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Dominant genetic effects may provide a critical contribution to the total genetic variation

of quantitative and complex traits. However, investigations of genome-wide markers to

study the genomic prediction (GP) and genetic mechanisms of complex traits generally

ignore dominant genetic effects. The increasing availability of genomic datasets and the

potential benefits of the inclusion of non-additive genetic effects in GP have recently

renewed attention to incorporation of these effects in genomic prediction models. In the

present study, data from 498 genotyped Alpine Merino sheep were adopted to estimate

the additive and dominant genetic effects of 9 wool and blood traits via two linear models:

(1) an additive effect model (MAG) and (2) a model that included both additive and

dominant genetic effects (MADG). Moreover, a method of 5-fold cross validation was

used to evaluate the capability of GP in the two different models. The results of variance

component estimates for each trait suggested that for fleece extension rate (73%), red

blood cell count (28%), and hematocrit (25%), a large component of phenotypic variation

was explained by dominant genetic effects. The results of cross validation demonstrated

that the MADG model, comprising additive and dominant genetic effects, did not display

an apparent advantage over the MAG model that included only additive genetic effects,

i.e., the model that included dominant genetic effects did not improve the capability for

prediction of the genomic model. Consequently, inclusion of dominant effects in the

GP model may not be beneficial for wool and blood traits in the population of Alpine

Merino sheep.

Keywords: Alpine Merino sheep, additive effects, dominant effects, prediction accuracy, genomic prediction

INTRODUCTION

In classical models of quantitative or complex trait genetics, the phenotypic value of each trait is
controlled by a large number of loci; moreover, the interaction and alternative splicing of genes
also play an extremely essential role (1). The phenotypic value is also affected by non-genetic and
environmental factors (2). Therefore, it is not possible to select the top-quality animal and plant
population by genotype on a single marker (or gene) or through simply observing their extrinsic
features. The selection is based on the predicted total effect of the loci within an individual or their
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estimated breeding values (BVs) (2). Genomic selection (GS)
adopts markers covering the entire genome, so that thesemarkers
can be used to explain all genetic variations (3). Compared with
traditional selection methods, it has higher prediction accuracy;
in addition, it could reduce the generation interval and increase
the genetic progress (4, 5).

GS has improved modern breeding programs and has made
a great contribution to improving the accuracy of BVs (6, 7),
especially for the early selection of young individual domesticated
animals (8). Genetic effects including additive effects and non-
additive effects are both important for analyzing the genetic
mechanism of livestock complex traits through whole-genome
markers or for GP (9). However, in production and application,
more attention is generally paid to additive effects, because
additive genetic effects reflect the breeding value of individuals
(10). Although the studies on non-additive effects has made
progress in dairy cattle and beef cattle (11, 12), due to incomplete
pedigrees or unreliable records, restricted calculations, and
other problems, few studies have focused on the genetic, non-
additive effects for sheep populations (13). The dominant effect
represents interactions at the same locus; the epistatic effects
represent interactions between different loci. Previous studies
have suggested that non-additive genetic effects could provide an
essential influence on the total variation of complex traits (14–
16).

With the publication of the whole-genome sequence of
dairy cows and the continuous upgrading of commercial SNP
microarrays, GP and GS have been adopted on a large scale in
conventional breeding programs of dairy cows (17, 18). This has
also promoted the development of SNP microarrays for a variety
of other livestock. To date, the associated GS technology has
been gradually expanded to livestock such as beef cattle (19), pigs
(20), goats (21), and sheep (22), but their development still lags
far behind that of dairy cattle. The Alpine Merino sheep, the
subject of the present study, possesses a mixture of Australian
Merino and Tibetan sheep ancestry. They quickly adapted to
the cold Qinghai-Tibet Plateau and have subsisted in high-
altitude and hypoxic environments for generations. However,
since the technology of GS has not been popularized in sheep,
the Alpine Merino sheep population is still during the traditional
phenotypic selection period. Therefore, genomic analysis to
identify wool traits associated with cold tolerance and erythrocyte
traits associated with adaptation to high-altitude hypoxia, critical
for the selection and breeding of this population, has been used.
To the best of our knowledge, GP or GS studies of Alpine Merino
sheep have not so far been reported. With the availability of SNP
genotypes, it is possible to explore the additive and dominant
genetic effects of marker loci and thus estimate the genetic effects
of each marker (23). Furthermore, in a manner similar to the
construction of a genome additive relationship matrix, a genomic
dominant effect matrix could also be integrated into a genomic
best linear unbiased prediction (GBLUP) model for genomic
analysis research (24, 25).

