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MicroRNAs (miRNAs) are small and highly conserved non-coding RNA molecules

that orchestrate a wide range of biological processes through the post-transcriptional

regulation of gene expression. An intriguing aspect in identifying these molecules as

biomarkers is derived from their role in cell-to-cell communication, their active secretion

from cells into the extracellular environment, their high stability in body fluids, and their

ease of collection. All these features confer on miRNAs the potential to become a

non-invasive tool to score animal welfare. There is growing interest in the importance

of miRNAs as biomarkers for assessing the welfare of livestock during metabolic,

environmental, and management stress, particularly in ruminants, pigs, and poultry. This

review provides an overview of the current knowledge regarding the potential use of

tissue and/or circulating miRNAs as biomarkers for the assessment of the health and

welfare status in these livestock species.
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INTRODUCTION

Monitoring animal welfare is challenging. Keeping farm animals clinically healthy, without disease
or distress, is fundamental for the production of safe and high-quality food. This topic is highly
relevant both for governments and for food industries worldwide. Furthermore, consumers pay
increasing attention to how animals are reared and, consequently, to how animal-derived food
products are obtained. The concept of animal welfare includes a great variety of aspects. Recently,
the Welfare Quality protocol introduced the use of animal-based measures that are focused on
animal needs and include the evaluation of appropriate (valid, reliable, and viable) indicators
that allow the assessment of the physical and mental welfare of animals (1). Animal-based
measures are particularly useful because they show the effects of interaction between the animal
and its environment. Impaired animal welfare is often caused by chronic stress resulting from
an inability to cope with environmental factors combined with genetic vulnerability (e.g., the
concentration of neurotransmitters such as serotonin and individual immune response capacity)
(2–4). According to the current literature, livestock welfare indicators are classified into three main
categories, namely, physiological measures, behavioral observations, and product quality (5–8).
Physiological measures, including blood parameters (9–11) and behavior, allow the assessment
of animal welfare in vivo (12). Systemic metabolic perturbation resulting from chronic stress has
been also investigated using metabolomics, and has led to the identification of parameters directly
associated withmanagement and housing conditions and regulated by the hypothalamic–pituitary–
adrenal axis (HPA) (13, 14). Other studies have aimed to identify hormones and other molecules
that are quantified at levels out of a “physiological range” (15–17).
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miRNAs are fine-tuning coordinators of cellular processes,
including the modulation of animal development, homeostasis,
immune responses, and control of infection, and are also
crucial for the regulation of stem cell self-renewal and
tissue differentiation (18–21). Following a physiological
stimulus or injury, circulating miRNAs (c-miRNAs) can be
released from cells into the blood or other body fluids in
either an active (secretion) or passive (membrane leaking)
manner (22–24). Much of the interest generated by c-
miRNAs relates to their involvement in the regulation of
molecular pathways of recipient cells and their remarkable
potential as easily accessible biomarkers of diseases and
disorders (25).

miRNAs AS POTENTIAL BIOMARKERS

Some of the most intriguing and potentially interesting aspects
in identifying miRNA molecules as biomarkers derive from their
highly regulated spatial and temporal expression, their active
secretion from cells into the extracellular environment, and their
high stability in body fluids (26). C-miRNA profiles change under
conditions such as diseases, viral or bacterial infections (27–
29), and physiological states (e.g., pregnancy) (30, 31), indicating
that c-miRNAs are suitable biomarkers for monitoring different
physical conditions in animals.

Emerging evidence from rodent models has indicated that
c-miRNAs may also serve as biomarkers of resilience or
vulnerability to stress (32). The dysregulated expression of
miRNAs has been investigated as markers of a variety of
diseases, including mental disorders such as anxiety (33). Recent
studies have indicated that miRNAs contribute to numerous
aspects of neurogenesis, neural plasticity, and the stress response,
while also modulating the expression of genes involved in
chronic psychosocial stress in both humans and rodents (34,
35). The identification of stress and the relationship between
stressful conditions and their psychological causes is particularly
challenging in farm animals; nevertheless, chronic stress induced
by social conflict, social isolation, and overcrowding has also been
reported (36–38). To the best of our knowledge, no study to date
has investigated the role ofmiRNAs in themolecularmechanisms
underlying mental stress responses in livestock species. Given
that most livestock species are social, the ability of miRNAs to
modulate the molecular networks associated with mental stress
merits further investigation.

Usually, the need to adapt the technologies developed for
human medicine to animal species is one of the main reasons for
the delayed progress in veterinary science. Owing to the high level
of sequence homology across species, miRNAs can be readily
detected without the need for protein-specific antibodies and
species-specific assays. Therefore, the identification of suitable
miRNAs is an interesting field of research that may provide
an in-depth and complete overview of animal welfare and
related health conditions at the molecular level. C-miRNAs are
considered among the most promising clinical biomarkers for
the identification of stress-related disorders in animals, becoming
valid tools to assess the welfare of an animal throughout its life,

while also having the potential to allow the scoring of the quality
of animal products along the food supply chain.

The concept of stress was recently proposed to be restricted to
“conditions where an environmental demand exceeds the natural
regulatory capacity of an organism, in particular situations that
include unpredictability and uncontrollability,” and must be
strictly related to a health condition (39). Several challenging
events during the productive life of livestock species may
be included within these “unpredictable and uncontrollable”
situations, including immunological and metabolic stress,
management stress, stress due to the splitting and regrouping
of animals during their production cycle, weaning stress, stress
associated with diet changes, handling or transport stress, and
environmental stress.

This review aimed to describe and critically assess the relevant
current literature regarding these challenging events, giving only
a brief overview of miRNAs involved in immune responses
induced by infectious diseases. Despite the increased interest in
investigating miRNAs involved in veterinary-relevant infectious
diseases in the past few years, this topic is not within the main
scope of this review, and has been described in excellent recent
reports (19, 20, 25, 40–44) (Supplementary Table 3).

miRNAs RELATED TO HEALTH AND
WELFARE IN CATTLE

Acute and chronic events exert different influences on bovine
metabolic pathways, and can affect the quality of life and
productivity of these animals. Immunity, mammary gland health,
milk composition, and metabolic parameters are regulated by
several molecular networks, which include miRNAs (Figure 1)
(Supplementary Table 1).

Immunity
Diseases, disorders, and other stressors deriving from
environmental or management conditions can suppress the
immune system through the activation of the HPA axis and
the sympathetic–adrenal–medullary (SAM) system (45). Recent
studies have proposed that miRNAs play crucial roles in bovine
immunity by regulating different immune cell functions (41, 46).
In particular, miRNAs seem to be interesting as candidate
biomarkers to detect changes in immune mechanisms involved
in mycobacterial infections and mastitis.

A recent review defined miRNAs as key regulators of host
gene expression and immune defenses, as well as promising
biomarkers for resistance to mycobacterial infection (20). In
cattle, many miRNAs have been reported to be modulated
during mycobacterial infections (47–51). The expression of
miR-19b, miR-196b, and miR-146, which are immune- and
inflammation-related c-miRNAs, is altered during infection
caused by Mycobacterium bovis and M. avium subspecies
paratuberculosis, and have been proposed as potential biomarkers
for these diseases (50, 51).

