
REVIEW
published: 21 October 2020

doi: 10.3389/fvets.2020.519059

Frontiers in Veterinary Science | www.frontiersin.org 1 October 2020 | Volume 7 | Article 519059

Edited by:

Victoria J. Brookes,

Charles Sturt University, Australia

Reviewed by:

Jaber Amine Belkhiria,

University of California, Davis,

United States

Jörn Gethmann,

Friedrich-Loeffler-Institute, Germany

Gustavo Machado,

North Carolina State University,

United States

*Correspondence:

Luis E. Escobar

escobar1@vt.edu

Specialty section:

This article was submitted to

Veterinary Epidemiology and

Economics,

a section of the journal

Frontiers in Veterinary Science

Received: 10 December 2019

Accepted: 25 August 2020

Published: 21 October 2020

Citation:

Escobar LE (2020) Ecological Niche

Modeling: An Introduction for

Veterinarians and Epidemiologists.

Front. Vet. Sci. 7:519059.

doi: 10.3389/fvets.2020.519059

Ecological Niche Modeling: An
Introduction for Veterinarians and
Epidemiologists
Luis E. Escobar*

Department of Fish and Wildlife Conservation, Virginia Polytechnic Institute and State University, Blacksburg, VA,

United States

Most infectious diseases in animals are not distributed randomly. Instead, diseases

in livestock and wildlife are predictable in terms of the geography, time, and species

affected. Ecological niche modeling approaches have been crucial to the advancement

of our understanding of diversity and diseases distributions. This contribution is an

introductory overview to the field of distributional ecology, with emphasis on its

application for spatial epidemiology. A new, revised modeling framework is proposed

for more detailed and replicable models that account for both the biology of the

disease to be modeled and the uncertainty of the data available. Considering that most

disease systems need at least two organisms interacting (i.e., host and pathogen), biotic

interactions lie at the core of the pathogen’s ecological niche. As a result, neglecting

interacting organisms in pathogen dynamics (e.g., maintenance, reproduction, and

transmission) may limit efforts to forecast disease distributions in veterinary epidemiology.

Although limitations of ecological niche modeling are noted, it is clear that the application

and value of ecological niche modeling to epidemiology will increase in the future.

Potential research lines include the examination of the effects of biotic variables on

model performance, assessments of protocols for model calibration in disease systems,

and new tools and metrics for robust model evaluation. Epidemiologists aiming to

employ ecological niche modeling theory and methods to reconstruct and forecast

epidemics should familiarize themselves with ecological literature and must consider

multidisciplinary collaborations including veterinarians to develop biologically sound,

statistically robust analyses. This review attempts to increase the use of tools from

ecology in disease mapping.

Keywords: spatial epidemiology, ecological niche modeling (ENM), disease mapping, ecological niche,

distributional ecology

INTRODUCTION

Spatial epidemiology is the branch of epidemiology that aims to understand the geographic
distribution of diseases (including its causative agents, hosts, and related factors) (1, 2). Most
diseases in animals are not distributed randomly across landscapes or regions. Instead, researchers
can quantitatively determine specific environmental factors associated with the occurrence of
disease (3, 4). Reports of the spatial location of pathogens, disease vectors, or reservoirs are
becoming more abundant, high quality, and openly accessible for a series of infectious diseases.
Similarly, data on environmental variables are increasing in availability and cover diverse spatial
and temporal scales: from meters to continents and from days to centuries (both retrospective
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and predictive). For example, many datasets of soil composition
and structure (5), landscape composition and structure (6),
and climate and geomorphology (7–9) are freely and openly
available for mapping diseases in aquatic and terrestrial
ecosystems globally. These variables can be linked with disease
data to reconstruct or predict the geographic distribution of
environmentally (e.g., anthrax), vector-borne (e.g., Bluetongue
disease), and directly transmitted diseases (e.g., rabies), which are
important to veterinary medicine. These studies, however, need a
basic understanding of Geographic Information Systems, spatial
statistics, and a deep understanding of the biology of the disease
system to be modeled.

Diseasemodels accounting for environmental information are
particularly informative to understand the spread of diseases that
are undergoing range expansion, which is termed “distributional
disequilibrium” in ecology (10–12). Ecological theories and
methods are commonly used in spatial epidemiology to design
and interpret models of conditions where infections are likely
to occur, with outputs projected to geography as measures
of “suitability.” Suitability has been defined as the “sum” of
the effects of resource and environmental conditions on the
fecundity, demography, and survivorship of populations (13).
Ecological niche modeling has been the main branch of ecology
employed to map disease transmission. Comprehensive reviews
are available elsewhere regarding the fundamentals of ecological
niche modeling for epidemiologists interested in its applications
on medical geography of infectious diseases (14–16). This
manuscript is an overview of the field of ecological niche
modeling for veterinarians and epidemiologists and considers
parasites (e.g., tapeworm) and pathogens (e.g., virus) as agents
causing disease. The content of this review is a friendly
introduction to more specialized literature and study cases
described in more detail elsewhere (17, 18).