For this study, components of the genetic variance of the
Alpine Merino sheep dataset were estimated, including additive
and dominant genetic variance, then the accuracy of the BVs
estimated by two models compared using cross validation. The

main objective of this study was to explore the impact of
additive and dominant genetic effects on the accuracy of GP
and the optimization methods of GP for the Alpine Merino
sheep population.

MATERIALS AND METHODS

Ethics Statement
All animal work conducted in the present study was performed in
accordance with the guidelines for the care and use of laboratory
animals promulgated by the State Council of the People’s
Republic of China. This research was approved by the Animal
Management and Ethics Committee of Lanzhou Institute of
Animal Husbandry and Veterinary Medicine, Chinese Academy
of Agricultural Sciences (license number: 2019-008).

Phenotypic Data Collection
The initial phenotypic dataset was derived from animals on
the HuangCheng pasture in Gansu Province, China, part of
the Sheep Breeding Technology Extension Station. The dataset
consisted of 11,200 individuals and included their dates of birth,
region (defined by herd), and sex. In the present study, the
phenotypes of 498 offspring for 26 breeding rams were collected
from 7 different herds, consisting of 295 rams and 203 ewes.
Most of them were half-sibs, and very few (<12%) were full-
sibs, the age of which were around 14 months. A blood sample
(5mL) from each sheep was collected from the jugular vein and
immediately transferred to a vacuum blood collection tube (Yuli
Medical Equipment Company Ltd., Jiangsu Province, China). A
standard set of red blood cell data was recorded using an H-
100IV diff whole blood analyzer (Sysmex, Kobe, Japan) within
24 h of sample collection, after which the remaining blood sample
was stored at −20◦C (26). Four erythrocyte parameters closely
associated with adaptation to high-altitude hypoxia were selected
as blood trait phenotypic data, including red blood cell count
(RBC), hematocrit (HCT), mean cell hemoglobin (MCH), and
mean cell hemoglobin concentration (MCHC). Every year in July,
when the lambs grow to 14 months of age, they reach the period
of shearing. According to the agricultural industry standard of
the People’s Republic of China (No. NY/T 1236-2006), a 150–
200-g sample of wool was collected from the abdomen of each
sheep, weighed, and stored in Ziplock bags. Within 5 days of
sample collection, they were sent to the National Animal and
Rural Ministry of Animal and Fur Quality Supervision and
Inspection Center (Lanzhou, China) for weighing, cleaning, and
quality testing. Five parameters were selected to represent the
phenotypic data of wool traits, including staple length (SL),
clean fleece weight rate (CFWR), mean fiber diameter (FD),
fleece breaking strength (FBS), and fleece extension rate (FER).
Supplementary Table 1 shows the detailed definition of the
above wool traits parameters.

Genotyping and Quality Control
In total, 498 Alpine Merino sheep were genotyped using
a custom Affymetrix HD 630K microarray. The genotyping
platform adopted for analysis was based on the GeneTitan
System (Santa Clara, CA, USA) Array Plate ProcessingWorkflow
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from Thermo Fisher (Affymetrix). Prior to statistical analysis,
SNPs were pre-processed using PLINK v1.9b4 software (27).
Samples were eliminated where SNPs had a call rate lower than
95%, a Hardy–Weinberg equilibrium P < 10e-6, a minor allele
frequency<0.01, and those withmore than 10% of their genotype
missing. Moreover, in order to eliminate the potential biased
analysis caused by gender and maternal effects, the X, Y, and
mitochondrial chromosomes were excluded from analysis (11).
Following filtering and quality control, a total of 498 individual
animals with 441,740 autosomal SNPs were retained.

