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Enterococci are ubiquitous microorganisms present in various environments and within

the gastrointestinal tracts of humans and other animals. Notably, fecal enterococci

are suitable indicators for monitoring antimicrobial resistance dissemination. Resistant

bacterial strains recovered from the fecal samples of wild animals can highlight important

aspects of environmental disturbances. In this report, we investigated antimicrobial

susceptibility as well as resistance and virulence genes in fecal enterococci isolated from

wild Pampas foxes (Lycalopex gymnocercus) (n = 5) and Geoffroy’s cats (Leopardus

geoffroyi) (n = 4) in the Brazilian Pampa biome. Enterococci were isolated from eight out

of nine fecal samples and Enterococcus faecaliswas identified in both animals. However,

E. faecium and E. durans were only detected in Pampas foxes, while E. hirae was only

detected in Geoffroy’s cats. Antimicrobial susceptibility analysis showed resistance to

rifampicin (94%), erythromycin (72.6%), ciprofloxacin/norfloxacin (40%), streptomycin

(38%), and tetracycline (26%). The high frequency of multidrug-resistant enterococci

(66%) isolated in this study is a matter of concern since these are wild animals with

no history of therapeutic antibiotic exposure. The tetM/tetL and msrC/ermB genes were

detected in most tetracycline- and erythromycin-resistant enterococci, respectively. The

gelE, ace, agg, esp, and clyA virulence genes were also detected in enterococci. In

conclusion, our data suggest that habitat fragmentation and anthropogenic activities in

the Pampa biome may contribute to high frequencies of multidrug-resistant enterococci

in the gut communities of wild Pampas foxes and Geoffroy’s cats. To the best of the

authors’ knowledge, this is the first report of antimicrobial-resistant enterococci in the

Pampa biome.
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INTRODUCTION

Brazil hosts six terrestrial biomes, which include the Amazon,
Atlantic Forest, Caatinga, Cerrado, Pampa, and Pantanal biomes.
Notably, the Pampa biome covers 63% of Rio Grande do Sul State
and extend to Uruguay and the central region of Argentina (1–
3). The fauna of the Brazilian Pampa biome consists of 83 native
mammal species, of which some are endemic and/or considered
endangered species. Among the mammal species, Geoffroy’s cat
(Leopardus geoffroyi) (Felidae) and the Pampas fox (Lycalopex
gymnocercus) (Canidae) are listed as species of “least concern” in
the IUCN Red List of Threatened Species (4, 5). The main factors
contributing to the decline of these species are habitat destruction
and hunting (2, 6, 7). Farming activities have converted natural
areas of the Brazilian Pampa into agricultural and grazing lands,
with ∼48.7% of this biome now being used for plantation crops
(1, 3).

This biome has been suffering constant disturbances due to
anthropogenic impacts and the reduction of natural habitat has
forced wild animals to live near human settlements, which has
resulted in negative outcomes for wildlife conservation (8, 9).
Pampas fox and Geoffroy’s cat population density in Brazilian
Pampa biome is 0.2 and 0.27 ind/km2, respectively (10, 11).
Studies of wild canids and felids from the Pampa biome have
shown that these animals exhibit adaptability in foraging based
on prey availability, which can lead them to establish secondary
food sources on farms. They are known to consume domestic
vertebrates, fruit, insects, and carrion as well as to get food into
the farms trash (12–14). In the past year, various studies have
been published regarding habitat degradation and its effects on
the wildlife and environment of the Pampa biome; however,
studies evaluating the impact of multidrug-resistant bacteria on
the wildlife in this biome remain scarce.

Enterococci are ubiquitous microorganisms found in water,
soil, plants, and gastrointestinal tracts of wild animals, domestic
animals, and humans (15–19). This ubiquitous distribution has
been associated with phenotypic plasticity since they can tolerate
a wide range of temperature and pH and grow in the presence of
6.5% sodium chloride (NaCl) or 40% of bile salts (20). The genus
Enterococcus comprises at least 50 species (21). Among these, E.
faecalis is the predominant species in the gastrointestinal tracts
of mammals, followed by E. faecium, E. durans, E. hirae, and E.
mundtii (18).