Models
A model is a simplification of a complex system. For example, in
biomedicine, mice could be used as animal models to understand
the effects of a drug in humans. In mathematics and statistics,
equations can be used to simplify and summarize complex
phenomena. Some mathematical models can be complex, by
accounting for many details (i.e., parameters) in the disease
system, while other models can be simple, accounting for
just a few, key components of the system. Models can
be used to reconstruct the structure or functioning of the
system in question—termed descriptive models (e.g., the specific
temperatures where a disease vector is found). Complementarily,
models could be used to anticipate how the system would
respond to determined “what-if-scenarios” —termed predictive
models (e.g., the expected distribution of a disease vector under
future temperature). Descriptive models are the basis and first
stage for the development of predictive models.

Descriptive models are generally evaluated in terms of the
capacity of the model to accurately reconstruct patterns found in
the available data. Thus, evaluation metrics used to differentiate
between good and bad descriptive models generally account
for the amount of information lost (e.g., Akaike’s information
criterion) (19) (Figure 1A). Predictive models are evaluated

based on their capacities to accurately predict, better than by
random, new data (i.e., independent data not used during model
calibration). Therefore, evaluation metrics used to differentiate
between good and bad predictive models commonly measure
model capacity to differentiation between actual data and
random observations (e.g., p-value, sensitivity vs. specificity)
(Figure 1B).

Models can also be differentiated based on their capacities of
interpolation and extrapolation. Interpolation is defined as an
estimation of unknown values present within the range of values
from the data used to calibrate the model (20). Extrapolation
is defined as the estimation of unknown values beyond the
range of data used for calibration. Ideally, models aiming to
be descriptive should have low interpolation and extrapolation
abilities resembling good fit to the data. Predictive models are
expected to interpolate and extrapolate. As a result, the final goal
of the model, descriptive or predictive, should guide the design of
its calibration and evaluation protocols. A perilous arena within
spatial epidemiology is the development of predictive models
that are evaluated using metrics developed for descriptive models
or that are penalized based on extrapolation (21). Similarly,
robust model evaluation of predictive models would require
evaluation data statistically independent from calibration data.
Thus, data-patitioningmethods that do not ensure independency
(e.g., cross-validation) have questionable capacity to differentiate
between good and bad predictive models.

ECOLOGICAL NICHE MODELS

Previous applications of ecology to map infectious disease risk
have resulted in successful disease control and prevention [e.g.,
(22)]. During the last two decades, valuable advancements in
alternative approaches to investigate infectious diseases through
applied ecology have been made (15). The ability to determine
why a disease is present in one animal species, season, and
geographic area but absent in others facilitates the understanding
of spread and persistence of infectious diseases in wildlife and
domestic animal populations, critical for veterinary medicine.

The final goal of ecological niche modeling applications in
spatial epidemiology is to determine environmental conditions
associated with disease occurrence. This in turn can help to
identify localities where such conditions exist and that are
suitable for disease introduction, maintenance, and posterior
spread. These models can be conducted at the local level using
accurate disease reports coupled with landscape information or
at the regional level coupled with climatic variables.

Disease distributions at coarse scales are often manifested
through climatic variables (e.g., temperature and precipitation)
falling across expected ranges of climate values observed
in the bulk of confirmed disease reports. In ecological
niche theory, the fundamental niche, NF , represents the
set of abiotic environmental conditions necessary for long-
term population persistence. More specifically, NF allows
population permanence without subsidy from immigration.
Variables used to estimate NF are not modified by the
presence or abundance of the organism (e.g., temperature,
precipitation) (14). NF models are usually estimated at coarse-
scale based on climatic signatures of biological systems to
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FIGURE 1 | Schematic description of descriptive vs. predictive models in the context of ecological niche modeling. (A) Disease occurrence data (blue points) used to

estimate relationships between temperature (independent variable; x-axis) and suitability (dependent variable; y-axis), interpreted as the probability of specific

environmental combinations to mirror the conditions where the species actually occurs. Correlative ecological niche model (ENM) can also be based on logistic

regression based on relation between continuous environmental variables and binary reports of the species (i.e., presence/absence). Note that the descriptive model

(red line) is evaluated in terms of its capacity to accurately resemble the data; the information lost is expressed as the distance between the model and the data

employed for model calibration (right). (B) Predictive model (same as above) intended to forecast the response of the system to an unknown status. Predictive models

are generally evaluated based on their capacity to predict independent data (i.e., data not used during model calibration). Note that a predictive model could be simple

(red straight line) and could result in the loss of more information. Nevertheless, independent data (red points) may be accurately predicted.

reconstruct the potential geographic distribution of organisms,
revealing areas with suitable climatic conditions across broad
regions (14).

Empirical and theoretical evidence from physiological
experiments suggests that population growth and survival
of species often have a Gaussian response to environmental
gradients (23–28). That is, theory suggests that an organism’s
fitness responds to environmental conditions with a normal
curve, where extremely low and extremely high environmental
values drive low fitness, while intermediate environmental
values are the optimum for fitness (Figure 2A). NF accounts
for multiple environmental variables, and when many
environmental variables are considered, each with a Gaussian
response curve, their combination could resemble an ellipsoid

(Figure 2B). Consequently, Maguire proposed that the NF

should be convex in shape (25), with ellipsoids offering simple
proxies of such convex shape (29). The Gaussian response of
organisms to environmental conditions suggests that a disease
reservoir or vector would have varied demographic parameters
in different sections of its NF . As a result, disease control on
reservoirs or vectors (e.g., culling, vaccination) could have
different effects under alternative environmental conditions.
More specifically, this theory suggests that highest transmission
should be expected in the optimal environmental conditions
suitable for a disease reservoir or vector (30) and population
health management decisions should be made accordingly.

