols (8). Tannins
can be divided in hydrolysable and condensed tannins which
have different chemical structures (66). Hydrolysable tannins
usually contain a polyol core molecule, usually glucose, but
also other core molecules such as: glucitol, hammamelose,
shikimic acid, quinic acid, and quercitol. On the other
hand, condensed tannins distinguish themselves from other
polyphenols by their capacity to form complexes and precipitate
proteins. They are proanthocyanidins consist of oligomers
or polymers of flavan-3-ol subunits (67). Condensed tannins
are the secondary metabolites more studied in terms of
methane mitigation compared to hydrolysable tannins. Figure 1
illustrates the chemical structure of common condensed and
hydrolysable tannins.

Tannins have the capacity to reduce methane synthesis in the
rumen directly or indirectly by either inhibiting methanogens
or protozoal population, respectively. There are several possible
hypotheses to explain the mechanisms of action of tannins
on enteric CH4 mitigation (40). One of them suggest a direct
effect of condensed tannins on rumen methanogenic archaea
by binding the proteinaceous adhesin or parts of the cell
envelope, thus impairing the establishment of the methanogen-
protozoa complex and decreasing interspecies hydrogen transfer
and inhibition of methanogen growth (68). Another possible
explanation is by indirect inhibition by reducing the availability
of nutrients (i.e., carbohydrates, amino acids) to rumen
microorganisms, tannin–protein complexes are formed at in the
rumen and that postruminal pH shifts in the abomasum (pH
<3.5) and the small intestine (pH >7) release protein from these
complexes, thus making it available for gastric digestion (69),
thus reducing digestibility of feed, and impairing the rumen
microbial population. A last theory proposes that condensed
tannins act as hydrogen sink themselves diminishing their
availability for carbon dioxide reduction to methane, implying
that 1.2mol methane is reduced per mol of catechin (i.e., 6 H2

atoms per molecule of catechin) (40).
Crossbred cows fed a mixture of a low-quality tropical

grass (Megathhyrsus maximus) and increasing levels of chopped
legume leaves of Leucaena leucocephala, and housed in open-
circuit respirations chambers decreasedmethane production (44)
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TABLE 1 | Effect of plant species or plant extracts containing secondary metabolites on enteric methane mitigation in ruminants as measured in open-circuit respiration

chambers in tropical regions.

References Scientific name Family Part of plant Tannins Saponins Essential

oils

Flavonoids Methane mitigation (%)

over control ration

Secondary compounds

(44) Leucaena

leucocephala

Fabaceae Forage + 20

(45) Samanea saman Fabaceae Pods + + 50

(46) Enterolobium

cyclocarpum +

Gliricidia sepium

Fabaceae Pods + forage + + 6.3

(47) Fagopyrum

esculentum

Polygonaceae Rutin + 0

(48) Leucaena

leucocephala

Fabaceae Forage + 14

(49) Termalia chebula Combretaceae Seed pulp + 13

(49) Allium sativum Amaryllidaceae Bulb + 2.5

(50) Mimosa

caesalpiniaefolia

Fabaceae Forage + 31.2

(50) Eucalyptus spp. Myrtaceae Oil + 30

as the level of leucaena intake was increased from 0 to 36% of
ration DM. Leucaena leucocephala is a legume species widely
distributed in Latin America and The Caribbean regions, which
is commonly fed to cattle by farmers (70). The reduction up to
20% in methane emissions, agrees with previous work carried
out with cows fed Leucaena leucocephala in Colombia (48) and
in grazing cows consuming leucaena pastures in Australia (71).
It is likely that under those conditions, condensed tannins in
the legume had an effect on the rumen microbial population
reflected in methane reduction. It has been considered that
high molecular weight CT fractions of Leucaena leucocephala
have higher protein-binding affinities compared to lowmolecular
weight fractions, therefore the effect may be associated to the
binding ability to cell membranes, resulting in the prevention
of nutrient transport into the cell and inhibition of microbial
growth (72).