Statistical Methods for GP
In this study, we explored the possibility of combining both
additive and dominant genetic effects in the genomic evaluation
and further compared the accuracy of GP via different models.
Nine traits of 498 samples were used in (1) estimating the
variance of components in the genotype dataset of Alpine
Merino sheep, including additive and dominant variance, and (2)
analyzing the accuracy of GP using 5-fold cross validation and
then comparing the accuracy of estimation of BVs between the
prediction model using additive effects and that when combining
both additive and dominant effects. Both models were evaluated
within a GBLUP framework. Replicate measurements were not
available for the sheep; thus, permanent environmental effects
were not modeled. Samples were of different genders and from
different herds, factors that altered phenotypes in a fixed manner,
so system environmental effects were added to the framework.

The components of variance of additive genetic effect (σ 2
A) and

residual effect (σ 2
E ) were estimated adopting the MAGmodel.

y = Xb+ Zu+ e (1)

where y represents the phenotypic value of the individual and b
refers to the vector of fixed effects, since the individuals involved
in the current study were from different herds; the fixed effects
include the gender (male and female) of each individual and
the different herds (H1–H7). u is the vector of breeding values
of the individual, e is the vector of residual effects, X is the
design matrix corresponding to fixed effects, and Z is the design
matrix corresponding to breeding values. Covariance matrices of
additive effects were Var (u) = Gσ 2

a , where G is the matrix of
the genomic relationship, calculated based on the approach of
VanRaden (28) and using R package “HIBLUP” (https://github.
com/xiaolei-lab/hiblup):

G =
W1W

T
1

2
∑m

i=1 pi(1− pi)
(2)

where W1 is the matrix of additive genetic effect markers, with
dimensions of the number of individuals (n) by the number of
loci (m), and pi is the minor allele frequency (MAF) value of
locus i.

In addition, the components of variance of the additive genetic
effect (σ 2

A), dominant genetic effects (σ 2
D), and residual effect (σ

2
E )

were estimated using the MADGmodel:

y = Xb+ Zu+ Zv+ e (3)

As with the MAG model, in Equation (3), y, b, u, e, X, and Z

represent the same parameters as those defined in Equation (1),
while v refers to the vector of the dominant effect of an individual.
The covariance matrices of dominant effects were Var(v) =

Dσ 2
d
, where D represents the matrix of the genomic dominant

relationship (25), also calculated using R package “HIBLUP”
(https://github.com/xiaolei-lab/hiblup):

D =
W2W

T
2

4
∑m

i=1 p
2
i (1− pi)

2 (4)

where W2 represents the matrix of dominant genetic effect
markers and where, n, m, and pi are the same as those defined
in Equation (2).

Accuracy of Breeding Value Predictions by
Cross-Validation
The accuracy of GP was evaluated by 5-fold cross validation. The
dataset was randomly divided into 5 approximately equally sized
subgroups (each subgroup contained about 100 individuals), for
each cross validation, of which 4 were considered as training
groups (reference population) to estimate parameters, and the
remaining group (candidate population) was used to validate
samples. The population was generally randomly divided when
performing 5-fold cross validation. A number of validation
samples had offspring in the training population, causing in that
case the cross validation to be based on offspring, which would
exaggerate the accuracy of the prediction (29). In the current
population, individuals were collected from the same generation,
ensuring that verification samples did not have offspring in the
training group. In this method of grouping, the 5-fold cross
validation evaluated the accuracy of ewes and rams of the same
generation. Therefore, it was effective in limiting the bias in
accuracy caused by offspring in the training group (11).

Based on the MAG and MADG models, the breeding values
of the validation group were predicted and their respective
components of variance estimated. In addition, we performed
the 5-fold cross validation described above twice to ensure
randomness of the verification group. Finally, 10 different values
of accuracy were calculated for each trait, the mean value
recorded as the final accuracy.