Nevertheless, all the environmental conditions in NF may
not be entirely available for the species. Thus, NF is hard to
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FIGURE 2 | Theoretical representation of the fundamental ecological niche.

(A) Survival or population growth (y-axis), as a proxy of suitability, shows a

Gaussian response to environmental gradients (E1, x-axis). For example,

population growth (λ) is positive within the environmental range tolerated by

the species and negative below or above such range (–λ), with an optimum

observed at intermediate environmental values (red). (B) Ellipsoidal shapes are

the expected species response to n-dimensional environmental gradients.

Example in a bidimensional environmental space where red is higher suitability.

reconstruct with field data due to its theoretical nature; however,
other portions of it may be more feasible to estimate. The
realized niche, NR, is the portion of the NF that is actually
occupied by the organism, reflecting fine-scale constraining
effects of dispersal limitations and biotic interactions (14). Fine-
scale ecological niche modeling is generally achieved by linking
landscape-level variables (e.g., vegetation, host density) as a
proxy of the NR. Essentially, NR is a close representation of the
actual conditions present across the distribution of an organism.
Recent experimental research shows that landscape materials
(e.g., grass, wood, soil, and water) can play a role in the
maintenance and spread of pathogens facilitating environmental
transmission (31, 32). Satellite-derived data of vegetation
phenology, soil composition, moisture, and microclimate have
served as proxies of landscape features, allowing researchers to
capture environmental signatures of pathogen distribution at the
local level (6, 33).

FIGURE 3 | Schematic of NR vs. NF in a disease system. The fundamental

niche, NF , denotes the environmental conditions, available (gray points) or not

(white), that are suitable for the organism (e.g., pathogen, vector, and reservoir)

to persist and establish populations in the long term. NF is represented as an

ellipsoid with a denoting the theoretically most suitable conditions (dark red),

with suitability declining to the edges of NF (yellow). The realized niche, NR,

denotes the environments in NF actually occupied by the organism.

Nevertheless, NR may be a subset of NF maybe because the organism does

not occupy some environments due to dispersal limitations (b), because there

is not host of vector for the organism’s persistence, or because the suitable

environmental conditions do not exist in the area accessible (c), reducing NF to

NF *.

Ecological niche models assume that the biotic interactions
restrict species to occupy their entire NF ; therefore, that NR is
a portion of NF (14, 34) (Figure 3). That is, maybe not all the
utilizable conditions in the pathogen’s NF have the presence of
the host. Additionally, ecological niche inferences must consider
the geographic area accessible to the organism (termed M) and
the set of environments represented across that region (14) as
the limits of NF that are available. That is, maybe not all the
climates utilizable by the organism exist in the areas of study so
that the existing fundamental niche, N∗

F , represents the portion
ofNF that the species could use.N∗

F is the intersection ofNF with
the area accessible M, such that the existing N∗

F will be a subset
of NF ; any attempt to use the existing N∗

F or NR as estimates
of NF is perilous for species with limited dispersal (35). Based
on this reasoning, the selection of the study area has dramatic
implications on the environmental conditions to bemodeled and,
in turn, on estimations of NF or NR.

THE PROBLEM OF SCALE IN INFECTIOUS
DISEASE ECOLOGY

A major challenge in spatial epidemiology and distributional
ecology is the identification of the scale of the analysis for
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a statistically correct study design and a biologically sound
model interpretation. While this question may appear to be
easily answered based on the data available, generally, incorrect
identification of the scale may result in misleading study designs,
misinterpretation of results, and inability to fill primary gaps
of knowledge. Studies must identify the temporal scale (from
hours and days to decades and millennia, including past, present,
and future time) and the spatial scale (from centimeters to
kilometers) of interest. For example, studies could be conducted
in a protected area during a season, or at the continental level
across a 60-years period. It is also important to define the
organismal level (from molecules and genes to populations and
biomes) upon which the study is focused (36). Because infectious
diseases can be examined on a wide scale, from micro to macro,
assumptions, data, and model interpretation will vary across
scales (Figure 4).

A main assumption in epidemiology is that diseases do not
occur randomly, which can be used to assess the distribution
of pathogens across taxa and geographies to identify specific
patterns that can be modeled and predicted. At the fine scale,
models can estimate the likelihood that specific wildlife species
will be suitable for vector infestation. At the medium scale,
models can assess the landscape drivers of disease transmission.
At the coarse scale, models could be used to reconstruct spatial
patterns of the extent, direction, and speed of disease spread
across continents (Figure 4).

Fine-scale studies are conducted locally and capture
individual-level details in short periods of time (e.g., a season).
The resources and effort necessary to conduct fine-scale research
restrict their development to small study areas (e.g., a forest).
Coarse-scale studies, however, can be conducted at large extents
but generally fail to capture the details necessary to understand
local-level phenomena. The level of detail or grain of variables
quantified is linked to the scale, extent, and their capacity of
prediction. Coarse-scale studies may lack details but would
provide predictions that are more robust across space and time.
Thus, the problem of scale in disease ecology is how predictions
change as scales change (Figure 5). The problem of scale (i.e.,
temporal or spatial) has been described in detail by Simon A.
Levin (36) and provides opportunities to better understand
disease systems across space and time. Interestingly, spatial
epidemiology of animal diseases seems to be biased toward
local-level studies, with limited research conducted at coarser
scales (37).