Other tropical legumes such as Desmanthus spp. have also
induced a reduction in enteric CH4 emissions in cattle grazing
tropical pastures (73). In India, Pal et al. (74) studied a range
of tree leaves containing different concentrations of condensed
tannins, demonstrating the strong relationship between tannin
content in leaves and methane mitigation under in vitro
conditions. Condensed tannins (17.2%) and saponins (10.9%)
from mangonsteen peel offered at 100 g/head/day to swamp
buffaloes increased total bacteria population and R. flavefaciens
while methanogens were decreased (p < 0.05) (51). Another
study reported a reduction in methane production of up to 25%
with mangosteen peel and garlic pellet (75). Acacia cyanophylla
in an in vitro study supplemented at 60 and 30% reduced 37.5
and 56.2% CH4 production, respectively due to the high content
of condensed tannins that reduced archaea (76).

SAPONINS

Saponins are high molecular weight glycosides, with a sugar
linked to a hydrophobic aglycone (Figure 2). They usually occur

as glycosides of steroids or as polycyclic triterpenes. Saponins
can be generally classified as steroidal and triterpenoid (77).
Saponins are present in a wide variety of tropical trees and
shrubs and ruminant species eagerly consume their foliage
or pods while browsing. It is generally considered that their
main biological effect is on cell membranes. Saponins have
been described to be toxic to protozoa (25) and it has been
suggested thatmethanogenic archaea are symbiotically associated
to rumen protozoa.

Saponins have the capacity to form complexes with the
lipid membrane of bacteria, which increases their permeability,
generating an imbalance, and consequently lysis of the
microorganism, most of the saponins have an effect on
protozoa (78). Wallace et al. (79) proposed that saponins may
disrupt protozoa by forming complexes with sterols in the
protozoal membrane surface which then becomes impaired
and disintegrate. In addition, some saponins have influence on
different types of membrane proteins such as Ca2+ channels
and Na+-K+ ATPases (80). Ramos-Morales et al. (81) proposed
that the effect of saponins on protozoa is temporary due to
the fact that bacteria may degrade saponins into sapogenins, a
compound that cannot affect protozoa. Wina et al. (82) suggested
that protozoa are able to produce extracellular polysaccharides
around the membrane to avoid its degradation. In addition,
protozoa, depending on the dose and type of the saponin fed, can
be reduced in the long term or adapt to themetabolite in the short
term (82).

Samanea saman (rain tree, in Spanish: algarrobo, genízaro)
is a tropical legume present in Mexico, Central America and
northern countries of South America as well as Asia and Africa.
It contains crude protein and fermentable sugars, the pods
fall during the dry season and they are directly consumed by
cattle (83). Anantasook et al. (52) supplemented ground pods of
Samanea saman (rain tree) containing tannins and saponins to
rumen-cannulated dairy steers fed a basal ration of urea-treated
rice straw and found a reduction in methane emissions also
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TABLE 2 | Effect of secondary metabolites on rumen microorganisms.

References Source Study Secondary compound Microorganisms affected

(51) Mangosteen peel In vivo Condensed tannins; Saponins ↑Total baceteria; ↓Methanogens; ↓R. flavefaciens;

=F. succinogenes; = R. albus

(52) Samanea saman In vivo Condensed tannins; Saponins ↑F. succinogenes, ↓Protozoa; ↓Methanogens

(50) Arachis pintoi In vitro Condensed tannins ↓Fungi; ↑Methanogens; ↓R. flavefaciens; ↓F.

succinogenes

(50) Crotalaria juncea In vitro Condensed tannins ↓Fungi; ↑Methanogens; ↓R. flavefaciens; ↑F.

succinogenes

(50) Cajanus cajan In vitro Condensed tannins ↓Fungi; ↑Methanogens; ↓R. flavefaciens; ↓F.

succinogenes

(50) Dolichos labla In vitro Condensed tannins ↓Fungi; ↓Methanogens; ↓R. flavefaciens; ↓F.

succinogenes;

(50) Leucaena leucocephala In vitro Condensed tannins ↓Fungi; ↑Methanogens; ↓R. flavefaciens; ↓F.

succinogenes

(50) Mucuna pruriens In vitro Condensed tannins ↓Fungi; ↑Methanogens; ↓R. flavefaciens; ↓F.