Mastitis is one of the most frequent and economically
important diseases in the dairy sector, and greatly threatens the
welfare of affected animals. Several studies have investigated
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FIGURE 1 | Overview of miRNAs dysregulated in response to stress in cattle. The list is limited to miRNAs confirmed by sequencing and validated through molecular

approaches such as RT-qPCR and in situ hybridization.

the role of miRNA in mastitis induced by Streptococcus uberis,
Staphylococcus aureus, and Escherichia coli (52–54). These studies
mostly aimed to clarify the role of miRNAs in innate immune
responses and identify candidate genes and miRNAs suitable
for use in developing strategies for the prevention, diagnosis,
or treatment of mastitis (52, 53, 55). Using RT-qPCR, Naeem
et al. investigated several immune-related miRNAs in S. uberis-
infected bovine mammary tissue, and found that miR-181a,
miR-16, and miR-31 were significantly downregulated, whereas
miR-223 was upregulated, in infected tissue when compared
with healthy tissue (56). Several years later, the miRNome and
transcriptome of milk and blood CD14+ monocytes collected
from Holstein Friesians cows experimentally infected with
S. uberis were characterized for the first time using next-
generation sequencing (NGS) (57). The authors identified several
differentially expressed (DE) miRNAs, previously described as

targeting immune or inflammatory regulators in other species
and bovine mammary epithelial cells, at different time points
(41, 57). Their results showed that miR-223 was upregulated,
as previously reported by Naeem et al. (56), but in contrast,
miR-146 was downregulated (56, 57). Interestingly, this study
highlighted that most of the downregulatedmiRNAs expressed in
milk monocytes isolated from infected animals, such as miR-149,
were predicted to preferentially target genes involved in innate
immunity, including those involved in the Toll-like receptor
(TLR), NOD-like receptor (NOD), and the RIG-I-like receptor
(RGI-I) signaling pathways. The transcriptional suppression
of these miRNAs enables the activation and amplification of
pro-inflammatory responses (57).

Another pathogen frequently involved in mastitis etiology
is S. aureus. Using RNA-seq analysis, Fang et al. demonstrated
the pivotal roles of miR-223 and miR-21-3p in defending the
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host against bacterial infection through their immunoregulatory
activity on innate immune-related genes (e.g., CXCL14 and KIT)
(58). By combining the results of high-throughput sequencing,
customized miRNA chip data, and miRNome analysis, another
group characterized the expression of genes in mastitis-infected
tissue during the late stage of natural infection with S. aureus (59).
MiR-26a, predicted to target a bridging molecule (FGA) involved
in host defensemechanisms against S. aureus, was downregulated
in infected tissue when compared with that of normal samples,
thereby confirming the role of miR-26a in regulating tissue
defense (59).

A recent study investigated the roles of miRNAs in host
defenses against S. aureus and E. coli by comparing the two
models of bovine mastitis infection (52). Deep sequencing and a
comparative analysis of infected vs. healthy tissue, and between
tissues infected by each of the pathogens, led the authors to
propose miR-7863 as a biomarker for S. aureus-induced mastitis
and miR-202 and miR-2357 as biomarkers for E. coli-induced
mastitis. MiR-144 and miR-451 were defined as being useful for
discriminating between the two pathogens because they were
significantly upregulated in S. aureus-infected mammary glands,
and markedly downregulated in those infected with E. coli (52).

Relatively few reports have described the profile of blood
miRNAs of dairy cows affected by mastitis (54, 57, 60). Several
miRNAs have been identified as being DE in the serum of
cattle affected by S. aureus-related mastitis compared with
healthy animals. Among them, miR-144 and miR-125, which
are involved in the regulation of immune responses through
signaling pathways such as TLR, TGF-beta, and MAPK, were
found to be upregulated (54). Recently, the expression profile
of miRNAs in the peripheral blood of cattle with E. coli-related
mastitis was characterized by NGS and RT-qPCR (60). The
authors identified several immune-related miRNAs that were
DE, some of which were upregulated (miR-200, miR-205, miR-
182, miR-214, and miR-145) and some downregulated (miR-
342, miR-326, and miR-331-3p). KEGG pathway enrichment
analysis showed that the DE-miRNAs were preferentially
involved in cytokine–cytokine receptor interaction, chemokine
signaling pathway, leukocyte transendothelial migration, T cell
receptor signaling pathway, TLR signaling pathway, and cell
adhesion molecules, thereby confirming their role in innate
immunity and inflammatory responses (60). These DE-miRNAs
merit further investigation as potential biomarkers in E. coli-
induced mastitis.

Different authors have reported that miR-223 is highly
expressed in mammary gland tissue. This miRNA may
play a pivotal role in regulating inflammatory responses
against pathogens, and may potentially represent a candidate
diagnostic marker for bovine mastitis (56–58, 61, 62). In
humans, miR-223 is essential for innate immune and
inflammatory responses governing neutrophil proliferation,
activation, and granulopoiesis (63, 64). Neutrophils are the
first effectors of the inflammatory response triggered by
mastitis infection and represent an important line of defense
against pathogenic microorganisms. It would be of interest
to explore if miR-223 would similarly affect neutrophils
in cattle.

miRNAs and Milk
Importantly, calves lack circulating antibodies at birth. In the
first days of life, the ability of newborns to fight pathogens
is completely dependent on the passive immunity provided
by ingested colostrum (65). Colostrum contains important
nutrients, bioactive components, and higher amounts of miRNAs
than mature milk. The possible effects of colostrum ingestion on
calves have been recently reviewed (66).

miRNAs in milk may be actively secreted by the mammary
gland (67) or passively leaked by mammary gland cells (68),
and their expression profiles differ between colostrum and
milk (69), as well as among cattle breeds (67). Through a
systematic sequencing-based analysis of colostrum and raw
milk at various stages of lactation, Chen et al. identified
miRNAs involved in the immune response and immune system
development, such as miR-181a, miR-155, and miR-223, that
showed markedly higher abundance in colostrum than in milk
(69). Immune-related miRNAs were also identified in milk-
derived microvesicles. A recent study compared the miRNAs in
milk and colostrum exosomes of Holstein and native Turkish
DoguAnadolu Kirmizisi (DAK) cows, a breed extremely resistant
to harsh environmental conditions (67). Through sequencing
and a second validation step using RT-qPCR, miR-142-3p,
miR-29c, miR-222, miR-1248, let-7a-5p, miR-340, miR-101, and
miR-21-5p were found to be DE between the two breeds.
Functional enrichment analysis revealed that the total number
of miRNAs in the colostrum of DAK cows was more related to
immunological pathways compared with that in milk (67). The
abundance and composition of miRNAs in milk and colostrum
may also be influenced by management-related factors, including
nutrition (70) and subclinical disorders (61, 62). The amount of
inflammation-related miRNAs in the milk of cows affected by
mastitis can vary, suggesting that they could potentially be used to
detect bovine mastitis, as speculated for miR-222 and miR-21 by
Lai et al. andmiR-223 andmiR-142-5p by Cai et al. (61) and Lai et
al. (62). Milk miRNAsmay potentially be used for monitoring the
welfare of cows and preventing possible disorders in the health
of calves; however, further research is needed to elucidate their
reliability as biomarkers.

miRNAs and Genetic Background
In cattle, stressor stimuli-related miRNAs are influenced by
the genetic background (71). Ioannidis et al. investigated the
potential application of c-miRNAs as markers for genetic attitude
and performance in dairy cattle, including aging, fertility, and
welfare traits (71). The most pronounced changes in c-miRNA
levels among calves, heifers, and cows were found during the
early stage of life. Most miRNAs, such as miR-127 or miR-140,
were associated with health traits (mastitis, fertility, lameness)
and were linked to immune responses and inflammation.
Twelve age- and one genetic line-related (miR-15a) miRNAs
were reported to be DE (71). Plasma miRNA levels were
associated with longevity indicators such as telomere length, milk
production and composition, milk somatic cell count, fertility,
lameness, and blood metabolites linked to body energy balance
and metabolic stress (71). Dystocia and perinatal mortality are
quantitative traits that significantly influence animal productivity
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and welfare. Environmental and genetic factors are critical for
the development of these phenomena that are common in both
dairy and beef cattle (72). A study using quantitative trait loci
mapping and genome-wide association identified several large
genomic regions linked with these events in Holstein dairy cows.
Stem-loop mir-1256 was identified as being involved in the post-
transcriptional regulation of gene expression associated with
maternal calving difficulties (73).