The organismal level is a major challenge in spatial
epidemiology. For instance, the complex transmission cycles
of vector-borne, water-borne, or directly transmitted diseases
require two (e.g., pathogen and host) or more (e.g., pathogen,
multiple vectors, multiple reservoirs, or hosts) species to be
included in the model. Often in practice, modelers use a single
organism to reconstruct areas of transmission, which could focus
on the vector or the pathogen. While a parsimonious approach,
it requires a strong understanding of the ecology of the disease
in question to identify the organism that best explains the
disease system. Thus, a next frontier in ecological niche modeling
applications to disease systems is the inclusion of more biological
components of the cycle of transmission in the modeling process.

ECOLOGICAL NICHE MODELING AND
SPATIAL EPIDEMIOLOGY

Ecological niche modeling has proven to be a useful tool
for forecasting distributions and distributional changes for
a vast number of organisms (22, 38, 39) and is increasingly
employed to predict distributions of pathogens on diverse
spatial scales (15). Traditional ecological niche modeling
frameworks, however, may make unrealistic assumptions
and therefore yield inaccurate predictions. These modeling
frameworks must therefore be revised and amended if
they are to work in epidemiology (40). Ecological niche
modeling estimates ecological niches of species by linking
spatial occurrence records with environmental covariates, via
correlative or mechanistic approaches (41, 42). Theory and
analytical approaches of ecological niches have been described
during the last century (43), especially for biodiversity and
conservation studies.

A decade ago, it was hypothesized that coarse-scale
geographic distributions of species were constrained principally
by abiotic environmental conditions (i.e., inert variables)
across relevant regions, with biotic interactions having
negligible effect [termed the Eltonian Noise Hypothesis
(14, 29)]. As a result, most modelers have considered it
reasonable to assume that influences of biotic interactions
could be neglected in ecological niche modeling (29). The
Eltonian Noise Hypothesis, however, was conceived in
the context of free-living organisms (e.g., plants, birds).
Currently, most ecological niche modeling applications do not
include biotic variables (i.e., derived from living organisms).
Epidemiologists of infectious disease and veterinarians have a
clear understanding of the major flaws of models neglecting
biotic interactions because infectious diseases are by definition
biotic interactions.

Developing models based solely on abiotic variables make
model outputs of easy interpretation. For example, a model
based on pH and humidity could generate estimates of suitability
with regard to environmental conditions. Nevertheless, the role
of biotic variables has not been assessed rigorously in parallel
analyses in disease ecology [but see (44)]. Indeed, incorporation
of biotic variables in ecological niche modeling analyses for
diseases was proposed only relatively recently (45), and such
applications remain rare in spatial epidemiology. The inclusion
criteria of the biotic variables to be used, their temporal and
spatial scales, and whether biotic variables should be used
before, during, or after the model calibration process remain
understudied (40). Currently, use of abiotic-only predictors
(e.g., climate) dominates the literature regarding modeling and
predicting geographic distributions of pathogens. Including
biotic variables in the ecological niche modeling process would
require a detailed and a priori definition of the modeling outputs.
For example, a model including host density or percentage of
vaccination coverage would require a revision of the “suitability”
term in the context of each study (e.g., suitability for transmission
or exposure); alternatively, other terms would need to be
employed for modeling disease systems, such as risk (46) or
relative occurrence rate (47). Understanding the role of biotic
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FIGURE 4 | Multiscale framework. (A) Scale: Scale of variables (i.e., temporal and spatial) varies from the micro, to the fine, to the coarse. For example, ticks could be

studied at the micro scale, by assessing its distribution across the skin of the host (e.g., deer). (B) Extent: Represents the size of the study area, from the local to the

global extent. For example, increasing the extent will allow to study ticks across a forest (local) or across a continent (global). The scale and the extent are correlated:

Fine-scale studies provide high detail (fine grain) but cover small study areas, coarse-scale studies cover large areas at the cost of detail (large grain).

variables in ecological niche modeling may revolutionize the
utility of these tools drawn from ecology for disease riskmapping.

INGREDIENTS TO MAKE AN ECOLOGICAL
NICHE MODEL

Historically, “ingredients” to build ecological niche models have
been summarized in three major categories: occurrence data,
environmental data (abiotic or biotic variables), and algorithm
(Figure 6). Occurrence data are represented as disease cases,
or serology or direct detection of pathogens or parasites, or
records of vectors, intermediate hosts, or reservoirs recorded
geographically as coordinates (i.e., latitude and longitude).
Environmental data are represented at coarse (i.e., climate)
and fine (e.g., vegetation indices) resolutions in terms of the

abiotic and biotic environmental conditions where occurrence
data are collected. Then, to link environmental conditions and
disease occurrence, correlative or classification algorithms are
generally used. This analytical framework has been criticized
due to the limited understanding of the user regarding the
potential data and algorithm limitations, and the theoretical
bases of the algorithm employed (48). Careless applications of
this simple modeling framework has been termed “click-and-run
ecological niche modeling” (49) and has resulted in misleading
ecological niche modeling applications (50–52). Indeed, studies
to reconstruct disease distributions should avoid using protocols
and parameterization scenarios developed for other taxa, regions,
or periods. Instead, the modeling protocol for disease mapping
should be specific to the study question, data available, and
assumptions of the disease system.
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FIGURE 5 | The problem of scale in disease ecology. Scale can be defined in

two dimensions: spatial (x-axis) and temporal (y-axis). Fine-scale studies (e.g.,

data from at the individual-level during hours to days) can provide high-quality

data and a good understanding of phenomena. The figure shows a pragmatic

categorization of two spatiotemporal scales, fine (orange) and coarse (blue).