RESULTS

Phenotypic Statistics and Genotypic
Characteristics
Table 1 displays descriptive statistics of the phenotypic
measurements of the sheep, including mean of each parameter,
abbreviations of each trait standard error, coefficient of variation,
and number of individuals. In detail, it shows five wool traits
and four blood traits. For wool traits, the coefficient of variation
(CV) ranged from 0.1 (staple length) to 0.3 (Fleece extension
rate), and the standard error (SE) ranged from 0.1 (mean fiber
diameter) to 0.4 (fleece breaking strength); for blood traits,
the CV ranged from 19.9 (mean cell hemoglobin) to 29.9
(hematocrit), and the SE is ranged from 0.0 (hematocrit) to 4.7
(mean cell hemoglobin concentration).
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Prediction of Breeding Values and Total
Genetic Values
Estimated components of variance for the MAG and MADG
models are presented in Table 2. Additive variance (showed as a
proportion of total genetic variance) for wool traits ranging from
6.88% (fleece extension rate) to 49.5% (staple length) and for
blood traits from 13.31% (red blood cell count) to 27.94% (mean
cell hemoglobin concentration). Dominant variance (expressed
as a percentage of total genetic variance) for wool traits ranged
from 0.00 to 73.46%. The dominant variance of staple length
and mean fiber diameter were extremely low, approximately
equal to 0.00%. The dominant variance of clean fleece weight
rate, fleece breaking strength, and fleece extension rate were

TABLE 1 | Descriptive statistics of phenotypic values of traits.

Trait Abbreviation Mean ± SDa CVb (%) SEc Number

Staple length (mm) SL 83.5 ± 9.4 0.1 0.4 494

Clean fleece weight

rate (%)

CFWR 66.1 ± 6.4 0.1 0.3 494

Mean fiber

diameter (mm)

FD 21.4 ± 2.2 0.1 0.1 491

Fleece breaking

strength (N/ktex)

FBS 33.3 ± 8.0 0.2 0.4 491

Fleece extension

rate (%)

FER 19.5 ± 5.1 0.3 0.2 493

Red blood cell

count (1012/L)

RBC 7.7 ± 1.7 22.1 0.1 496

Hematocrit (%) HCT 0.3 ± 0.1 29.9 0.0 492

Mean cell

hemoglobin (pg)

MCH 13.2 ± 2.6 19.9 0.1 494

Mean cell hemoglobin

concentration (g/L)

MCHC 377.5 ± 103.8 27.5 4.7 489

aSD, standard deviation.
bSE, standard error.
cCV, coefficient of variation.

4.22, 10.06, and 73.41%, respectively. Dominant variance for
blood traits ranged from 0.00 to 27.99%. The dominant
variance of mean cell hemoglobin and mean cell hemoglobin
concentration were approximately equal to 0.00%. The dominant
variance of red blood cell count and hematocrit were 27.99 and
24.99%, respectively.

Table 3 compares the capability of GP for the two models.
The accuracy calculated by 5-fold cross validation varied with
the different traits. For wool traits, the prediction accuracy of
FER was least (MAG = 0.03, MADG = 0.01) while that of
SL was greatest (MAG = 0.25, MADG = 0.25). For blood
traits, the prediction accuracy for RBC was least (MAG = 0.04,
MADG = 0.02), while that of MCH was greatest (MAG = 0.16,
MADG = 0.15). Of all 9 traits, including wool and blood
traits, FER and RBC displayed relatively low prediction accuracy
(<0.1), while the others displayed low tomedium accuracy (0.11–
0.25). In addition, the MAG model exhibited accuracy slightly
higher than that of the MADG model in all traits (Figure 1),
regardless of whether heritability was high or low.

TABLE 3 | Comparison of prediction accuracies of 9 traits.