Research on the expression of miRNAs related to genetic
selection in livestock is still in its infancy; however, the above
reports demonstrated that the expression of these molecules
in cattle can be affected by age and genetic selection. Further
work is needed to determine their functional implications and
their potential for use in selective breeding programs aimed at
improving animal health, welfare, and production performance.

Management and Stress
Different management- and housing-related factors can
promote the onset of stress in livestock and significantly affect
physiological and productive parameters. Stress conditions alter
miRNA biogenesis, the expression of mRNA targets, and the
activities of miRNA-protein complexes (74). As a model of
stress, Colitti et al. explored the revision of the social hierarchy
group in cows focusing on milk exosome composition during
the lactation period, and found that several miRNAs were DE
(75). Functional pathway analysis of potential target genes of the
DE miRNAs identified genes related to glucocorticoid receptor
signaling and neurotrophic factor-mediated TRK receptor
signaling. The neurotrophic signaling pathway is involved in the
adaptive stress response and can be considered an alternative
to glucocorticoid signaling in modulating the expression of
corticotrophin-releasing hormone (CRH) (76). Based on the
responsiveness to environmental stimuli and involvement in
the signaling pathways described above, the authors identified
miR-142a, miR-135, miR-320a, and miR-30-5p as potential
markers of a mild stress response in dairy cows (75).

Environmental Stress
High temperature is one of the main environmental factors
affecting livestock production, welfare, and health. Cooling
methods (e.g., shade, fans, and sprinklers) are used in dairy and
feedlot farms to partially mitigate the negative effects of heat
stress. MiRNAs play an important role in the transcriptional
regulation of genes coding for proteins involved in heat stress
response-related mechanisms (77, 78). Heat stress negatively
influences dairy cattle homeostasis. Moreover, the chronic stress
response is characterized by physiological as well as biochemical
parameters that negatively affect, among others parameters, milk
composition and mammary gland health through decreasing
the immune response and increasing susceptibility to mastitis
(79). In particular, heat stress seems to affect lipolysis and
lipogenesis-related enzymes in bovine adipocytes (80). Given
that mammary gland adipocytes can regulate the growth and
biological function of the mammary epithelium, the authors (78)
investigated the role of miRNAs in the mammary tissue of dairy
cattle in response to different thermal conditions. Sequencing
analysis and RT-qPCR were performed to identify miRNAs that

were DE in the bovine mammary gland during heat stress.
Seven miRNAs (downregulated: miR-21-5p, miR-99a-5p, miR-
146b; upregulated: miR-145, miR-2285t, miR-133a, miR-29c)
potentially targeting cellular and developmental processes, cell
death, and the biosynthesis of secondary metabolites were found
to be DE after heat stress (78). Significant changes in miRNA
expression were also detected in a bovinemammary epithelial cell
line (MAC-T) in response to heat stress compared with thermal-
neutral conditions (81). MiRNAs associated with cell-growth
arrest and apoptosis (miR-34a, miR-92a, miR-99, and miR-184),
oxidative stress (miR-141 and miR-200a), and fat synthesis (miR-
27ab and miR-221) were reported to be upregulated (81).

Interestingly, based on the analysis of different matrices, such
as serum and mammary gland cells, the upregulation of miR-27b
(77, 81) and the downregulation ofmiR-146b (77, 78) were shared
between studies conducted on different cattle breeds exposed to
heat stress.

Single nucleotide polymorphisms (SNPs) or mutations in
the 3’UTRs of genes can affect protein expression by creating
illegitimate binding sites for miRNAs (82). A novel SNP and a
new binding site for miR-484 in the heat shock transcription
factor 1 (HSF1) gene were identified in Chinese Holstein dairy
cattle, suggesting that this miRNA has a role in the heat stress
response (83).

Dairy breeds are typically more sensitive to heat stress owing
to a high metabolic rate and higher-producing; however, thermal
stress negatively affects food intake and, consequently, skeletal
muscle growth. Under heat stress, miR-1246 was found to be
significantly upregulated in the plasma of both dairy cows and
beef cattle (77, 84). MiR-1246 directly targets poly(rC) binding
protein 2 (PCBP2) and cAMP response element binding protein-
like 2 (CREBL2), lung cell growth and apoptosis regulators, and
is closely related to genes involved in innate immunity. Based on
this evidence, Zheng et al. and Hu et al. proposed miR-1246 as a
negative regulator of heat stress in bovine species (77, 84).

The results of recent studies have indicated that the
elucidation of the miRNA-mediated stress regulatory network
may provide new tools for the genetic improvement of
heat tolerance in cattle. Selecting dairy cattle based on
thermoresilience using miRNAs as biomarkers in mammary
gland tissue or the bloodstream could be a valid future
research avenue.

High-altitude hypoxia represents a stressful stimulus and
affects the immune system of animals, decreasing cytokine release
and altering immunoglobulin secretion (85). These events are
consistent with chronic stress affecting the physical conditions
and increasing the vulnerability of animals to infection and
disease. Several studies have investigated the adaptation of cattle
managed on pasture in high-altitude regions (86, 87). Kong et
al. investigated the miRNA expression profiles of two breeds
of cattle, and found that the levels of circulating miR-155 and
miR-17-5p were upregulated in Jersey cows (86), whereas miR-
let7a-5p, miR-19a, and miR-181a were upregulated in Holstein
cows (87). In both studies, hypoxia induced the upregulation
of miRNAs involved in acute phase response (APR) signaling
(86, 87), which is known to promote homeostatic mechanisms
in response to inflammatory stimuli (88). These miRNAs likely
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modulate inflammation-stimulating factors and the immune
response, exerting an important role in the bovine resistance to
high-altitude hypoxia, and represent potential candidate stress-
related biomarkers.

miRNAs RELATED TO HEALTH AND
WELFARE IN SMALL RUMINANTS

Several hundred miRNAs have been identified in small ruminant
species; however, the functional roles of many of thesemiRNAs in
the various regulatory systems remain unclear. Studies in sheep
and goats have often focused on economic traits such as milk,
meat, and wool production (82, 89–92), and relatively few studies
have investigated their health status related to welfare conditions
(Figure 2 and Supplementary Table 2).

Immunity
C-miRNAs have been proposed as biomarkers in the interaction
between the HPA axis and stress-activated immune responses
(93). A strong stress response in sheep was correlated with
distinct circulatory biomarker profiles, demonstrating that stress
resiliency may be determined by specific circulatory patterns.
The inflammatory response, detected through the measurement
of immune and stress biomarkers, was associated with high
expression levels of miR-145, miR-233, and miR-1246 (93).

miRNAs have also been shown to modulate the immune
response to infectious diseases in small ruminants. Peste des
petits ruminants virus (PPRV) is a member of the Morbillivirus
family, and is highly contagious and fatal for small ruminants,
both domestic and wild (94). Qi et al. (95) demonstrated
that the downregulation of miR-218 directly targeted signaling
lymphocyte activation molecule (SLAM or CD150), which
promotes the expression of other genes such as IFNG, TNF,
and IL10 during PPRV infection (95). PPRV has been shown
to modulate the expression of at least 10 miRNAs in peripheral
blood mononuclear cells (miR-664, miR-2311, miR-2897, miR-
484, miR-2440, miR-3533, miR-574, miR-210, miR-21-5p, and
miR-30). Of these, miR-664 and miR-484 were upregulated and
were shown to exert proviral and antiviral activity, respectively.
In contrast, miR-21-5p, which decreases the sensitivity of cells
to the antiviral activity of interferons (IFNs), and miR-30b,
which inhibits antigen processing and presentation by primary
macrophages, were found to be downregulated in PPRV infection
(96). Moreover, the authors showed that TGFBR2 was directly
targeted by both miR-21-5p and miR-484 (96). The influence
of PPRV on miRNA expression levels was investigated in the
spleen and lung of infected sheep and goats (97). Comparing the
two species, 20 and 11 DE-miRNAs were shared in the spleen
and lung, respectively. Gene ontology analysis for 6 DE-miRNAs
(miR-21-3p, miR-1246, miR-27a-5p, miR-760-3p, miR-320a, and
miR-363) indicated that these miRNAs were involved in several
immune response signaling pathways, suggesting that PPRV-
induced miR-21-3p, miR-320a, and miR-363 expression might
act cooperatively to enhance viral pathogenesis (97).