Fine-scale studies (orange) tend to offer limited predictability but high detail,

while coarse-scale studies (blue) offer high predictive potential at the cost of

losing detail. Note that landscape/seasonal studies are somewhere

in-between fine- and coarse-scale studies. Modified from Levin (36).

The click-and-run modeling framework (Figure 6) is based
on the use of “recipes” to model the distribution of any
species, neglecting the biology of the organism in question.
These models also neglect biases or artifacts in the data used
for model calibration and the functionality of the algorithm
employed. This approach requires limited data curation and
model parameterization and was used in the past for single-
species ecological niche models, but is currently used for studies
modeling hundreds or thousands of species to capture coarse
ecological patterns (i.e., macroecology). Model evaluation in
click-and-run modeling is generally poor or absent, making this
modeling framework particularly questionable when modeling
infectious diseases.

Models should include occurrence data curated carefully to
include only trusted occurrence records for model calibration.
Trustworthy disease occurrence records should have traceable
diagnostic methods, data sources, transparent surveillance
protocols, temporal details, and quantified uncertainty (e.g.,
spatially error, sensitivity of the diagnostic method). That is,
selection of the occurrence data should include an exhaustive
inspection of the metadata to reduce errors followed by
estimations and mitigations of duplicates, autocorrelation, and
sampling bias, supported by detailed protocols as described by
Cobos et al. (53).

Ecological niche modeling of disease systems should
consider abiotic environmental variables (e.g., temperature, soil,
precipitation) that fit the scale of interest and the biology of the

disease to be modeled. For example, historical satellite-derived
bioclimatic data can be employed at a pixel resolution of 20 km,
if this is in agreement with the approximate home range size
of a pathogen’s reservoir (∼10 km) (10). In this case, one could
use land surface temperature (◦C) and ground humidity (kg) to
overcome limitations of interpolated climatic data (8). That is, it
has been found that satellite-derived data overcome limitations
of the original interpolations found in the climatic data from
ground stations (54). For example, WorldClim, a commonly
used resource for climate data, often includes only 0.001% of
empirical data and 99.99% of interpolated data, resulting in
high spatial lag (autocorrelation) and frequent aberrant and
unrealistic climatic values (15).

Biotic variables (e.g., host density, prey density, and predator
occupancy) are biological factors shaping the distribution
of a species or disease at the local level (55, 56). Biotic
variables must be selected on the basis of the natural
history of the target pathogen, including the presence or
abundance of other organisms that facilitate or limit its
presence. For some pathogens, relevant positive biotic factors
that facilitate the presence of disease may include co-infections
with other pathogens, vegetation preferences of vectors, and
host availability, behavior, and density. Negative biotic factors
that limit pathogen circulation and establishment may include
host immunity and biodiversity values (40, 46, 57). Biotic
components may be critical to understand the ecology of
pathogen transmission, and their effects are evident when
developing studies at fine geographic scales (46), although the
question of their action across broad geographic extents remains
unanswered. Nevertheless, based on the biology of the pathogen,
biotic variables could include proxies of host availability (58),
anthropogenic disturbance (59), wildlife reservoirs availability
(60), and barriers of disease spread (61, 62). Each of these
dimensions has been found to be predictors of infectious diseases
(10, 45, 63–67).

The inclusion of biotic variables in ecological niche modeling
could be done before, during, and after the calibration of the
model. For example, biotic variables could be used before the
development of the model by restricting the distribution of the
focal species (e.g., pathogen) to regions where biotic interactions
may occur (e.g., host distribution; pre-processing). Biotic
variables could be added to model calibration by incorporating
biotic factors as predictor variables in the ecological niche
modeling (e.g., host density; processing). Alternatively, biotic
variables could be used once the model is developed by
incorporating biotic variables on the final model output (post-
processing). For example, a hypothetical model to estimate
transmission risk of rabies (Lyssavirus) transmitted by vampire
bats (Desmodus rotundus) at the local level could include the
use of abiotic (e.g., temperature and precipitation) and biotic
variables. Biotic variables could include livestock densities as
proxy for food resources for the vampire bats (58), surface of
roads as proxy of local-scale barriers (61, 62), and satellite-
derived nighttime light surface as proxy of populated centers
(59), since these variables have been proposed as predictors of
rabies in wildlife (10, 63–67). That is, when biotic variables are
included to reconstruct a disease system, it is crucial to identify
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FIGURE 6 | Click-and-run ecological niche modeling framework. This modeling framework is data-driven, with uncaring study designs. Syndromes used in identifying

click-and-run ecological niche models include (i) strong emphasis on the good performance of the algorithm employed based on external literature and use of default

parameters (green), (ii) moderate emphasis on the quality and quantity of the disease localities (i.e., occurrence data; red), with limited data curation and evaluation,

and (iii) little or no justification and defense of the environmental variables selected for model calibration (blue). Additionally, these models generally fail to define the

ecological niche to be estimated, NF vs. NR. The study area of these models is generally delimited based on data availability or administrative boundaries, while model

interpretation is generally based on visual inspection of maps. Circle size denotes magnitude of importance assigned to each category.

key factors that directly facilitate or limit transmission. Using
biotic variables in ecological nichemodeling is still not a common
practice and more research is necessary in this area to develop a
revised modeling framework.