succinogenes

(50) Mucuna aterrimum In vitro Condensed tannins ↑Fungi; ↑Methanogens; ↓R. flavefaciens; ↓F.

succinogenes

(50) Mimosa caesalpiniaefolia In vitro Condensed tannins ↓Fungi; ↑Methanogens; ↓R. flavefaciens; ↓F.

succinogenes

(50) Tephrosia candida In vitro Condensed tannins ↑Fungi; ↑Methanogens; ↓R. flavefaciens; ↓F.

succinogenes

(53) Citrus aurantium; Citrus paradisi

(Commercial product)

In vitro Flavonoids ↓Hydrogenotrophic methanogenic archaea;

↓Methanosarcina spp; ↑M. elsdenii

(54) Pomegranate In vivo Flavonoids and saponins ↑Total protozoal population, ↑Entodinium sp.

↑Isotricha sp.

(55) Not specified In vitro Flavonoids ↑Total bacteria; ↑Protozoa

(56) Not specified In vitro Flavonoids ↑Population of general bacteria; > general fungi;

↑Fibrobacter succinogenes; ↑Ruminococcus albus;

↑Ruminococcus flavefaciens

(57) Punica granatum, Betula schmidtii,

Ginkgo biloba, Camellia japonica, and

Cudrania tricuspidata

In vitro Flavonoids ↓F. succinogenes; ↑Ruminoccocus albus and ↑R.

flavefaciens

(58) Psidium guajava leaves In vitro Flavonoids = Protozoal count

(59) Piper sarmentosum leaf powder In vivo Flavonoids ↑Protozoa; = Bacterial population

(60) Glycyrrhiza glabra roots In vitro Flavonoids = Total number of bacteria; = archaea diversity

(61) Carica papaya Leaf In vitro Flavonoids ↑Total bacteria; ↑Total protozoa, ↑Butyrivibrio

fibrisolvens and ↑Methanogen population

(62) clove oil, eucalyptus oil, garlic oil,

origanum oil.

In vitro Essential oils ↑Archaea, protozoa; ↑Fibrobacter succinogenes;

↑Ruminococcus flavefaciens, and ↑R. albus

(42) Thymus capitatus L., Rosmarinus

officinalis L., Cinnamomum

zeylanicum, Anethum graveolens L.,

and Eucalyptus globulus Labill and

combinations

In vitro Essential oils ↓Prevotella spp., ↓Archaea and ↓Protozoa

(63) Commercial blend oil In vivo Essential oils =Total viable bacteria and protozoa; ↑Cellulolytic

bacteria; ↓Hyper ammonia producing bacteria

(64) Origanum vulgare L. In vivo Essential oils ↑Ruminal fungi; ↓Protozoa; ↑R. flavefaciens, R.

albus and F. succinogenes

(65) Cinnamomum zeylanicum and

Thymus vulgaris

In vivo Essential oils ↓Methanogens and protozoa; ↓Fibrobacter

succinogenes; ↓Ruminococcus albus;

=Ruminococcus flavefaciens

in the protozoal population while propionic acid concentration
in the rumen was increased. They concluded that saponins in
Samanea saman contributed to alter the rumen microbiome by
decreasing protozoa and probably methanogenic archaea with

the resultant decrease of up to 50% in CH4 synthesis. Valencia-
Salazar et al. (45) fed crossbred heifers housed in respiration
chambers with ground pods of Samanea saman at different levels
and demonstrated a reduction in enteric CH4 production of up to
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FIGURE 1 | Chemical structure of condensed and hydrolyzable tannins.

50% and an increase in propionic acid in rumen liquor, although
no effect on the rumen protozoal population was recorded. In this
experiment the rechannelling of H2 toward propionate synthesis
in the rumen, was the most plausible explanation for the decrease
in methane emissions.