Additionally, enterococci are considered opportunistic
pathogens in susceptible hosts. They cause urinary tract, wound,
and soft tissue infections as well as bacteremia (22, 23). Although
enterococci are considered a common cause of nosocomial
infections, they can also cause several diseases including bovine
mastitis, endocarditis, septicemia, and diarrhea in dogs, cats,
pigs, and rats (24). The treatment of enterococcal infections
has been complicated by the emergence of antibiotic-resistant
strains, which makes these infections an important public health
concern. Resistance to different classes of antimicrobials is a
hallmark of Enterococcus spp. since they are intrinsically resistant
to β-lactams, cephalosporin, lincosamides, streptogramins, and
aminoglycosides (25). Meanwhile, resistant strains are not
restricted to clinically known species since such strains have

been isolated from different environments, including wildlife
(15, 17, 19, 24, 26–30). Due to their remarkable ability to adapt
to the environment, ubiquity in gut and to acquire antibiotic
resistance determinants, enterococci have been employed
as sentinel organisms for resistance to antimicrobials with
Gram-positive activity.

Resistant bacterial strains recovered from wild animals
can highlight important aspects of microbial interactions and
environmental disturbances in wildlife (31, 32). Wild animals
can be considered sentinels for the emergence and spread of
antimicrobial-resistant bacteria in the environment. Therefore,
the present study evaluated the presence of resistant enterococci
in wild mammals aiming to detect previously unstudied variation
in antimicrobial resistance distribution patterns in these animals.
Additionally, to date, relatively few reports on antimicrobial
resistance strains have been produced based on samples from
wild canids and felids when compared to the number of
reports on domestic animals. This difference could largely be
explained by the migratory habits of some wild species and
the difficulty of obtaining samples from wildlife. To the best of
the authors’ knowledge, this is the first study of antimicrobial
resistance profiles and virulence genes in fecal enterococci
isolated from wild Pampas foxes and Geoffroy’s cats in the
Brazilian Pampa biome.

MATERIALS AND METHODS

Samples Collection
Rectal swabs were collected from wild Pampas foxes (n = 5) and
Geoffroy’s cats (n = 4) (Figure 1). The animals were captured in
two sites from Brazilian Pampa Biome, Rio Grande do Sul, Brazil.
The first site was located near to Candiota city (31◦33′06.73′′S;
53◦40′40.63′′W), proximal to Jaguarão river, and characterized by
intense agricultural, mining activity and roads; in this site, five
samples were obtained. The second site was located near Arroio
Grande city (32◦13′58.99′′S; 53◦05′11.75′′W), characterized by
forest fragments and agricultural activities; in this site, four
samples were obtained (Supplementary Table 1).

The capture, manipulation, and samples collections were
authorized by Brazilian Institute of Environment and Renewable
Natural Resources, IBAMA, Brasília, Brazil, and Chico Mendes
Institute for Biodiversity Conservation (ICMBio). The protocol
was approved by the Information Authorization System in
Biodiversity (SISBIO) number 0200 1.007 9 10 12006-32. The
animals were captured with the assistance of Tomahawk traps
and anaesthetized via intramuscular (100 mg/mL of ketamine
hydrochloride and 20 mg/mL of xylazine hydrochloride).

Rectal swabs were collected by veterinarians, all animals were
clinically healthy (e.g., heart and respiratory rates and body
temperature) and were classified according to gender and age
group. Rectal swabs were collected from the perirectal area,
stored in Stuart transport medium (Kasvi, Paraná, Brazil), and
transported to our laboratory for microbiological analyses. After
sample collection, the animals were returned to their habitats. All
animals were in health conditions.
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FIGURE 1 | Wild Pampas fox (Lycalopex gymnocercus) (A) and Geoffroy’s cat (Leopardus geoffroyi) (B) during their capture in the Brazilian Pampa Biome. Source:

Felipe Peters.

Isolation and Identification of Enterococci
Isolation of enterococci was performed as described previously
(17). Rectal samples were inoculated in 9mL of azide dextrose
broth (Himedia, Mumbai, India) and incubated for 24 h at 37◦C.
Aliquots of 1mL were placed in 9mL of saline water, and initial
samples were further diluted 10-fold to obtain a final dilution
factor of 1/1,000. From each dilution, 100 µL was inoculated in
brain heart infusion (BHI) agar plates (Himedia, Mumbai, India)
supplemented with 6.5% NaCl.