Traita Prediction accuracyb

MAG MADG

SL 0.25 (0.02) 0.25 (0.02)

CFWR 0.17 (0.03) 0.15 (0.03)

FD 0.20 (0.02) 0.20 (0.02)

FBS 0.11 (0.03) 0.10 (0.04)

FER 0.03 (0.02) 0.01 (0.03)

RBC 0.04 (0.02) 0.02 (0.04)

HCT 0.08 (0.02) 0.06 (0.03)

MCH 0.16 (0.03) 0.15 (0.03)

MCHC 0.12 (0.02) 0.12 (0.02)

aAbbreviations of traits explained in Table 2.
bSE are in parenthesis.

TABLE 2 | Estimates of additive and dominant components of variance obtained using HIBLUP for MAG and MADG models.

Traita MAG MADG

σ
2
a (SE) σ

2
e (SE)

σ
2
a

σ
2
a +σ

2
e

(SE)b σ
2
a (SE) σ

2
d
(SE) σ

2
e (SE)

σ
2
a

σ
2
a +σ

2
d

+σ
2
e

(SE)b

SL 40.96 (11.16) 41.79 (9.78) 0.50 (0.12) 30.25 (17.93) 0.00 (34.61) 48.81 (21.45) 0.00 (0.44)

CFWR 11.93 (4.68) 17.79 (4.24) 0.40 (0.15) 11.41 (8.54) 1.25 (17.53) 17.05 (11.27) 0.04 (0.59)

FD 1.54 (0.55) 2.61 (0.51) 0.37 (0.13) 4.11 (3.02) 0.00 (5.21) 4.43 (3.16) 0.00 (0.61)

FBS 18.03 (7.99) 35.34 (7.45) 0.34 (0.14) 15.50 (14.46) 5.36 (28.20) 32.44 (17.79) 0.10 (0.53)

FER 1.34 (1.96) 18.10 (2.22) 0.07 (0.10) 0.00 (8.11) 22.29 (12.24) 8.07 (6.98) 0.73 (0.40)

RBC 0.35 (0.31) 2.25 (0.33) 0.13 (0.12) 0.06 (0.71) 0.73 (1.67) 1.81 (1.07) 0.28 (0.64)

HCT 0.001 (0.001) 0.005 (0.008) 0.24 (0.12) 0.001 (0.001) 0.00 (0.00) 0.004 (0.002) 0.25 (0.48)

MCH 1.34 (0.78) 4.48 (0.78) 0.23 (0.13) 2.03 (2.61) 0.00 (6.10) 5.59 (3.97) 0.00 (0.81)

MCHC 2867.17 (1420.81) 7395.22 (1371.06) 0.28 (0.13) 4388.68 (4504.31) 0.00 (1001.76) 8854.82 (1428.41) 0.00 (0.76)

aSL, staple length; CFWR, clean fleece weight rate; FD, mean fiber diameter; FBS, fleece breaking strength; FER, fleece extension rate; RBC, red blood cell count; HCT, hematocrit;

MCH, mean cell hemoglobin; MCHC, mean cell hemoglobin concentration.
bHeritability, the ratio of the additive effect variance to the total phenotypic variance.
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FIGURE 1 | Prediction accuracies of 9 traits using the two models. Different colors represent different models. Abbreviations of traits are explained in Table 2.

DISCUSSION

Genome Relationship Matrix
Genome-wide densemarkers have replaced pedigree information
and have provided a new methodology for estimating additive
and dominant genetic effects, anticipated to improve the accuracy
of genomic predictions (30). The technique of construction of an
additive genomic relationship matrix by whole-genome markers
(28, 31) then using a linear mixed model to estimate individual
breeding values has been widely used in genomic prediction and
selection (32–34). In the present study, in addition to an additive
genomic relationship matrix, we also constructed a dominant
relationship matrix via genome-wide SNP markers. The genome
relationship matrix represents confirmed gene sharing, rather
than merely conceptualized or predicted ancestral sharing (24).
In contrast to pedigree-based individual relationship matrices,
a genomic relationship matrix based on genome-wide dense
markers is able to capture genetic links from unknown common
ancestors (24), not available in an individual relationship
matrix based on pedigree. Furthermore, a genomic relationship
matrix is suitable for not only populations with pedigree
information but also those without pedigree information. It is
particularly useful for the study of livestock populations and
even wild populations that lack or have inaccurate pedigree
information (35, 36). The technique for construction of an
epistatic genome relation matrix allows for only approximate