A study investigating the ability of the Maedi–Visna virus
(MVV) to modulate the response of the ovine lung at the

molecular level demonstrated that several miRNAs were DE
between clinically affected and seronegative sheep (98). Three
DE-miRNAs, namely, miR-21, miR-148a, and let-7f, may have
potential implications for host–virus interaction. In particular,
miR-21, a regulator of inflammation and proliferation, may be
a marker for lung lesion severity and/or a putative target for
therapeutic intervention (98).

The profiles of exosomal miRNAs isolated from sheep pox
virus (SPPV)-infected ovine testicular cells were characterized
by He and colleagues (99), and 34 known miRNAs were found
to be DE between infected and control cells. The levels of
miR-21, miR-10b, and let-7f increased post-infection, whereas
those of let-7b and miR-221 decreased. The candidate target
genes were mostly involved in immune system processes and
stimulus responses (99). Although the authors did not analyze
the feasibility of using these miRNAs as potential biomarkers,
further studies may cover this gap. Using the same ovine
primary testicular cell culture, 25 known and 240 novel candidate
miRNAs were shown to be DE following bluetongue virus
(BTV) infection (100). Using RT-qPCR, the authors confirmed
that let-7d, miR-29b, miR-29, and miR-61 were upregulated,
whereas let-7f, mir-10b, miR-369-5p, miR-158, and miR-805
were downregulated. The ability of these miRNAs to modulate
some of their target genes were also demonstrated through
the measurement of target gene mRNA expression levels. The
target genes were mainly involved in immune system responses
and biological regulatory processes. The signaling pathways
included the MAPK, PI3K/AKT, endocytosis, Hippo, NF-kB,
FoxO, JAK/STAT, and TLR signaling pathways (100).

Transmissible spongiform encephalopathies (TSEs), also
known as prion diseases, are fatal neurodegenerative disorders
affecting humans, cattle, sheep, and goats (101). In 2017, Sanz
Rubio and colleagues demonstrated that c-miR-342-3p and c-
miR-21-5p levels were increased in the blood of sheep naturally
infected with classical scrapie, demonstrating that these two
miRNAs may be feasible biomarkers for these pathologies (102).

Parasites can also modulate the expression of miRNAs
involved in inflammatory and immune responses. Two groups of
sheep, resistant and non-resistant to cystic echinococcosis, were
orally infected with Echinococcus granulosus eggs, which cause
a chronic parasitic zoonosis, and their intestinal miRNome was
compared (103). Eighty-three known miRNAs were significantly
DE, 75 of which were upregulated and 8 downregulated.
Moreover, six of them (miR-21-3p, miR-542-5p, miR-671, miR-
134-5p, miR-26b, and miR-27a) showed significantly higher
expression in resistant sheep compared with that in non-resistant
animals. The potential target genes of these miRNAs were
associated with inflammation and immune responses (103).
Although no further investigation of these miRNAs has been
performed to date, future studies should focus on evaluating their
levels in body fluids, such as blood and saliva, to assess their
potential as biomarkers for cystic echinococcosis, an important
health problem for both animals and humans.

miRNAs and Milk
Studies have identified miRNAs involved in mammary
gland development in different phases of pregnancy (104),
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FIGURE 2 | Overview of miRNAs dysregulated in response to stress in small ruminants. The list is limited to miRNAs confirmed by sequencing and validated through

molecular approaches such as RT-qPCR and in situ hybridization.

colostrogenesis, and lactogenesis in small ruminant species
(105, 106). Galio et al. investigated the expression profiles of
miRNAs in the mammary gland during pregnancy and lactation,
and found that 100 were regulated according to three main
expression patterns (104). At the beginning of pregnancy, when
proliferation is most active, miR-21 was strongly expressed in
epithelial cells of the normal mammary gland, while miR-205
was abundantly found in basal cells. During the second half of
pregnancy, miR-205 expression was increased in luminal cells.
The authors suggested that miR-205 may control the progenitor
cell stock in cooperation with miR-200 to maintain epithelial
status by repressing an epithelial–mesenchymal transition-like
program and preserving the secretory phenotype of mammary
epithelial cells. The expression of both miRNAs increased at the
end of pregnancy and lactation playing an important role on
mammary gland development (104).

MiRNA expression profiles during milk lactation and in
the dry period have been reported for dairy goats. MiR-423-
5p, miR-378, and miR-7 were identified as exerting important
regulatory functions in milk ingredient transport and ingredient
synthesis during lactation (105). Hou et al. compared the miRNA
expression profiles of colostrum and milk collected during peak
lactation, and reported that miR-574 may be involved in the
development of the mammary gland and milk secretion in goats
via the estrogen, endocrine, adipocytokine, oxytocin, and MAPK
signaling pathways (106).

Another type of non-coding RNA, circular RNA (circRNA),
exerts important roles in the ovine mammary gland. The
most important function is to act as a “sponge” for miRNAs
in cells by enriching miRNA binding sites (107). Through
this mechanism, circRNAs can increase the expression levels
of their target genes by abolishing the inhibitory effect of
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miRNAs. Eight DE-circRNAs with high expression levels
and their corresponding target miRNAs and mRNAs, which
create a miRNA–circRNA–mRNA network, were screened,
demonstrating that the interaction between some key circRNAs
and their target miRNAs (miR-432, miR-200b, and miR-
29) are related to mammary gland development and milk
secretion (108).

The dairy goat mammary gland and the produced raw
milk shared 13 miRNAs among the most abundant members,
suggesting that these miRNAs present in the milk had originated
from the cells of the mammary gland (109). Furthermore, 4 of
the 20 most abundant miRNAs (miR-29a, miR-30a, miR-101,
and miR-146b) are immune-related miRNAs that target genes
involved in immune responses, such as IFNG and genes involved
in NF-κB and ICOS signaling.Most miRNAs, especially immune-
relatedmiRNAs, were expressed at similar levels in the mammary
gland and milk, and the authors hypothesized that there was a
correlation with the immature immune system requirements of
the offspring (109).

Animal Management-Related Stress
Weaning stress in young ruminants is induced by an inability
to cope with a new diet, and is characterized by growth stasis
(110). In goat kids, blood miRNA and mRNA signatures were
investigated 1 day before weaning (44 days of age) and 3 days
after weaning (48 days of age). Eighteen miRNAs (8 upregulated
and 10 downregulated) and 373 genes were found to be DE
(111). Two miRNAs related to skeletal muscle development
(miR-206 and miR-133a/b) were significantly downregulated
in post-weaning animals, as were cell proliferation-associated
miRNAs (miR-99b-3p, miR-224, miR-143-5p, and miR-10b-5p).
This suggested that weaning stress induced growth retardation
in the animals through the repression of cell proliferation, and
the authors proposed that significantly altered levels of these
miRNAs may be potential biomarkers to assess the severity of
weaning stress in goat production (111).