Foliage and pods (45) of Samanea saman show good potential
to mitigate enteric methane emissions under practical conditions
in farms as part of the ration of grazing ruminants, particularly
during the dry season. Similarly, Enterolobium cyclocarpum (in
Spanish: guanacaste, parota) is a tropical tree which produce
foliage and pods which can be employed in ruminant feeding.
It is widespread in Central and northern South America and
also in Africa (Nigeria). The seeds contain starch (84) and
the ground pods of Enterolobium cyclocarpum can be readily
incorporated in the rations of sheep at levels of 32% (85)
and up to 50% (86) with good results in terms of liveweight
gain. It has been studied in Canada (87, 88), in Switzerland
(89, 90) and in the United Kingdom (91) because of its
methane-suppressing properties. It seems the saponins contained
in the foliage of Enterolobium cyclocarpum affect rumen protozoa
population in a selective form (87, 88). The foliage is readily
consumed by goats (92). Albores-Moreno et al. (93) found that
supplementation of hair sheep with ground pods of Enterolobium

cyclocarpum (36% DM) decreased enteric methane emissions
(estimated by fermentation balance stoichiometry) and the
protozoa population, probably as a result of the effect of saponins
on the membrane of some protozoa species.

ESSENTIAL OILS

Essential oils (EO) are aromatic compounds (Figure 3) largely
volatile, which can be found in edible, medicinal, and herbal
plants. They are produced in special cells in different parts of the
plants, including roots, seeds, fruit, leaves, flowers, bark, petals,
and stems (94).

The potential of EO for enteric CH4 mitigation has been
revised (24, 91). The beneficial effects of EO on the animal
such as antioxidant, anti-inflammatory, immune status, and
antimicrobial have been shown against a wide variety of
microorganisms either Gram-positive or Gram-negative bacteria,
fungi, viruses, and protozoa, but more effective against the Gram
positive, because most active compounds present in essential
oils are lipophilic. In the Gram-negative type, the aromatic
hydrocarbons destroy the external membrane (94, 95). This
antimicrobial activity is believed to be due to certain terpenoids;
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FIGURE 2 | Chemical structure of saponins.

FIGURE 3 | Chemical structures of some essential oils.

(15,000 described in the literature) and phenolic compounds
but also to other chemical constituents and functional groups
contained in essential oils, 20–60 chemical substances such

as acids, alcohols, aldehydes, hydrocarbons, ketones, esters,
coumarins, and ethers in trace amounts have been identified (96).
EO present a high affinity for the membrane cell of bacteria
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FIGURE 4 | Chemical structures of common flavonoids.

due to their hydrophobic nature and their affinity for lipids
which can disrupt the cytoplasmic membrane either directly
or by damaging the membrane proteins, provoking increased
membrane permeability, conformational changes, leakage of
cytoplasmic components, interfering with bacterial growth
and activity, causing changes in the rumen population and
fermentation profile (97, 98).

The antimicrobial action has been related to electron
transport, ion gradient, protein translocations, phosphorylation,
and enzyme reactions (99). It has been proposed that
the phenolics thymol and carvacrol inhibit Gram-negative
bacteria by disrupting the outer cell membrane and decreasing
the concentration gradient (42). EO may cause changes in
the archaeal community structure, decreasing methanogen
abundance, some protozoa species, and methane production
up to 37%, the challenge is finding the appropriate essential
oil which minimize the decrease in feed degradation (98).
In vitro experiments have been encouraging using thymol,
carvacrol, cinnamaldehyde, and allicin, limonene and in vivo
Xtract R©6965, rosemary, cinnamaldehyde, anise, garlic, juniper
berry, capsicum, ropadiar R©, eugenol, crina R© blends among
others. Mohammed et al. (100) were able to decrease CH4

emissions by 19% in steers fed α-cyclodextrin-horseradish
oil complex as a methane-suppressing component. However,
Benchaar (101) found no effect of oregano oil and carvacrol
on enteric CH4 emissions when fed (50 mg/kg DM) to dairy
cows, Belanche et al. (102) found a decrease in methane

emissions when they fed Agolin Ruminant R© (essential oils
blend) to dairy cows, similarly Castro-Montoya et al. (103)
also found a reduction in enteric CH4 emissions in dairy
cows fed Agolin Ruminant R© in the ration during 6 weeks
of supplementation.