Since enterococci are present in high concentrations in fecal
samples, typically between 105 and 107 CFU/g, we randomly
selected 10 colonies from each fecal sample. Phenotypic criteria
(size/volume, shape, color, Gram staining, catalase production),
and bile esculin reaction were used to separate the enterococci
group and the non-enterococcal strains. Selected pure colonies
were stored at −20◦C in a 10% (w/v) solution of skim milk
(Difco, Sparks, MD, USA) and 10% (v/v) glycerol (Neon
Comercial Ltda).

Bacterial species identification was performed by matrix-
assisted laser desorption and ionization time-of-flight mass
spectrometry method (MALDI-TOF) technique applied to
Enterococcus (33). MALDI-TOF analysis was performed using
a LT Bruker microflex mass spectrometer (Bruker Daltonik
GmbH) and spectra were automatically identified using
BrukerBioTyperTM 1.1 software. The identification by MALDI-
TOF MS is based on the score value released by the equipment.
A higher or similar 2.3 value indicates that the identifications of
genus and species are reliable. 2.0–2.29 show that the genus is
reliable and the species is probable. 1.7–1.99 values indicate that
the identification of genus is probable.

Antimicrobial Susceptibility Testing
Antimicrobial susceptibility of all strains was determined
by Kirby-Bauer disk diffusion method, according to Clinical

and Laboratory Standards Institute (34). Twelve antibiotics
were tested: ampicillin 10 µg (AMP), vancomycin 30 µg
(VAN), erythromycin 15 µg (ERY), tetracycline 30 µg
(TET), ciprofloxacin 5 µg (CIP), norfloxacin 10 µg (NOR),
nitrofurantoin 300 µg (NIT), chloramphenicol 30 µg (CHL),
gentamicin 120 µg (GEN), linezolid 30 µg (LNZ), rifampicin 5
µg (RIF), and streptomycin 300 µg (STR). Reference strain E.
faecalis ATCC 29212 was used as control.

Intermediate and resistant-strains were included in a single
category as resistant-strains. Strains were classified as single (SR),
double (DR) or multidrug-resistant (MDR) phenotype when
showed resistance for one, two, and three or more antimicrobial
classes, respectively (35).

Detection of Resistance and Virulence
Genes
Genomic DNA was extracted by a physicochemical method
as previously described (36). The presence of resistance
and virulence genes commonly observed in clinical and
environmental enterococci was tested by PCR (Table 1). The
resistance-related genes evaluated were: ermB (which encodes
a ribosomal methylase that mediates macrolides, lincosamides
and type B streptogramins resistance); msrC (which encodes
for a macrolide and streptogramin B efflux pump); tetM and
tetS (which encodes for tetracycline resistance via a ribosomal
protection protein mechanism); and tetL (which encodes for
tetracycline resistance via efflux pumps proteins). As well the
virulence genes tested were: ace (adhesin to collagen of E.
faecalis); cylA (cytolysin); agg (aggregation substance); gelE
(gelatinase); and esp (enterococcal surface protein).

Amplifications were carried out in a total volume of 25 µL
containing: 100 ng of template DNA, 1 X reaction buffer (Ludwig
Biotechnology), 0.4µM of each primer (Ludwig Biotechnology),
1.5mM MgCl2, 200µM of dNTPs (Ludwig Biotechnology),
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TABLE 1 | Primers used in the PCR reactions carried out for detection of resistance and virulence genes.

Gene Nucleotide sequence (5′-3′) ATa (◦C) Size (bp)b References

Erythromycin

ermB_F GAAAAGGTACTCAACCAAATA 52 645 (37)

ermB_R AGTAACGGTACTTAAATTGTTTAC

msrC_F AAGGAATCCTTCTCTCTCCG 52 342 (38)

msrC_R GTAAACAAAATCGTTCCCG

Tetracycline

tetL_F ACTCGTAATGGTGTAGTTGC 58 627 (26)

tetL_R TGTAACTCCGATGTTTAACACG

tetM_F GTTAAATAGTGTTCTTGGAG 52 656 (39)

tetM_R CTAAGATATGGCTCTAACAA

tetS_F TGGAACGCCAGAGAGGTATT 58 660 (39)