The nutritional status of animals is fundamental for their
reproductive performance (112). Yang et al. treated ewes with
or without concentrate added to the diet, and compared the
levels of body condition score, estrus rate, and hypothalamus–
ovary–nutrition-related miRNAs (113). A large number of DE-
miRNAs were identified, including 148 that were expressed in
the hypothalamus and 113 that were expressed in the ovary.
Among the significantly DE-miRNAs, miR-200a, miR-200b, and
miR-200c were expressed in both organs. Additionally, of the
target genes predicted to be associated with nutritional status
and seasonal reproduction in sheep, GNAQ was validated as
a target of miR-200b. Furthermore, the authors demonstrated
that miR-200b was involved in the regulation of estrus-related
genes (ITPR, PRKCB, GPR54, and KISS1) in the hypothalamus–
pituitary–ovary axis through the direct negative regulation of
GNAQ in the hypothalamus (113). The effect of feed deprivation
was investigated by Mobuchon et al. (114) who compared
the miRNomes of the mammary glands of ad libitum-fed or
food-deprived lactating goats. Seven highly expressed miRNAs
(miR-99a-5p, miR-126-3p, miR-140-3p, miR-222-3p, miR-223-
3p, miR-204-5p, and miR-409-3p) were validated as being

dysregulated, while their potential target genes were associated
with lipid metabolism (114). The authors highlighted that
the expression of miR-204-5p and miR-223-3p was the most
markedly affected by food deprivation, and that these miRNAs
may target several genes with roles in the nutritional regulation
of gene expression in the mammary gland (114).

Environmental Stress
Very recently, some miRNAs were found to be DE under high-
altitude hypoxia in both goats and cattle (115). Comparative
miRNA transcriptome analysis of two goat populations at distinct
altitudes produced reliable evidence for acclimatization based
on miRNA–mRNA interactions in hypoxia-related pathways,
including that associated with hypoxia inducible factor 1 (HIF-1).
The downregulation of miR-509-3p, miR-3069-1-3p, miR-409-
5p, and miR-208-3p, and the upregulation of miR-106a-5p, were
reported in the hypoxia-sensitive tissues selected by the authors,
including the heart, kidney, liver, muscle, and spleen, confirming
that miRNAs have a regulatory role in mechanisms related to
high-altitude adaptation (115). The potential target genes of
these DE-miRNAs are involved in apoptosis, angiogenesis, DNA
damage repair, erythropoiesis, and energy metabolism (115).
Moreover, the authors demonstrated that miR-106a-5p exerted
a negative regulatory effect on angiogenesis by targeting the
VEGFR1 (or FLT1) gene, thereby paving the way for further
utilization of molecular resources in plateau regions.

MiRNAs RELATED TO HEALTH AND
STRESS IN PIGS

Many of the effects of stressors are readily apparent on-farm,
including irregular estrus expression, increased abortion rates,
depressed offspring, and an increase in infection-associated
pathologies. The effects of stress, imprinted in the life cycle of pigs
by intensive breeding systems, involve changes in physiological
pathways that affect the health and welfare of this species
(Figure 3) (Supplementary Table 3).

The Endocrine System and Response to
Stress
The first reaction to a stressor is an adaptive HPA alteration.
However, persistent stress can induce changes in gene regulatory
networks, including alterations in miRNA levels (116). Recent
studies have highlighted the roles of miRNAs in the regulation
of the HPA axis in pigs (117–120).

During a stressful event, CRH activates the HPA axis,
promoting the secretion of adrenocorticotropic hormone
(ACTH) by the pituitary gland and glucocorticoids by the
adrenal glands. The relationship between CRH and miR-
375 in the regulation of catecholamine biosynthesis was
investigated in the adrenal gland of female pigs, with the results
demonstrating that CRH negatively regulated the expression of
miR-375, which, in turn, negatively regulated the expression of
catecholamines (117). MiR-375 directly targeted the SP1 gene, a
downstream effector of the protein kinase A pathway, decreasing
steroidogenesis and the production of glucocorticoids (117).
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FIGURE 3 | Overview of miRNAs dysregulated in response to stress in pigs. The list is limited to miRNAs confirmed by sequencing and validated through molecular

approaches such as RT-qPCR and in situ hybridization.

Ye et al. investigated the ability of miRNAs to post-
transcriptionally regulate the expression of gonadotropin follicle
stimulating hormone (FSH) in porcine anterior pituitary cells
in vitro (118), and demonstrated that the expression levels
of miR-361-3p and the abundance of FSHB were negatively
correlated. Following cell stimulation with gonadotropin-
releasing hormone, the level of miR-361-3p decreased, whereas
that of FSHB increased. The underlying mechanism was reported
to be related to the ability of miR-361-3p to directly bind the 3′-
UTR of FSHB (118). The ability of miRNAs to modulate FSH
expression has also been reported in the context of zearalenone
(ZEA), a non-steroidal Fusariummycotoxin found in animal feed
that can damage the reproductive system of animals (119). The
effects of ZEA on the pituitary gland included the modulation
of miR-7, which acts as a regulator of gonadotropin synthesis
and secretion. The authors showed that ZEA enhanced miR-7

expression, which, in turn, inhibited FSH expression by directly
targeting the FOS gene (119). Qi et al. explored the changes
in miRNA expression after growth hormone–releasing hormone
(GHRH) and cortistatin challenge in porcine pituitary cells and
identified 19 and 35 DE miRNAs, respectively. Functional tests
demonstrated that let-7c modulated the expression of growth
hormone 1 (GH1) and growth hormone releasing hormone
receptor (GHRHR) by binding to the respective 3′UTRs and
promoting a decrease in GH secretion (120).

Immunity
Several studies have investigated the involvement of miRNAs
in the swine immune response to viruses, bacteria, and
parasites, while others have compared healthy pigs of different
breeds using sequencing, microarray, and RT-qPCR approaches
(Supplementary Table 4). The genes targeted by miRNAs
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identified in these studies using in silico target prediction
or experimental validation are involved in immune-related
pathways such as apoptosis, inhibition of viral replication, and
viral recognition (121–126). In this section, we have focused on
studies that undertook experimental validation of target genes
and demonstrated the potential of the miRNAs as biomarkers or
for use in antiviral therapy.

The role of miRNAs as orchestrators of the innate immune
response elicited by the H1N2 influenza A virus (IAV) in lungs
and leukocytes has been investigated in an in vivo porcine
model (121, 122, 127). Brogaard et al. demonstrated that several
miRNAs and immune-related genes were DE in the lungs and
leukocytes of infected pigs, and that modulation occurred at
different time points (121, 122). In the lungs, the authors
negatively correlated the expression of some miRNAs and genes.
MiR-29b-3p and miR-15a-5p were shown to play a role in
apoptosis via the targeting of the BCL2 and MCL1 genes;
miR21-5p was reported to modulate the expression of both
pro- and anti-inflammatory cytokines; andmiR-18a-5p andmiR-
590-3p targeted the eukaryotic translation initiation factor 2
alpha kinase 2 (EIF2AK2) gene that encodes an inhibitor of
viral replication (122). In leukocytes, different miRNAs were
DE at three time points after infection, and the analysis of
miRNA-gene interactions demonstrated that they were involved
in apoptosis and innate immune responses (121). In conclusion,
the modulatory activities of miR-29b-3p and miR-21-5p are
conserved between lungs and leukocytes and these miRNAs
represent potential candidate targets for the modulation of the
innate immune response in pigs infected with H1N2 influenza.
The ability of miRNAs to modulate the immune response during
PRRSV infection has been extensively investigated. MiR-27b-
3p and miR-26a were identified as inhibiting the replication
of the virus by targeting PRRSV non-structural protein 2 in
alveolar macrophages (125) as well as factors involved in the IFN
pathway, including theMX1 and IFI44/IFI44 genes, chemokines,
cytokines, and complement factor in MARC-145 cells (128).
MiR-29a was shown to regulate viral replication by directly
binding to its genomic RNA and promoting PRRSV replication
through the targeting of the 3’UTR of AKT3 (123). The ability
of miRNAs to modulate IFN activation during infection has
also been largely studied. MiR-23 was reported to increase type
I interferon (INF-1) expression by targeting IRF3/IRF7, which
can further suppress PRRSV infection (129); meanwhile, miR-
30c can be upregulated by PRRSV to impair IFN-I signaling by
directly binding to the JAK1 and interferon-alpha/beta receptor
beta chain loci, and thereby promote viral replication (130).