calculations when considering a large number of markers.
Where epistasis between several specific markers is modeled
using a required technique, an epistatic genomic relationship
could only be approximated, as it is difficult to construct
a precise epistatic relationship matrix (37, 38). Therefore,
an epistatic relationship matrix was not constructed in the
current study.

The use of an additive and dominant genetic relationship
matrix in a typical linear mixed model (such as the GBLUP
model) is capable of estimating additive and dominant
components of variance. Goddard and Hayes et al. established
that the GBLUP model is equivalent to a linear random
regression model, assuming that each SNP causes an effect,
and the effects of all SNP effects follow a normal distribution
with equal variances (39, 40). The predictability of the
GBLUP model may be unsatisfactory in cases where a few
markers have large effects and the majority have little effect
or are even ineffective. However, the study of actual data
from German Holstein cows has demonstrated that the
GBLUP model, which directly estimates genomic breeding
value, was able to fully utilize the related information (41).
Thus, the GBLUP model has comparative advantages in the
case of close relationships between reference and candidate
populations (42, 43). Considering that the population involved
in the current study was from the same breed, the method
proposed in the present study may not be the only one,
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but it was an appropriate approach for estimation of additive
and dominant variances and for prediction of genomic
breeding values.

Additive and dominant variance components were estimated
for 9 traits of interest in the Alpine Merino sheep population,
including 5 wool traits and 4 blood traits. Due to complex
genetic mechanisms and differences between species, to date,
few studies have estimated genetic variance components in
sheep blood traits. Safari and Fogarty et al. collected and
summarized a number of studies on the genetic parameters
of important traits in sheep. Their reported results suggested
that the weighted average heritability of FD (0.51–0.59) was
based on 41 and 43 estimates, respectively; the weighted average
heritability of SL (0.46–0.48) was based on 21 estimates; the
weighted average heritability of FBS (0.34) was based on 11
estimates; and the weighted average heritability of CFWR (0.34–
0.51) was based on 36 and 43 estimates, respectively (44, 45).
In this study, the heritability of 4 wool traits (Table 2) was
close to the results reported in previously published literature
except that 0.37 for FD was slightly lower. In particular, SL
(0.50) and FBS (0.34) were very close to the results reported in
the literature. The results suggested that although the dataset
was only a small proportion of the entire Alpine Merino
population, heritability estimates were still reliable. For the 9
traits involved in the current study, the estimated values of
dominant variance ranged from 0 to 73.41% of the total genetic
variation. It has been reported in the literature that estimated
variation in dominant milk production traits in Holstein cows
ranged from 1.4 to 42.9% of the total genetic variance, with
a wide range of variation (46–48). This is consistent with the
research results in the present study, but with a smaller range.
Two reasons may explain why the range of our results was
larger than that reported in the literature. (1) An excellent
rearing bull is able to participate in the breeding of a large
number of cows through semen cryopreservation technology,
hard to achieve in the Alpine Merino sheep population. In
a similar-sized population, the male-to-female mating ratio
of Alpine Merino sheep was considerably larger than that of
Holstein cows, proving richer genetic diversity to the Alpine
Merino sheep, leading to greater population heterozygosity
and QTL alleles with greater intermediate frequencies (49). (2)
Research reported in the literature was based on an individual
relationship matrix constructed using a pedigree dataset, then
a conventional BLUP method used to estimate the various
components of variance, while the individual relationship matrix
was constructed from genomic information in the present
study, which is expected to improve the ability to estimate
components of variance, including additive and dominant
variance, and also effectively reduce potential confusion about
additive effects and residuals. This confusion can also lead
to the different estimations of components of variance (11).
Previous studies have shown a significant contribution of non-
additive genetic variation. It has been reported that in a Duroc
pig population, the non-additive variance of the majority of
meat quality and carcass traits accounts for more than 50%
of total QTL variance (50). The ratios of dominant variance