tetS_R ACATAGACAAGCCGTTGACC

Adhesion

ace_F AAAGTAGAATTAGATCACAC 56 320 (40)

ace_R TCTATCACATTCGGTTGCG

Cytolysin

cylA TE17 TGGATG’ATAGTGATAGGAAGT 56 517 (41)

cylA TE18 TCTACAGTAAATCTTTCGTCA

Biofilm

esp 46 TTACCAAGATGGTTCTGTAGGCAC 60 1198 (42)

esp 47 CCAAGTATACTTAGCATCTTTTGG

Gelatinase

gelE_F ACCCCGTATCATTGGTTT 50 402 (41)

gelE_R ACGCATTGCTTTTCCATC

Aggregation

agg TE3 AAGAAAAAGAAGTAGACCAAC 62 1553 (41)

agg TE4 AAACGGCAAGACAAGTAAATA

aAT, annealing temperatures; bbp, base pair.

1U Taq DNA polymerase (Ludwig Biotechnology), and MilliQ
water. PCR amplifications were performed in the conventional
thermocycler (Applied Biosystems 2720 Thermal Cycler)
according to the following program: 94◦C for 5min followed by
35 cycles of 94◦C for 1min, appropriate annealing temperature
for each primer for 1min, extension at 72◦C for 1min, and a
final extension at 72◦C for 5min. The DNA fragments amplified
were analyzed in 1.5% (w/v) agarose gels stained with SYBR R©

Safe DNA Gel, and visualized on a photo-documenter.

RESULTS

In order to not overestimate the data referring to species
distribution and antimicrobial susceptibility profile, strains
isolated from the same animal with similar phenotypic and
genotypic characteristics, which could indicate clonal strains,
were grouped, generating a total of 50 strains, 30 from Pampas

foxes and 20 from Geoffroy’s cats. The number of isolates per
wild animal ranged from 5 (samples PF3, PF4 and GC1) to 9
(sample GC3).

Isolation and Identification of Enterococci
Enterococci were isolated from eight out of nine fecal samples.
Furthermore, 50 Enterococcus spp. strains were isolated and
characterized of wild Pampas fox and Geoffroy’s cat from the
Brazilian Pampa biome, including E. faecalis (64%; n = 32), E.
faecium (22%; n = 11), E. hirae (10%; n = 5), and E. durans (4%;
n= 2).

The species distribution between wild Pampas foxes and
Geoffroy’s cats are shown onTable 2. Changes in the composition
of Enterococcus species were detected in both animals. E. faecalis
was the most frequent species in fecal samples of both animals;
however, E. faecium and E. durans were isolated only in Pampas
fox and E. hirae just in Geoffroy’s cat.
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Antimicrobial Susceptibility Profile
All enterococci isolated from wild canids and felids were tested
for antimicrobial resistance, and almost all strains (98%, n
= 49) were resistant to at least one evaluated antimicrobial
agent (Table 3). Only one E. hirae isolated from Geoffroy’s
cat was susceptible to all antimicrobials tested. The highest
frequency was found for rifampicin (94%; n = 47), followed by
erythromycin (72%; n = 36), ciprofloxacin/norfloxacin (40%; n
= 20), streptomycin (38%; n = 19), and tetracycline (26%; n =

13). Resistance to nitrofurantoin (18%; n= 9); gentamycin (14%,
n = 7), and chloramphenicol (4%; n = 2), was noted in less
frequency. No strains showed a resistance profile to ampicillin,
linezolid and vancomycin.

The most remarkable result to emerge from the data is that
a high frequency (66%; n = 33) of MDR strains isolated from
wild canids and felids from Brazilian Pampa biome (Table 3).

TABLE 2 | Distribution of Enterococcus species among wild Pampas fox and

Geoffroy’s cat.

Number of species isolated

E. faecalis E. faecium E. hirae E. durans Total

Pampas fox PF1 4 1 0 1 6

PF2 2 5 0 0 7

PF3 2 3 0 0 5

PF4 2 2 0 1 5

PF5 7 0 0 0 7

Geoffroy’s cat GC1 5 0 0 0 5

GC2 0 0 0 0 0

GC3 9 0 0 0 9

GC4 1 0 5 0 6

Total 32 (64) 11 (22) 5 (10) 2 (4) 50 (100)

The percentages of double and MDR strains isolated from wild
Pampas fox (30%; n = 9 and 63.33%; n = 19) were similar to
wild Geoffroy’s cat (20%; n= 4 and 70%; n= 14). Of the 33MDR
strains, 15 (45.45%) were resistant to four ormore antimicrobials,
it is important to highlight that one E. faecalis strain isolated from
wild Pampas fox showed resistance to seven antimicrobials tested
(ciprofloxacin; chloramphenicol; erythromycin; streptomycin;
nitrofurantoin; rifampicin; tetracycline) (Table 4).