The effect of African swine fever virus (ASFV) infection
on pig miRNAs has been investigated in vivo by comparing
miRNA expression in animals infected with two viral strains
(virulent vs. attenuated) (131). Ten miRNAs were selected for
target prediction based on the highest representation by tissue
and conditions, namely, miR-23a, miR-30e-5p, miR-92a, miR-
122, miR-125b, miR-126-5p, miR-145-5p, miR-125a, miR-451,
and miR-126-3p. The putative target genes were related to
immune responses, such as B and T cell receptor signaling
pathways, natural killer cell-mediated cytotoxicity, or Fc gamma
R-mediated phagocytosis, as well as with processes related to

infection-related pathogenesis and virus–host interaction (131).
In another in vivo study, the same authors assessed the potential
for ASFV to encode its own miRNAs, with negative results (132).

Mir-1307 was reported to be upregulated in porcine kidney
cells, pre-activating and enhancing signaling by the innate
immune system at the early stage of foot-and-mouth disease
virus (FMDV) infection. Mir-1307 promoted the degradation
of the structural viral protein VP3 through the proteasome
pathway and the upregulation of immune-related genes (126).
The therapeutic potential of miR-1307 was also demonstrated
by the subcutaneous injection of miR-1307 agomir into suckling
mice, where it delayed FMDV-induced lethality (126). The
upregulation of miR-221-5p in MARC-145 cells infected with
porcine epidemic diarrhea virus (PEDV) resulted in the
inhibition of viral replication through the direct targeting of the
3′UTR of PEDV and enhancing the host immune response (124).

miRNAs and Milk
Milk exosomes can actively deliver their cargo, including
miRNAs, from donor to recipient cells, thereby regulating target
gene expression and recipient cell function, and can reach
different tissues after intestinal absorption (133). Using a deep-
sequencing approach, Gu et al. investigated the lactation-related
miRNA expression profile in porcine milk exosomes across
the entire lactation period (newborn to 28 days), focusing
on the expression of immune-related miRNAs (134). They
demonstrated that immune-relatedmiRNAs (miR-148a-3p, miR-
182-5p, miR-200c-3p, miR-25-3p, miR-30a-5p, miR-30d-5p, and
miR-574-3p) were present in higher numbers in the colostrum
than in the mature milk, and were also more abundant in
the blood of colostrum-only fed piglets compared with that of
milk-only fed piglets (134). MiRNAs delivered by swine milk
exosomes were also characterized using sequencing, and the 10
most abundant miRNAs were identified as miR-193a-3p, miR-
423-5p, miR-320, miR-181a, miR-30a-3p, miR-378, miR-191, let-
7a, let-7f, and let-7c (135). MiR-30a and members of the let-
7 family are shared between the two studies, highlighting their
crucial role in safeguarding the health of the newborn. The
effect of dietary ginseng polysaccharide (GPS) supplementation
on milk miRNAs was investigated to evaluate the ability of
GPS to modulate the piglet immune response. The miRNA
exosome cargo purified from milk samples was sequenced,
leading to the identification of 10 miRNAs that were upregulated,
and 16 that were downregulated, in the GPS-treated group
compared with the control group. These miRNAs were suggested
to act as potential regulators of immune functions (136). The
expression levels of miR-30a and let-7d were altered by GPS
supplementation, again highlighting their essential role in milk.
Xie et al. demonstrated the protective effect of porcine milk
miRNAs by investigating the role of miR-181a, miR-30c, miR-
365-5p, and miR-769-3p in milk exosomes. The high expression
of these miRNAs was correlated with a significant decrease
in the expression levels of their target genes and encoded
proteins that are involved in the p53 pathway (137). Using
the same IPEC-J2 model, the authors previously demonstrated
that, after lipopolysaccharide (LPS) exposure, miR-4334, miR-
219, and miR-338 targeted the TLR4, MyD88, and TP53 genes,
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respectively, thereby reducing LPS-induced apoptosis through
the TLR4/NF-κB and p53 pathways (137, 138).

Management and Stress
Routine husbandry procedures in piglets, such as castration
and tail docking, are acute pain-associated events that threaten
animal welfare. In a very recent report, and for the first time
in a swine species, the concentrations of salivary miRNAs were
investigated and the expression levels of miR-19b, miR-27b-
3p, miR-215, miR-22-3p, miR-155-5p, miR-365-5p, and miR-
204 were assessed for their potential as pain biomarkers by
RT-qPCR (24). The authors demonstrated that miRNAs were
more abundant in animals where the pain was not mitigated
by the use of an anesthetic, and proposed these miRNAs as
potential biomarkers for pain identification in these events.
In particular, miR-19b, miR-365, and miR-27b were correlated
with the inflammation resulting from these common husbandry
practices (24).

To elucidate the role of miRNAs during the stressful weaning
transition, Tao and Xu (139) used high-throughput sequencing to
compare the miRNA profiles of the jejunum and serum collected
from piglets after weaning and during the suckling period. A large
number of miRNAs were identified as being DE at days 1, 4,
and 7, and many were found to be involved in the modulation
of small intestinal metabolism, stress responses, and immune
functions (139). Three c-miRNAs (miR-21, miR-31, and miR-
205) were upregulated and 7 (miR-30c-5p, miR-144, miR-150,
miR-186, miR-194a, miR-194b-5p, and miR-363) downregulated
in weaned piglets compared with suckling piglets. As the
expression of miR-194b-5p was significantly downregulated
in the serum and small intestine of the weaned piglets, the
authors hypothesized that its expression in serum may reflect
the decreased expression in the small intestine. This finding is
important given that miR-194b-5p has been demonstrated to
downregulate the expression of small ubiquitin-like modifier 2
(SUMO2) (140). SUMO2 is pivotal for cell homeostasis during
endogenous or environmental stress, including, among others,
heat shock and nutrient stress (141). Although the role of miR-
194b-5p as a potential biomarker has yet to be investigated, it may
represent a candidate biomarker to monitor the intestinal health
of piglets during the weaning period.

Environmental Stress
Because pigs lack sweat glands and have relatively small
lungs when compared with their body mass, they are more
sensitive to heat than other livestock species (142). Furthermore,
new pig genetic lines produce nearly 20% more heat than
previous breeds (143). Heat stress affects several aspects of
pig farming, including reproductive performance, feed intake,
body condition, immune response, and milk production (144–
148). Heat stress also influences muscle development, modifying
the balance between protein synthesis and degradation (149).
Several studies have investigated the role of miRNAs in muscle
development under different environmental conditions and in
different breeds (150–154). Hao et al. investigated for the first
time how heat stress affected the muscle miRNA expression
profile of cross-bred barrows (155). Castrated pigs were raised

under either a constant environmental temperature of 22◦C
or a constant high environmental temperature of 30◦C for 21
days. Sequencing of samples collected from the longissimus dorsi
muscle demonstrated that 58 miRNAs were DE, 30 of which were
downregulated and 28 upregulated (155). Of the genes potentially
targeted by the DE-miRNAs, the authors analyzed only those
that were related to muscle metabolism and stress response, and
found that the expression of pyruvate dehydrogenase kinase 4
(PDK4), heat shock protein 90 (Hsp90), desmin (DES), lactate
dehydrogenase A (LDHA), and stearoyl-CoA desaturase (SCD)
exhibited an inverse correlation with the DE-miRNAs (155).