A revised ecological niche modeling framework could
facilitate replicable estimations for any disease system (Figure 7).
Nevertheless, each component of a revised modeling framework
(i.e., occurrences, environmental variables, and modeling
algorithm) would require careful inspection to discard noise
signals due to incorrect study designs. That is, study designs
should be based on biologically justifiable study areas and
variables, which are important drivers of ecological niche
modeling performance. In some situations, the protocol will
allow one to determine if a robust ecological niche model is
feasible or not.

An important component of the revised protocol is the
careful inspection of occurrences using a specified inclusion
criterion that prioritizes quality over quantity. To assess and
mitigate sampling bias in disease reports, modelers can use
the method proposed by Varela et al. (68), which compares
models from different occurrences filtering methods to mitigate
both oversampled areas and oversampled environments. This
approach allows the generation of a series of models under
different bias mitigation scenarios to (i) reduce model overfitting

(i.e., models mirroring closely the data, resulting on limited
learning from the model compared with the raw data) and (ii)
capture variability for more informed model interpretations.
This methodology has been employed broadly to study the
distribution of biodiversity but has been barely used to
model infectious diseases. In the revised protocol (Figure 7),
model calibration could include biotic variables as predictor
(45, 69). Nevertheless, researchers must clarify the units and
interpretation of the modeling output.

Finally, the study area of interest [M sensu (70)] is a major
component of the modeling process. A common failure in
ecological niche modeling applications based on correlative
models is to pragmatically determine the study area. Restricting
models based on administrative areas (e.g., municipality,
department, province, and state) does not account for the biology
of the organism. Pathogens do not know about political borders;
therefore, models should account for biogeographic barriers (e.g.,
rivers, roads, impervious surfaces, and oceans) for biologically
sound study designs.

The perils of careless study-area delimitations will result
in models that are misaligned with the primary question
of the study, the ecology of the organism, resulting in
underestimations of the true potential of the disease spread.
For example, the mosquitoes Aedes aegypti and Ae. albopictus
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FIGURE 7 | Canonical ecological niche modeling framework (a.k.a. “Peterson’s Framework”). This revised ecological niche modeling framework includes some of the

critical decisions necessary to develop a comprehensive, replicable ecological niche model that accounts for the natural history of the organism, the quality of the

data, and the goal of the model. Here, occurrence data (red), environmental data (green), and the integrative algorithm (blue) have comparable importance regarding

their assessment during the modeling process (i.e., same size of circles). The main differences of this canonical ecological niche modeling framework, as compared

with the classic ecological niche modeling framework (Figure 6), are that more details are evaluated for each modeling component (circles), model design, and

interpretation account for the ecology of the organism and data available, and that model outputs are interpreted in geographic and environmental dimensions.

are important vectors of many arboviruses, including Zika,
Dengue, and Chikungunya viruses with transmission reported
globally. Nevertheless, one may be interested in modeling
the distributional ecology of these mosquitoes in a specific
study area (Figure 8A). For example, mosquito presence in
Guatemala along with climate information from the sampling
region will only capture environmental tolerances of the species
in that particular area. This may therefore result in a gross
underestimation of the true potential distribution of the vectors
and the diseases they transmit. Indeed, these mosquito species
are ecological generalist species that tolerate a broad range of
climatic conditions and have global distributions (Figures 8B,C).
Thus, real tolerances and actual potential distribution of species
could be masked by a restricted study area that only accounts for
a portion of the species truly potential.

ECOLOGICAL NICHE MODELING
ALGORITHMS AND TOOLS

Modeling algorithms in ecological niche modeling have been
described elsewhere (47, 72–74), generating starting points for

new modelers. Algorithms to develop ecological niche models
can be divided into three categories: presence-absence, presence-
background, and presence-only. Presence-absence algorithms
need a set of localities where the organism occurs (i.e., presence)
and a set of localities where the organisms does not occur (i.e.,
absence). Presence-absence models are calibrated by comparing
environmental conditions where the organism is present vs.
where it is absent and are generally useful to reconstruct the
distribution of diseases at fine scale and short periods, resulting in
the need of accurate localities and high-resolution environmental
variables. These models, however, have limited capacities to be
projected to different areas or periods, instead, their signals
are space and time specific. Many algorithms are available
including regression (e.g., Generalized Linear Models and
Generalized Additive Models) (Figure 1) and classification (e.g.,
Boosted Regression Trees, Random Forest, and Support Vector
Machines) (Figure 9A) algorithms, with protocols described in
detail elsewhere (75).

Occurrence data are generally robust, while absence data
are largely questionable in quality and of limited availability
[discussed in (14)]. To solve this problem, researchers generally
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FIGURE 8 | Effects of study area M on ecological niche modeling results. An example of an ecological niche model of arbovirus vectors Aedes aegypti (red) and Ae.

albopictus (blue), which occur worldwide, to predict transmission risk in Guatemala. Global climate data (gray dots) show the broad range and diversity of global

environmental conditions summarized in the first three components of bioclimatic variables (red axis). Restricting the study to Guatemala (gray polyhedron) will require

to use species records only across this country (red and blue dots), resulting in a subset of occurrence records, and environmental tolerances, of the mosquito

species (red and blue polyhedrons) (A). Accounting for all the available data for the vector species, however, reveals that Guatemala only contains a portion of the

species environmental tolerances (B,C). As a result, when the study design is restricted to Guatemala as the study area M, and to its climate and environmental

space, the model would yield in an incomplete reconstruction of the actual distributional potential of vector-borne diseases. Restricting the models to Guatemala

would require other, fine-scale, landscape-level environmental variables. Otherwise, models will simply mirror the density of points. Models constructed using an

envelope algorithm in NicheA (71).