Wu et al. (104) reported that intermittent feeding of citrus
essential oils (d-limonene) has potential to mitigate CH4

emissions in Hu sheep by reducing microbial adaptation. Du
Han hybrid sheep housed in open-circuit respiration chambers
decreased enteric CH4 emissions when they were supplemented
with essential anise oil, probably because of the effect of the
oil on the rumen microbial population (105). It remains to be
seen the potential of EO for CH4 mitigation under commercial,
practical conditions in cattle and sheep farms. Citrus by-products
are widely used as energy supplements during the dry season in
many tropical countries with good results in animal performance
(106, 107). It is of special attention that some essential oils
elicit feed consumption due to the aroma they add to the
ration and in some other cases negatively affect palatability,
as in the case of garlic oil (108). Further trials are needed, to
consider the use of essential oils as a commercial option at
farm level, learn about the interactions of the active compounds
with the ingredients of the ration and their capacity against
specific methanogens should be identified without affecting other
groups of microorganisms in the rumen, so as not to alter
fermentation pattern and rumen degradability, as well as the
different doses for each essential oil, the persistence of the enteric

Frontiers in Veterinary Science | www.frontiersin.org 8 August 2020 | Volume 7 | Article 584

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Ku-Vera et al. Secondary Compounds Methane Mitigation Ruminants

CH4 mitigating, the possible increase in production and its
economic benefits.

FLAVONOIDS

Flavonoids are polyphenols with the C6-C3-C6 skeleton,
derivatives of benzo-L-pyrone (109, 110) which are found
in seeds and vegetables and display anti-inflammatory,
antioxidative, and antimicrobial properties and interfere
with different bactericidal factors, including enzymes, toxins,
and signal receptors (111) and potential to improve animal
welfare. Flavonoids can be generally classified on the basis
of their molecular structure and are grouped into eight
different flavonoid groups: flavanol, flavandiol, flavanone,
dihydroflavonol, flavone, flavonol, isoflavone, and anthocyanidin
[(112); Figure 4].

Flavonoids are well-known to be beneficial during periods
of animal stress, balance rumen pH in subacute acidosis,
reduce the inflammatory state of high grain diets, and for
their antibacterial activity which depends on their chemical
structure particularly on the substitutions on the aromatic
rings (41). Flavonoids exert their effect against Gram-positive
microorganisms by inhibiting the function of the cytoplasmic
membrane, inhibiting the synthesis of the bacterial cell wall,
or by inhibition of nucleic acid synthesis. Flavonoids have
been proposed for incorporation in ruminant rations to
improve productivity through an increase in the production
of propionate relative to acetate (41). Oskoueian et al. (56)
reported that the flavonoid naringin and quercetin reduced
methane production, ciliate protozoa, and hydrogenotrophic
methanogens in vitro.

Seradj et al. (53) found that a commercial citrus extract
of flavonoids blend (Bioflavex R©) reduced methane production,
the population of hydrogenotrophic methanogenic archaea and
increased the concentration of propionate and the population
of Megasphaera elsdenii in vitro. Stoldt et al. (47) found that
rutin (glucrohamnoside of quercetin) had no effect on methane
production or energy metabolism of Holstein cows housed in
respiration chambers. Cui et al. (113) reported that the addition
of 3.0mg rutin/kg to diets on multiparous Chinese Holstein
cows increased milk yield (10.06 %) in the long term and
improved metabolism and digestibility of dairy cows. Other
experiments using Holstein cows and supplementation of 60
mg/kg body weight of alfalfa flavonoid extract increased the
valeric acid:total volatile fatty acid ratio, the composition of
milk, nutrient digestion, and had a tendency to increase the
population of Butyrivibrio fibrisolvens (114). Recently, Sinz
et al. (55) under in vitro conditions found that the flavonoid
luteolin-7-glucoside did reduce methane. It seems from the
data available that flavonoids show potential for methane
mitigation but further research in trials carried out in vivo
are necessary.