Combined, these results demonstrated that heat stress can
modulate the expression of miRNAs in the muscle and
mammary gland and, accordingly, also that of downstream
genes, influencing not only tissue structure but also function,
glycolysis, and lactate and lipid metabolism. Consequently, both
animal welfare and production performance can be affected,
indicating that accurate identification and validation of miRNAs
and their target genes are essential for the development of novel
regulatory gene-based breeding strategies. Addressing this issue
is of paramount importance for understanding, and potentially
modulating, the capacity of both individuals and herds to adapt
to climate change-related heat stress.

miRNAs RELATED TO HEALTH AND
STRESS IN POULTRY

Several stressors, including temperature, stocking density,
restraint, cooping, shackling, fasting, feed restriction, dietary
protein deficiency, and fear, can induce stress in poultry,
triggering an increase in circulating concentrations of the
adrenocortical hormone, corticosterone, and the heterophil:
lymphocyte ratio, although whether corticosterone is a reliable
indicator of stress remains inconclusive (156). Recent studies
have shown that miRNAs are involved in the regulation of
health and stress-related events in poultry species (Figure 4)
(Supplementary Table 5).

The Endocrine System and Its Response to
Stress
The role played by miRNAs in the modulation of fear- and
stress-related genes in broiler chickens was investigated for the
first time in 2014 (157). Using a model of tonic immobility,
Wang and colleagues identified three miRNAs—miR-181, miR-
211, and miR-22—predicted to target the glucocorticoid receptor
in the chicken hypothalamus by comparing the hypothalamic
expression of genes in the serotonergic system and the HPA axis
under basal and corticosterone-exposed conditions (157).

Immunity
Host–pathogen interactions are critical for understanding
infectious disease-related pathogenesis and immune responses.
The identification of dysregulated miRNAs resulting from host–
virus cross-talk in poultry (chicken and ducks) has recently been
summarized by Duan et al. (42), who reviewed the literature
reporting on the modulation of miRNAs during Marek’s disease
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FIGURE 4 | Overview of miRNAs dysregulated in response to stress in poultry. The list is limited to miRNAs confirmed by sequencing and validated through molecular

approaches such as RT-qPCR and in situ hybridization.

virus (MDV), avian leukosis virus subgroup J (ALV-J), IAV,
infectious bursal disease virus (IBDV), infectious bronchitis
virus (IBV), and reticuloendotheliosis virus strain T (Rev-T)
infections. Focusing on the ability of miRNAs to coordinate the
poultry immune response, several authors recently identified DE-
miRNAs in different tissues (spleen, lung, and kidney) of chicken
embryos infected with IBV and IBDV using deep-sequencing
approaches (158–160). Different viral infections seem to induce
the dysregulation of the same miRNAs, such as miR-203a, miR-
200a-3p, miR-200b3p, miR-429-3p, miR-133c-3p, miR-133a-3p,
miR-133b, miR-206, and miR-499-5p, indicating their crucial
role in the host response in poultry. Nuclear factor of activated
T cells 3 (NFATC3), NFAT5, signal peptide peptidase like
3 (SPPL3), and transforming growth factor beta 2 (TGFB2),
known immune-related genes, were negatively correlated with
the upregulated DE-miRNAs identified by the same authors.

IBV can also influence the activities of bone marrow-derived
dendritic cells by modulating the expression of 19 miRNAs
(upregulated: miR-135a, miR-7471, miR-7453, miR-7443, miR-
1695, miR-1772, and miR-6669; downregulated: miR-6632-5p,
miR-7467-3p, miR-449b-3p, miR-6658-3p, miR-2131-3p, miR-
34c-3p, miR-1694, miR-3535, miR-21-5p, miR-1462-3p, miR-
6656-5p, and miR-6651-5p) (160).

ALV-J causes immunosuppression and damage in poultry
immune organs, including the spleen, bursa, and thymus (161).
Lan et al. (162) investigated the molecular network in the
spleen after ALV-J infection, and showed that, at 40 days post-
infection, 864 genes, 7 miRNAs (miR-205a, miR-21-5p, miR-
21-3p, miR-383-5p, miR-203, miR-223, and miR-148a-5p) and
17 long non-coding RNAs were DE. The combined analysis
of long non-coding RNA and miRNA networks highlighted
their relationship with several DE-genes associated with the
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immune response (162). The expression levels of miR-21-5p,
miR-21-3p, miR-223, and miR-148a-5p were also dysregulated
in bone marrow-derived dendritic cells after ALV-J infection,
demonstrating the importance of this miRNA panel in the
regulation of poultry immune responses (130). To promote
its survival, ALV-J induces the expression of miR-34b-5p and
miR-23b in the chicken spleen, leading to the downregulation
of melanoma differentiation-associated gene 5 (MDA5) and
interferon regulatory factor 1 (IRF1), respectively, genes that are
involved in the IFN pathway (163, 164).

The poultry immune system is also activated by REV, leading
to differential miRNA expression in the host. Gao et al. identified
27, 29, and 29 DE-miRNAs in the spleen of in vivo REV-
infected chickens at 7, 14, and 21 days post-infection, respectively
(165). The authors demonstrated a negative correlation between
14 miRNAs (miR-200a-3p, miR-375, miR-1458, miR-1664-3p,
miR-122-5p, miR-222b-5p, miR-147, miR-1329-5p, miR-1618-
5p, miR-1664-3p, miR-146b-3p, miR-222b-3p, miR-144-3p, and
miR-1769-3) and 14 target genes, all of which were involved in
a variety of biological pathways, including the endocrine system,
the immune system, cell growth, and cell death (165).

To elucidate the immune-related mechanisms activated in
response to duck hepatitis A virus type 3 (DHAV-3) infection,
the miRNA and mRNA expression profiles of duckling liver
tissues infected with lethal DHAV-3 were determined through
sequencing (166). The analysis showed that miR-32-5p, miR-
125-5p, miR-128-3p, miR-460-5p, and novel-m0012-3p are
potential regulators of immune-related signaling pathways,
including cytokine–cytokine receptor interaction, apoptosis,
TLR, FoxO, and JAK/STAT signaling pathways during DHAV-3
infection (166).

Management-Related Stress
Feed supplementation and feed deprivation, combined with the
genetic variation acquired by poultry breeds through artificial
selection, can affect the plasma or tissue levels of stress-
responsive miRNAs (167–171). By developing specific feed
supplementation and nutrition plans, it is possible to define
strategies to promote poultry welfare and health, while preserving
competitive production levels.

Several studies have investigated the effects of mineral
supplementation in poultry farming (168, 169). Feed deprivation
for 48 h was employed to evaluate the modulation of miRNA
expression and its effect on hepatic metabolic pathways (170).
The levels of miR-33, miR-20b, miR-34a, and miR-454 were
affected by delaying feed consumption, which, in turn, influenced
the expression of target mRNAs such as FADS1, encoding
an enzyme involved in fatty acid synthesis, and FOXO3,
which encodes a transcription factor known to protect cells
against oxidative stress. Both FADS1and FOXO3 are targeted
by miR-20b (170). Selenium deprivation can also modulate
the expression of miRNAs in the chicken. Different reports
have described selenium deficiency as promoting tissue damage,
including cell apoptosis, through triggering oxidative stress and
the dysregulation of miRNA expression (170–174). In broiler
cardiomyocytes, this deprivation promotes the upregulation
of miR-200a-5p, which triggers myocardial necroptosis by

targeting ring finger protein 11 (RFP11) (171), as well as
the upregulation of miR-2954, leading to the autophagy and
apoptosis of myocardial cells during cardiac injury through the
PI3K pathway (172). Selenium deficiency induces skeletal muscle
injury through the induction of oxidative and endoplasmic
reticulum stress. This effect is exerted via the upregulation
of let-7f-3p expression, which downregulates the expression
of selenoprotein K, a protein responsible for maintaining the
physiological function of skeletal muscle (173). In chicken
chondrocytes, the level of miR-138-5p increases after selenium
deprivation, which promotes the overexpression of genes
involved in mitochondrial apoptosis, including caspases 3 and
9, BAX, and BAK, as well as that of oxidative stress-related
genes, such as selenoprotein M (174). In the broiler, selenium
deprivation promotes endothelial cell apoptosis by decreasing
the levels of miR-33-3p (175). Supplementing poultry diet
with selenium might prevent miRNA-mediated pathological
muscle injury, including apoptosis and vascular disease, thereby
improving the health status of the animals and the nutritional
quality of their meat products.