Frequency of Antimicrobial Resistance and
Virulence Related Genes
The resistance genes were investigated only in phenotypically
resistant erythromycin and tetracycline strains (Table 5). Of the
36 erythromycin- resistant, four (11.11%) harbored ermB and
nine (25%) msrC genes. Among the 13 tetracycline-resistant
enterococci, tetL and tetM genes were found in 7 (53.85%)
strains. None strain was positive to tetS gene.

All strains were tested for the presence of enterococci
commonly associated virulence genes. The Table 6 shows the
results of gelE, cylA, esp, ace, and agg genes. The highest
frequencies of virulence genes were found in E. faecalis and E.
faecium. The gelE (62%; n = 31) and ace (48%; n = 24) showed
elevated prevalence among these species. The agg gene (22%; n
= 11) was recorded only on E. faecalis strains. Otherwise, esp
and cylA genes were observed in just one E. faecium and E. hirae
strains, respectively.

DISCUSSION

Isolation and Identification of Enterococci
Relatively few studies have reported enterococci isolated from
wild canids and felids such as red foxes (43), Iberian wolves, and
Iberian lynx (44, 45). The results of the present study corroborate
with previous results showing that E. faecalis, E. faecium, E. hirae,
and E. durans are commonly encountered in the fecal samples of

TABLE 3 | Antimicrobial resistance profiles among enterococci isolated from fecal samples of wild Pampas fox and Geoffroy’s cat.

Strains (n)

Number (%) of resistant strainsa Profilesb

ERY CIP/NOR RIF STR GEN NIT CHL TET SR DR MDR

Pampas fox

E. faecalis (17) 13 (76.47) 7 (41.18) 16 (94.12) 7 (41.18) 4 (23.53) 3 (17.65) 1 (5.88) 2 (11.76) 1 (5.88) 5 (29.41) 11 (64.70)

E. faecium (11) 7 (63.64) 4 (36.36) 11 (100) 4 (36.36) 0 1 (9.09) 0 4 (36.36) 1 (9.09) 4 (36.36) 6 (54.55)

E. durans (2) 2 (100) 0 2 (100) 1 (50) 1 (50) 0 0 1 (50) 0 0 2 (100)

Subtotal (30) 22 (73.33) 11 (36.67) 29 (96.67) 12 (40) 5 (16.67) 4 (13.33) 1 (3.33) 7 (23.33) 2 (6.67) 9 (30) 19 (63.33)

Geoffroy’s cat

E. faecalis (15) 12 (80) 9 (60) 15 (100) 3 (20) 2 (13.33) 1 (6.67) 1 (6.67) 1 (6.67) 0 4 (26.67) 10 (66.67)

E. hirae (5) 2 (40) 0 3 (60) 4 (80) 0 4 (80) 0 5 (100) 1 (20) 0 4 (80)

Subtotal (20) 14 (70) 9 (45) 18 (90) 7 (35) 2 (10) 5 (25) 1(5) 6 (30) 1 (5) 4 (20) 14 (70)

Total (50) 36 (72) 20 (40) 47 (94) 19 (38) 7 (14) 9 (18) 2 (4) 13 (26) 3 (6) 13 (26) 33 (66)

aAntimicrobials: ERY, erythromycin; CIP, ciprofloxacin; NOR, norfloxacin; RIF, rifampicin; STR, streptomycin; GEN, gentamicin; NIT, nitrofurantoin; CHL, chloramphenicol; TET, tetracycline.
bProfiles: SR, single-resistance; DR, double-resistance; MDR, multidrug-resistance.
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TABLE 4 | Antimicrobial resistance phenotypic profile of Enterococcus sp.

isolated from fecal samples of wild Pampas fox and Geoffroy’s cat.