to additive genetic variance ranged from 15% (21-day litter
weight) to 57% (interval between parities) for reproductive and
growth traits in South African Duroc pigs (16). In chickens,
QTL analysis demonstrated that non-additive genetic effects
explained greater variation in those younger than 46 days,
while additive genetic effects explained the principal proportion
of later life genetic variation (51, 52). These results indicate
that non-additive genetic variation is extremely important in
complex traits.

GP Results and Accuracy of Prediction
To the best of our knowledge, studies of GP or GS about
high-altitude hypoxia adaptation in sheep were rarely reported,
so we did not find reference statistics related to sheep blood
traits. However, for wool traits, the statistical averages of FD
and FBS calculated by Daetwyler et al. in their study on
genetic parameter estimation of Australian Merino sheep were
17.3 and 33.4, respectively (53). The statistical averages of
SL and FBS obtained by Moghaddar et al. in the genomic
prediction study of wool traits of Poll Dorset (PD) and
Merino and White Suffolk (WS) were 80.93–98.57 and 33.80–
35.61, respectively (54); in addition, according to Hamadani
and coworkers in the study of Rambouillet sheep heritability
estimation, the statistical average of FD is 21.26 (55). In the
current study, the statistical results (Table 1) were consistent with
the values calculated from the above studies, and it suggested
that the statistical values of the phenotypic measurements
were reliable.

In the present study, the accuracy of GP was evaluated by
5-fold cross validation, the results of which are presented in
Table 3. The results of the GP study on wool traits of different
breeds of sheep from Daetwyler et al. suggested that for FD
traits, the accuracy of prediction ranged from 0.23 to 0.79, and
for FBS traits, it ranged from−0.01 to 0.43 (53). Moreover,
Moghaddar and his colleagues estimated the BVs of wool trait
such as FD, SL, and FBS of Merino, Border Leicester (BL), and
WS; the prediction accuracy of FD, SL, and FBS was between
0.39 and 0.50, 0.25 and 0.61, and 0.10 and 0.49, respectively
(54). In the current study, the prediction accuracy of FD, SL,
and FBS was 0.20, 0.25, and 0.11 respectively, which were close
to the results reported in the previous literatures. For these 9
traits, regardless of whether the MAG or MADG model was
adopted, the accuracy of prediction of FERwas least, while SL was
correspondingly the greatest. The additive variances estimated
by the two traits described above are also the smallest and
the largest, respectively, at 0.07 and 0.50. A number of studies
have indicated that, as the level of heritability increases, the
accuracy of genome prediction also increases (39, 56, 57). This
was also found in the current study: traits with high heritability,
such as SL and FD, showed higher accuracy of prediction than
FER and RBC, which, with low heritability, suggested that the
level of additive genetic variance has a positive effect on the
accuracy of prediction. Moreover, it is seen from Table 2 that
the additive and dominant variances of CFWR were higher than
those of FD, but with an accuracy of prediction slightly lower
than that of FD (Table 3). Interestingly, this was also found
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in blood traits; additive and dominant variances of HCT were
higher than those of MCH, but the accuracy of prediction of
the former was lower. The results above suggested that the
dominant variance also has a vital impact on predictability of the
model. Alves and coworkers analyzed nine fertility and fecundity
traits of dairy cows adopting the model containing additive
effects and dominant effects and got similar conclusions: models
which include non-additive genetic effects for the majority of
traits indicate that the effects of epistasis, dominance, or a
combination of the two are as important as the additive effect
and occasionally contribute substantially more than the additive
effect (8). In this study, for those traits with dominant variance,
both additive and dominant variances affect the accuracy of
prediction. From the comparison of CFWR and FD, it can be
explained that dominant effects may have an impact on the
accuracy of prediction greater than that of additive effects in
some traits.