The effect of maternal manganese supplementation during
thermal stress on the miRNA expression in broilers has also
been investigated (176). The levels of miR-1551 and miR-34c
were reduced in the hearts of chicken embryos derived from
mothers fed manganese-supplemented diets and exposed to high
temperatures through targeting BCL2 and NF-kB, highlighting
that manganese supplementation may protect offspring from
thermal injury (176).

Environmental Stress
Birds are homeothermic, i.e., they can maintain their body
temperature through the use of plumage as a thermal buffer, fat
insulation, and salt glands (177). Heat stress exerts a marked
impact on poultry welfare, health, and production, while also
affecting feed intake, growth rate, mortality, egg production,
hatchability, and other important traits governing the economic
success of the poultry industry (168, 178, 179).

Zhu et al. investigated the plasma mRNA and miRNA profiles
of laying hens to identify heat stress-responsive miRNAs and
explore the potential mechanism underlying the role of miRNA–
mRNA interaction in the regulation of the heat stress response
(180). Sixteen miRNAs were found to be DE, 11 of which were
upregulated (miR-2130, miR-92-5p, miR-1618-5p, miR-3064-3p,
miR-6575-5p, miR-1737, miR-3525, miR-10a-3p, miR-6557-5p,
miR-6568-3p, and miR-6548-5p) and five were downregulated
(miR-15b-3p, miR-1808, miR-202-5p, miR-9-3p, and miR-6642-
5p). The authors compared the DE genes and the putative
targets of the altered miRNAs and identified 82 candidate
target genes with potential roles in cellular responses to stress
and lipid metabolism (180). The response to thermal stress at
the morphological and molecular levels were investigated in
the intestine of ducks exposed to high (30–40◦C) or control
temperatures (25◦C) (181). By comparing the same tissues under
different conditions, they identified 16, 18, and 15 miRNAs that
were dysregulated between the duodenum, jejunum, and ileum,
respectively, of control and heat-treated ducks. Among these
miRNAs, miR-205a was dysregulated in both the duodenum
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and jejunum, miR-32-5p and miR-375 were DE in the ileum
and duodenum, and miR-1b-3p and miR-454-3p were DE
in the ileum and jejunum. Bioinformatic analysis indicated
that several DE-miRNAs may be potentially involved in high-
temperature induced-injury in ducks (181). The ability of
temperature to remodel cells and tissues has been explored in
broiler embryos (182). After exposure to different temperatures,
miRNAs involved in myogenesis and body size (upregulation of
miR-133 in breast muscle and downregulation of miR-199a-5p,
miR-1915, and miR-638 in hind muscle), and cell proliferation
and differentiation (downregulation of let-7, miR-93, and miR-
130c) were dysregulation at embryonic day 7–10 after heat
stress (38.5◦C) and at embryonic day 10–13 after exposure
to low temperature (36.5◦C) (182). These observations suggest
that the levels of a large number of miRNA–mRNA pairs are
altered in various tissues under different temperature-related
experimental conditions in vivo. These changes could be a result
of animal adaptation to environmental conditions such as heat
stress. Changes in embryonic incubation temperatures can result
in phenotypic variations in chickens (183). MiRNA regulatory
networks may be important for long-term transcriptional
changes in response to embryo thermal treatment, and may have
a role in the resistance to post-natal thermal stress.

The effects of environmental pollutants, such as cadmium
and lead, on miRNA regulation have recently been investigated
in poultry. When exposed to cadmium, chickens display lower
levels of miR-33-5q in the spleen, which in turn leads to the
suppression of AKT/mTOR signaling and HSP70 activity, and
the upregulation of NF-κB, p-JNK/JNK, and genes involved in
autophagy (184). The same group demonstrated that cadmium
can also impair signaling through the miR-30a/GRP78 axis,
thereby increasing ER stress, activating the IRE-1/JNK pathway,
and promoting autophagy in the chicken kidney (185). Yin
and colleagues investigated the effect of environmental lead
contamination on the immune response of chickens (186), and
demonstrated that lead can induce neutrophil apoptosis by
increasing the expression of miR-16-5p and thus modulating
the expression of genes (PiK3R1 and IGF1R) responsible
for regulating apoptotic pathways and oxidative stress (186).
Ammonia is one of the main pollutants in housing associated
with intensive chicken farming, and is produced through the
combination of protein consumption, litter, and manure (187).
Ammonia can affect the expression of miR-6615, a modulator
of inflammatory responses, via the NF-κB pathway in the broiler
spleen, as well as that of miR-202-5p, which regulates autophagy
through the PTEN/AKT/mTOR pathway in the chicken heart
(188, 189). The same group demonstrated that ammonia
upregulates miR-15a expression in splenic lymphocytes, which
induces mitochondria-mediated inflammatory responses and
apoptosis by targeting BCL2 (190).

Road transportation is an issue in poultry welfare
management, representing one of the most stressful events
in the life of a turkey (191). Lecchi et al. (192) demonstrated
that the serum levels of three c-miRNAs (miR-22, miR-155, and
miR-365) were altered in turkeys after transportation, and may
have diagnostic value in discriminating between stressed and
unstressed animals.

CONCLUSIONS AND FUTURE
PERSPECTIVES

For consumer perception and product acceptance, as well as
for the livestock industry, enhancing animal health and welfare
are pivotal for improving the quality of food products. Within
this context, objective and quantifiable laboratory markers that
are easy to collect and conducive to defining the life quality
and well-being of an animal are still lacking. The studies
carried out to date have largely focused on stress or resiliency
biomarkers, and many of these have focused on miRNAs that
can provide information on the regulation of different processes
across the tissue–biofluid channel. Conventional biomarkers may
be useful as markers for stress and injury, but they provide
limited information about the cellular mechanism underlying
animal adaptation to adverse events. Extracellular miRNAs can
be combined with other phenotypic measurements to more
accurately monitor the stress responses of individual animals or
populations, allowing producers to monitor changes in animal
husbandry or production systems and determine whether these
changes can reduce or eliminate the physiological effects of stress.

Here, we have reviewed the role of miRNAs in livestock
stress induced by management conditions (e.g., housing, road
transport), environmental challenges (including thermal stress),
and disease, as well as the implications for immune responses and
productive performance.

miRNAs have a leading role in all pathophysiological
processes and some may be useful as potential biomarkers.
Importantly, stressor-associated miRNA biomarkers can be
detected in biological matrices such as milk, saliva, tears,
cerebrospinal fluid, urine, and hair. If combined with routine
blood collection, these advantages allow for less invasive
monitoring of the health of an animal and/or the prevention
of pathologies (26, 193). However, several challenges associated
with the detection of c-miRNAs remain. The lack of a
standard protocol for the quantification of c-miRNAs limits
the comparison of miRNA expression profiles among different
laboratories. The recognition of common standardized methods
to minimize possible bias and raw data normalization also
remains a critical issue. To establish c-miRNAs as novel
biomarkers, their cellular origins and the relationship with their
tissues must be clarified, as must their relationship with stressors.
In a second step, large-scale studies are required to compare the
expression of miRNAs across livestock species under stressful
conditions of variable duration and strength so as to validate the
applicability of miRNAs as biomarkers.

In cows and pigs, several miRNAs with potential as
biomarkers for the management and regulation of stress and the
control of animal health have already been identified. Although
this information is still lacking for other livestock species, such as
small ruminants and poultry, this gap will likely be bridged owing
to the increase in our knowledge of miRNAs. Despite research
on livestock miRNAs lagging behind that of humans, livestock
miRNAs show great potential as a new class of stress- and
health-related biomarkers and represent a new and exciting field
to assess the management and welfare of animals.
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