Profilea Antimicrobialsb Species

Number of resistances

PFc GCd

SR RIF E. faecalis 1

E. faecium 1

TET E. hirae 1

DR ERY/RIF E. faecalis 3 3

E. faecium 2

STR/RIF E. faecium 1

CIP-NOR/RIF E. faecalis 1 1

E. faecium 1

NIT/RIF E. faecalis 1

MDR CIP-NOR/ERY/RIF E. faecalis 3 4

E. faecium 1

CIP/STR/RIF E. faecalis 1

CIP/ERY/TET E. faecium 1

CIP/CHL/RIF E. faecalis 1

ERY/STR/TET E.durans 1

ERY/GEN/RIF E. faecalis 1

E. durans 1

ERY/STR/RIF E. faecium 1

STR/GEN/RIF E. faecalis 1

CHL/ERY/RIF E. faecalis 1

CIP/ERY/GEN/RIF E. faecalis 1

CIP/STR/GEN/RIF E. faecalis 2

CIP/ERY/STR/RIF E. faecalis 1 1

STR/NIT/TET/NOR E. hirae 1

STR/NIT/TET/RIF E. hirae 1

ERY/STR/GEN/RIF E. faecalis 1

ERY/STR/TET/RIF E. faecium 1

ERY/STR/NIT/TET/RIF E. faecium 1

E. faecalis 1 1

E. hirae 2

CIP/ERY/STR/GEN/RIF E. faecalis 1

CIP/CHL/ERY/STR/NIT/TET/RIF E. faecalis 1

aSR, single-resistance; DR, double-resistance; MDR, multidrug-resistance.
bAntimicrobials: ERY, erythromycin; CIP, ciprofloxacin; NOR, norfloxacin; RIF, rifampicin;

STR, streptomycin; GEN, gentamicin; NIT, nitrofurantoin; CHL, chloramphenicol;

TET, tetracycline.
cPF, Pampas fox (L. gymnocercus).
dGC, Geoffroy’s cat (L. geoffroyi).

wild and domestic canids and felids (31, 43–47). However, when
we verified the distribution of enterococci in Pampas foxes and
Geoffroy’s cats, we observed a higher frequency of E. faecalis than
those previously reported for wild red foxes, Iberian lynx, and
Iberian wolves (44, 45). Moreover, our results are comparable to

those of domestic canids and felids (31, 46, 47) since frequencies
of E. faecalis (64.9%), E. faecium (18.2%), and E. durans (6.5%)
were detected. This minor disagreement is supported by the
fact that the distribution of enterococci may vary according to
individual characteristics (e.g., species, age, and sex), habitat (e.g.,
seasonal variations and diet), and the geographic distribution of
the animals (20).

Enterococcal species prevalence varied according to the host
species studied. Although these species occupy the same area of
the Biome, several types of foods are available to them. Geoffroy’s
cat and Pampas fox are considered generalist omnivores that
opportunistically feed on a wide variety of foods. Pampas fox
has a diet dominated by animal prey, mainly wild mammals,
insects, while the Geoffroy cat feeds mainly on rodents and
hares, and also remains of fish and frogs alongside reptiles and
birds (48, 49). Thus, the distribution of Enterococcus species
among hosts observed in the present study can be justified by
the availability of the animals’ food, since enterococcal species
have been isolated from mammals, birds, fish, insects, and
reptiles (20).

Notably, it was not possible to isolate enterococci from one
of Geoffroy’s cat fecal samples. Previously, Santestevan et al. (50)
and Layton et al. (51) also sought to isolate enterococci from
mammalian fecal samples and were unsuccessful.

Antimicrobial Susceptibility Profile
The results of this study are consistent with previous studies,
which found high rates of resistance to erythromycin (65%),
ciprofloxacin (59.5%), and tetracycline (36.5%) in fecal
enterococci isolates from wild mammals, including wolves
and foxes (31). Some reports have detected enterococci resistant
to tetracycline and erythromycin in wild Iberian wolves,
Iberian lynx, and red foxes in Portugal (43–45). Additionally,
domestic canids and felids also harbored antimicrobial-resistant
enterococci (47, 52, 53).