“simulate” absence data to be able to use presence-absence
algorithms. A common approach to simulate absence data is
to generate random points across the study area. Presence-
absence models that use simulated (i.e., fake) absence data during
calibration are termed presence-background models. Presence-
background algorithms thus use the same regression and
classification algorithms used for presence-absence models, with
the unique philosophical variation regarding the interpretation
of absences vs. background points. Also, because the background
corresponds to the study area, calibration of these algorithms
is highly sensitive to variations in the extent of the study area
extent selected.

Maxent is a popular ecological niche modeling algorithm
based on logistic-like regressions comparing densities
of occurrences (presences), densities of random points
(background), and continuous environmental variables
using diverse sets of parameters in the calibration process
(47). Maxent protocols have been summarized in a series of
software including Wallace (76), dismo (75), ENMeval (77),
and KUenm (78) packages in R. Wallace is a user-friendly
analytical environment to calibrate Maxent models, making it
a good starting point for new users since it contains detailed
instructions (76). Dismo provides less details regarding the
different assumptions and complementary scientific literature,
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FIGURE 9 | Classification and hypervolume models. (A) Classification algorithms require environmental values where the species is present (red points) and absent

(black points). Presence and absence data are linked to environmental values (arrows) to quantify the probability (question mark) of identifying a locality (gray point) as

a suitable or unsuitable. Classification algorithms use these data to inform a series of rules (dashed lines) that vary among algorithms. Temp, temperature; Precip,

precipitation. (B) Hypervolume algorithms quantify the density or cluster of presence records of the organisms in environmental dimensions. Hypervolumes measure

the distance (gray cycles) among occurrences (red points) in an environmental space (arrows) to determine a best-fit model (red buffer).

but it is a good starting point for new users interested on
modeling in programming environments (75). ENMeval is
essentially the programming environment of Wallace and allows
more detailed parameterization and evaluation of models (77).
KUenm allows detailed, reproducible ecological niche models
using Maxent and provides detailed model calibration and
selection not available in the other packages (78), overcoming
some of the perils of niche model applications for infectious
diseases regarding differentiation between good and bad models
(46). The KUenm package would be an ideal choice for advanced
users since parameterization and installation would require
advanced programming skills.

Presence-only algorithms focus solely on the environmental
values linked to each occurrence record for calibration. As a
result, calibration of these modes is insensitive to changes in the
extent of the study area. Classic presence-only methods include
environmental envelopes, which are ellipsoids, squares, or
convex-hull that surround the occurrences in an environmental
space (Figure 9), with algorithms that include Bioclim (75)
and NicheA (71). Emerging presence-only methods include
hypervolumes estimated using estimators of density (79) and
cluster of occurrences in the environmental space (80). Protocols
for hypervolume estimations have been described elsewhere
(34, 74), and their use is expected to become common for NR

estimations due to the automatization of their workflows and
computational optimization.

ECOLOGICAL NICHE MODELING AND
CLIMATE CHANGE

A key set of questions in spatial epidemiology relates to effects
of global change on the geographic distribution of infectious

diseases and the potential of disease reservoirs or vectors to
respond to such changes (81). Global change includes climate and
land cover changes and the accelerated introduction of invasive
species (82–84). A recent assessment proposed that catastrophic
climate change effects will be perceived with even a 1.5◦C annual
mean temperature increase in the coming decades (85).

Ongoing climate change trends have been defined as human-
induced, with unprecedented effects on biodiversity, impacting
many organisms involved in disease transmission cycles (86).
Climate change in the Anthropocene is generating geographic
(87) and elevational (88) shifts of biodiversity, including
organisms involved in disease transmission (89). Climate change
is expected to produce bigger and more frequent weather
events and wildfires (90, 91) and reductions of crop yields
(92, 93), which together could generate ecological imbalance
facilitating pathogen spillover (94). Understanding climate effects
on directly transmitted diseases, however, remains in its infancy.
Ecological niche models are a promising tool to help anticipate
likely responses of disease systems to climate change. Recent
assessments of vector-borne diseases have challenged paradigms
related to climate and infectious diseases (95–97).

A recently published meta-analysis demonstrated that many
popular algorithms for ecological niche modeling generally
overestimate organisms’ ability for adaptation to changing
environments (98). The best forecasts should come from analyses
of extensive data with simple algorithms (21, 99). That is, robust
models require abundant, high-quality input occurrence data;
these data are generally limited in availability in developing
countries, so research about global change effects on diseases
may be biased to developed countries (100). Nevertheless,
even when data limitations may exist, ecological niche models
provide opportunities to understand how global change can affect
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infectious diseases globally. Based on the observations described
above, when limited data are available, the use of multiple
algorithms could help to explain uncertainty in model estimates.