For these two models (MAG and MADG), the accuracy of
prediction of the MAG model was slightly higher than that of
MADG, for both wool and blood traits. The proportion of full-
sib relatives and the relationship coefficient of the dominant
effect between the training and verification datasets are very small
because samples were selected from the same generation with
different dams. TheMADGmodel, which combined additive and
dominant genetic effects, did not exhibit a clear advantage over
the MAG model with only the additive genetic effect, possibly a
reflection of only a small proportion of the dominant variance
effect information being transferred from the training group to
the verification group through 5-fold cross validation. This has
also been found in previous studies: Ertl and his colleagues found
by genomic analysis of Fleckvieh cattle that when the whole sib
relationship between training and validation datasets is small,
the accuracy of prediction of the total genetic value by cross
validation is not higher in the dominant model than in the
additive model (11). In the simulation study of Varona et al.
(58), only the population with full-sibs or full-sib offspring could
capture the change of breeding value when the additive model
was converted to a dominant model (58). The samples collected
were selected from the whole Alpine Merino herd in the present
study and differed from the Holstein cow dataset that had a large
proportion of full-sib relatives. Estimated results from full-sib
offspring would not therefore represent the whole population.
The results of the present study demonstrated that, compared
with the MAG model, the MADG model which included the
dominant effect displayed no apparent advantage in terms of
predictability, not surprising since the additive genetic effects
account for a proportion of the epistasis and dominant effects
(8). The inclusion of non-additive genetic effects, therefore,
in model fitting is not consistently advantageous (10, 13,
59), which is in agreement with the majority of previous
studies (60–62).

For the accuracy of GP, the MADG model containing
dominant genetic effects does not show a significant advantage
over the MA model with only additive effects. Although
the advantage of the MA model over MAD in these traits
involved in the current study was not obvious, it could
not be ignored. It could be expected that when a larger

reference dataset was adopted, especially when it contains
more offspring animal records, comparing the predictive
ability of models with additive effects and models with
additive and dominant effects will get greater benefits for
the GP; meanwhile, it is not excluded that genetic models
containing additive and dominant effects may be beneficial
to the development of specific capabilities of integration for
other important traits (34). Furthermore, a number of studies
have suggested that there exists a dependent relationship
between additive and dominant effects (63, 64). Although the
processing of these relationships was somewhat complicated
and the calculations substantial, we will collect a larger
dataset and attempt to take these factors into consideration in
subsequent studies.

CONCLUSIONS

In summary, the present study estimated the additive and
dominant variances of 9 traits of Alpine Merino sheep based on
two different GBLUP models and used 5-fold cross validation
to evaluate the accuracy of prediction of breeding values for
these traits. This was the first time GP has been applied to
the domesticated Alpine Merino sheep population. Dominant
genetic effects account for a large proportion of total phenotypic
variation in particular traits (FER, RBC, HCT). Both additive
and dominant variances play a vital role in the accuracy of
prediction, while for some traits the latter may have a greater
impact on the accuracy of prediction than the former. In
addition, this study indicates that the predictive capability was
not improved when dominant effects were included in the
model if the proportion of full-sib relatives in the population
was small.

Based on the current results, we will expand the scale of the
dataset in the subsequent study and continue to research GP
by adding other important traits of the Alpine Merino sheep
population, in order to provide more theoretical references for
the breeding of this sheep population. Moreover, this study
adopts genome-wide SNP information to construct additive and
dominant relationship matrices; compared with the relationship
matrix based on pedigree, the former is obviously more reliable,
which suggests the great contribution of genome-wide SNP
information in genome selection. Although the individuals
involved in this study only included the Alpine Merino sheep
population, the heritability estimation results of SL and FD
and the accuracy of GP were very close to those reported
in the previous literature. Therefore, it is not excluded to
extend these study methods and apply them to other breeds
of sheep.
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