While MDR enterococci strains have previously been
observed in enterococci isolated from wild mammals, their
resistance levels were not as high as those detected here.
In the present study, 66% of MDR was observed for wild
canids and felids from the Brazilian Pampa biome. The high
frequency of MDR strains may be associated with the proximity
of these animals to human activities since they are sentinel
species (i.e., indicators of danger to the environment). It is
commonly known that wild canids and felids are indifferent to
the presence of humans and often share the same environment.
Our results are in line with those of Nowakiewicz et al. (54),
who observed a high frequency of E. faecalis strains (44%)
among wild mammalian carnivores in Poland. On the other
hand, our data are six times higher than those detected by
Dec et al. (30). According to Hu et al. (55), MDR bacteria are
more commonly associated with environmental contamination
than naturally occurring genes. Moreover, studies of wild foxes
and carnivorous mammals revealed positive correlations with
environmental pollution and the abundance of resistant bacteria
in samples, thereby highlighting the selective pressures that
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TABLE 5 | Distribution of erythromycin- and tetracycline-resistance genes in the enterococci isolated from wild Pampas Fox and Geoffroy’s cat.

Strains
Number (%) of strains positive for resistance genes

Erythromycin Tetracycline

R* ermB msrC R* tetM tetL tetS

Pampa fox E. faecalis 13 0 5 (38.46) 2 0 0 0

E. faecium 7 0 3 (42.86) 4 0 0 0

E. durans 2 1 (50) 1 (50) 1 1 (100) 1 (100) 0

Subtotal 22 1 (4.55) 9 (40.91) 7 1 (14.29) 1 (14.29) 0

Geoffroy’s cat E. faecalis 12 1 (8.33) 0 1 1 (100) 1 (100) 0

E. hirae 2 2 (100) 0 5 5 (100) 5 (100) 0

Subtotal 14 3 (21.43) 0 6 6 (100) 6 (100) 0

Total 36 4 (11.11) 9 (25) 13 7 (53.85) 7 (53.85) 0

*Resistant strains.

TABLE 6 | Number (%) of virulence genes among enterococci isolated from wild Pampas Foxes and Geoffroy’s cat.

Pampas fox Geoffroy’s cat

Virulence genes E. faecalis (n = 17) E. faecium (n = 11) E. durans (n = 2) E. faecalis (n = 15) E. hirae (n = 5) Total (%)

gelE 12 (70.59) 5 (45.45) 0 14 (93.33) 0 31 (62)

cylA 0 0 0 0 1 (20) 1 (2)

esp 0 1 (9.09) 0 0 0 1 (2)

ace 12 (70.59) 7 (63.64) 0 5 (33.33) 0 24 (48)

agg 7 (41.18) 0 0 4 (26.67) 0 11 (22)

human activities and environmental disturbances exert on the
microbial communities of wildlife (31, 54).

The elevated frequency of resistant and MDR enterococci
observed in the fecal samples of wild Pampas foxes and
Geoffroy’s cats might be associated with anthropogenic activities.
Agriculture and livestock are the main economic activities
in the Brazilian Pampa and represents a source of food for
billions of people and animals (mainly cattle and sheep). Since
1998, many drugs have been prohibited from being used as
growth promoters in Brazil. In livestock, antimicrobials such
as amoxicillin, erythromycin and tetracycline are used by
veterinarians to treat bacterial infections (56). Despite bringing
benefits to production, the use of antimicrobials in animals has
fostered the emergence and spread of antimicrobial resistance.
Antibiotics and/or antibiotic-resistant bacteria can be secreted
with animal urine and feces and contaminate the environments
(soils, surface waters, and ground waters) and species inhabiting
these environments (57). In the presence of environmental
concentrations of antibiotics, bacteria face a selective pressure
leading to a gradual increase in the prevalence of resistance.
The association of antibiotic resistance genes in mobile genetic
elements is also an important factor for spreading and persistence
of antimicrobial resistance in the environment (58). It is
important to highlight that the impact created by the presence
of antimicrobial agents in the environment and the frequency
with which these resistance genes are transferred remains a

subject of academic and practical debate. Our results suggest
that the impacted environment occupied by Pampas foxes and
Geoffroy’s cats —with intense agricultural and livestock activities
in the sampling area—possibly contributed to the selection of
resistant bacteria in the environment and subsequent acquisition
of resistant strains by these mammals. Despite anthropogenic
activities, the presence of antibiotic-resistant strains in wild
animals may also be associated with the environmental
resistome, which is composed of genes that naturally occur
in the environment (59). One example is the genes associated
with the expression of efflux pumps, which protect cells
against toxic molecules such as heavy metals, expelling them
to the external environment and leading to antimicrobial
resistance (60).