The present understanding of potential climate change
effects on organisms is biased geographically to temperate-
zone countries (101). Nevertheless, tropical countries already
show considerable climate change manifested in just the last
three decades. Hence, the tropics represent an important
priority for global change disease ecology research in view
of their considerable research gaps, their role in modulating
global climate, the need to understand organisms’ responses
to environmental change beyond temperate areas, and the
need to assess niche evolution empirically in more rigorous
analyses (102).

THE PARADOX OF DIRECTLY
TRANSMITTED DISEASES

It is not surprising that ecological niche modeling applications
in spatial epidemiology are biased toward vector-borne diseases.
Data of disease vectors (e.g., fleas, mosquitoes, ticks) are broadly
and openly available for many diseases and regions (103). Vectors
are also highly responsive to changes in microclimate, with
strong responses in their abundance, richness, distribution, and
behavior linked to climate and landscape variation (104). As a
consequence, ecological niche models of vector species provide
good proxies of potential distributions of vector-borne diseases.

Environmentally transmitted diseases, such as anthrax,
leptospirosis, and histoplasmosis, can also be studied using
ecological niche modeling. Key components of the models
include variables resembling the environmental drivers of
parasite and pathogen persistence in the environment (e.g.,
humidity, temperature, and soil pH). When such variables
are not available, some proxies could be used with their
respective caveats.

Ecological niche models have many advantages compared
with other disease modeling approaches, especially with regard to
the biological bases that support the use of environmental drivers
to map disease distributions. Nevertheless, ecological niche
models are not suitable for the study of many disease systems,
especially for studies aiming to understand direct transmission
between individuals or populations. In such situations, other
modeling approaches could be more appropriated (e.g.,
compartmental models). Similarly, ecological niche modeling
may be a perilous modeling framework to use for animal
disease systems where the environmental conditions are less
important for transmission compared with animal density or
human behavior.

Directly-transmitted diseases are more challenging to map
based on environmental conditions. Many fine-scale factors
(e.g., host density, age, immune status) shaping direct disease
transmission may be required for correct reconstruction of
transmission, but variables of such factors are generally not
available. When the directly-transmitted disease includes an
animal reservoir (e.g., wildlife), ecological niche models can
focus on such species for the reconstruction of likely areas
of transmission.

Ecological niche modeling of directly-transmitted animal
diseases are a “dark side” that many veterinary epidemiologists
avoid. Limited data of crucial factors associated with transmission
and potential economic and ethical implications generally
reduce explorations of directly-transmitted animal diseases. For
example, the porcine reproductive and respiratory syndrome
(PRRS, caused by a virus from the family Arteriviridae) affects
the pork industry so that understanding and anticipating its
distribution may have enormous benefits for its control and
prevention in pig farms. Nevertheless, intensive farms may have
controlled environmental conditions, so that the environmental
conditions inside the pig farms may not reflect the surrounding
climatic conditions. Thus, ecological niche modeling of PRRS
risk based solely on the surrounding climate of farms is
analytically and computationally feasible [e.g., (105, 106)],
but such models will provide an erroneous signals of the
environmental conditions suitable for transmission. That is, even
when one can model linkages between climate and reports of
directly-transmitted diseases, such models could be incomplete,
biased, or misleading, and local factors may be more important
(107). Paradoxically, models of directly-transmitted diseases are
still popular.

CONCLUSION

Spatial epidemiology of animal diseases seems to be dominated
by local-level studies (37). Thus, ecological niche modeling
approaches provide an opportunity to reconstruct environmental
conditions suitable for diverse animal diseases to identify areas
where transmission is expected. Since disease systems need
at least two organisms interacting (host and pathogen), biotic
interactions may lie at the core of the pathogen’s ecological niche,
and neglecting interacting organisms in pathogen dynamics
(i.e., maintenance, reproduction, transmission, and spread)
may limit the success of forecasts. Pathogen transmission is
strongly influenced by fine-scale interactions among infected and
susceptible hosts, which can be further affected by host behavior
and pathogen demography/transmission. Given the complexity
of these interactions, traditional single-species ecological niche
modeling approaches could fail to predict disease distributions
and transmission risk accurately and protocols need to be revised
with caution.

A new challenge in veterinary epidemiology is to avoid
falling behind advances that distributional ecology offers in
terms of theory and methods to map parasites, pathogens,
vectors, and reservoir. This overview is by no means a detailed
summary of all the advances in the field of ecological niche
modeling. Instead, this review provides a brief introduction to
the field facilitating a more effective use of the comprehensive
ecological niche modeling courses freely available (e.g., https://
www.youtube.com/watch?v=vj8qTo56rPA&ab_channel=A.
TownsendPeterson) (108). Veterinary epidemiology needs
more ecology, and ecologists modeling disease distributions
need to incorporate health professionals for sound and
biologically realistic model interpretations (15). Veterinary
epidemiologists may find ecological niche modeling useful
for disease control efforts, especially for infectious diseases
with vectors or wildlife reservoirs. The limited presence of
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epidemiologists and disease ecologists in the ecological niche
modeling community increases the risk of inaccurate and
misleading forecasting of infectious diseases of questionable
quality and usefulness for stakeholders [e.g., (109)]. The broadly
available epidemiological data, collected systematically from
humans, animals, and plants, can help to advance the study
of disease transmission. The comprehensive understanding of
disease systems by veterinarians provides unique opportunities
for their active participation in the field of spatial epidemiology.
Nevertheless, mature and ethical ecological niche modeling
applications for disease mapping would require familiarity with
classic ecological theory.
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