The results found with the use of secondary metabolites
for the reduction in methane synthesis are variable and
dependent on the type of the metabolite, its characteristics
and the ration. It is also necessary to verify their effect

on methane production in long-term in vivo trials due to
the possible adaptation of rumen microorganisms to the
metabolite and the differences presented between in vitro and in
vivo trials.

TROPICAL PLANTS CONTAINING
SECONDARY METABOLITES AS A CH4

MITIGATION STRATEGY FOR
SMALLHOLDERS

There are considerable challenges ahead for small livestock
keepers in the way toward sustainable intensification of
animal agriculture in developing countries (115–117). Enteric
CH4 emissions originating from ruminant species have been
accumulating in the atmosphere from decades ago, with the
greatest increase originating from cattle in developing countries,
probably because of the rise in animal numbers (118). In the
present review, the potential of tropical trees and shrubs (21)
to lead the way toward sustainable intensification of ruminant
production has been emphasized with data from experiments
carried out in developing countries. Some of the important
issues to move one step ahead from laboratory experiments to
on-farm application of results, are: fair access to markets for
smallholders, organization of smallholders (i.e., cooperatives),
access to credits and financing, technical support, incorporation
of added value to products, development of sustainable value
chains (119, 120). Small livestock keepers in developing countries
actually use a range of tropical plants (i.e., legumes) to feed
their animals on a daily basis, particularly in the dry season
and therefore, they are mitigating enteric CH4 emissions at
present without actually being aware of it. It is responsibility of
those in office at agricultural ministries, international agencies
(119, 120) or in universities (121) to make this clear to the
general public and to decision makers in their areas of influence.
It is also important to eliminate the distortions in agricultural
policy which unfairly favor economies of scale (large producers)
against small livestock keepers. There is great potential to
mitigate enteric CH4 emissions in the cattle sector in developing
countries with a concomitant improvement in productivity
and livelihoods of the poor (122–124). Novel approaches in
public policies through incentives (tax and trading schemes)
for producers applying CH4 mitigation practices at farms,
may be worth testing in developing countries for widespread
adoption (125). Although, it is also highly advisable to improve
on the methane inventories of regions or indeed countries
from Tier I, to higher levels (i.e., Tier II) of accuracy (126)
before any CH4 mitigation strategy is put into effect on
the field.

CONCLUDING REMARKS

Ruminant production systems will face tremendous challenges in
the next forthcoming years due to the increasing demand for beef
and milk by the burgeoning population. Climate change (floods,
droughts, hail storms) and disease (Covid-19) are imposing
a severe negative impact on the health status and economic
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wellbeing of millions of smallholders in developing countries.
Undernutrition is growing rampant in many Latin American
countries, particularly in rural areas. Sustainable intensification
of ruminant production is a prerequisite to accomplish the
ambitious GHG mitigation goals set by national governments to
comply with international agreements. There is a need to reduce
emissions of greenhouses gases from ruminant production
systems while increasing energetic efficiency of protein and
fat synthesis in the whole body and in the mammary gland.
The ample array of plant secondary metabolites with methane-
suppressing potential will have a role to play regardingmitigation
of enteric CH4 under practical farming conditions in tropical
countries with smallholders. Usually, PSM such as tannins,
saponins, essential oils, and flavonoids act either by affecting
directly methanogenic archaea or indirectly by disrupting the
membrane of rumen protozoa. Some secondary metabolites also
increase molar proportions of propionic acid in the rumen, thus
rechannelling H2 away from methanogenesis toward synthesis
of propionic acid. In the tropics, supplementation with foliage,
pods, tubers, seeds of a range of tropical species seems a rational,
and practical approach for enteric methane mitigation under the
conditions of small-scale ruminant production systems. Browses
and pods of tropical plant species supply rumen fermentable
nitrogen for the microbial population, thus improving microbial
protein synthesis and degradation of fermentable organic matter
in the rumen, a main driver for productivity in ruminant
species. As we advance in our understanding of the mechanisms
by which secondary metabolites alter rumen fermentation,
it is of paramount importance to understand the interplay
between the supply of those metabolites, the rumen microbiome
and methanogenesis so as to maximize feed efficiency, one
of the most important features of financial profitability in
ruminant production.
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