Frequency of Antibiotic Resistance Genes
The ermB and msrC genes, conferring resistance to macrolides,
were present in 11.11 and 25% of isolates, respectively. The
low frequency of ermB genes detected in the present study
is congruent with the results obtained in previous studies
conducted on Enterococcus strains isolated from wild animals
(17, 18, 30, 50), as in regarding to msrC gene (28). Additionally,
we detected the presence of themsrC gene not only in E. faecium
but also in E. durans and E. faecalis. Although the msrC gene
is considered an intrinsic gene to E. faecium, some studies have
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noted the presence of this gene in other Enterococcus species such
as E. hirae and E. faecalis (30, 38).

In the present study, tetL and tetM genes were detected in
tetracycline-resistant enterococci strains. Previous findings of
enterococci in wild animals such as Iberian wolves and Iberian
lynx also harbored those genes in tetracycline-resistant strains
(44, 45). Some erythromycin- and tetracycline-resistant strains
did not amplify for the tested gene and may carry other antibiotic
resistance genes such as ermA, C, D, E, F, G, Q, msrA/B, other
tet-group genes, and the poxtA gene for tetracycline-resistance
(61). Our results point to the notion that other reported genes
could be associated with erythromycin-resistant enterococci
isolated from Pampas foxes and Geoffroy’s cats. Furthermore,
whole-genome sequencing (WGS) of these enterococci might
be useful in identifying additional mechanisms associated with
resistance profiles.

Antibiotic resistance genes commonly reside on transmissible
plasmids or on other mobile genetic elements, which allow the
horizontal transfer of these genes between strains. The tetM,
tetL, and ermB genes are carried out by mobile genetic elements,
such as transposons (Tn916, Tn1545, and Tn917), conjugative
transposons or plasmids (58). The association of these genes
in mobile genetic elements might be an important factor for
spreading of antimicrobial resistant enterococci in wild Pampas
foxes and Geoffroy’s cats.

Frequency of Virulence-Related Genes
The results of the present study suggest that enterococci obtained
from wild Pampas foxes and Geoffroy’s cats harbored virulence
genes. Moreover, E. faecalis was the most common species
to carry virulence factors. These results are congruent with
previous studies highlighting E. faecalis as the most common
enterococcal species associated with infections, which accounts
for 80–90% of infections. The presence of virulence factors
in clinical enterococci strains is associated with persistent and
difficult-to-treat infections. However, some authors consider the
occurrence of these genes in non-clinical strains as a common
characteristic that increases their ability to colonize hosts, which
improves the survival and proliferation of the strains. Since the
ubiquity of enterococci across a wide range of environments was
initiated by the establishment of these bacteria in either abiotic
surfaces or live tissues, their colonization can be facilitated by
the expression of virulence genes that likely contribute to the
persistence of enterococci in the environment (20).

One limitation of our study is the low number of animals
sampled, which is due to the difficulty of obtaining samples from
wildlife. For example, a study conducted in an anthropogenic
area of the Brazilian Pampa during a 1 year period, 12
Geoffroy’s cat individuals were captured (62). Notably, capturing
and handling wild animals requires specialized equipment, the
consideration of animal welfare concerns (regardless of the
reason for capture), and the efforts of experienced biologists and
wildlife technicians to plan and study suitable capture methods.
In light of these points, the number of animals evaluated in the
present study should be well-considered. Despite its relatively
small sample size, this study demonstrated the importance of

conducting research related to the impact of human activities on
the Brazilian Pampa biome.

In conclusion, this study observed the presence of resistant
Enterococcus strains in wild Pampas foxes and Geoffroy’s cats
from the Brazilian Pampa biome. The presence of MDR
enterococci in fecal samples from these wild animals suggests
that habitat fragmentation and the impact of anthropogenic
activities on the environment might contribute to the occurrence
of resistant strains in the microbial gut communities of these
animals. Furthermore, these animals may contribute to the
spread of resistant strains between different ecosystems. To
the best of our knowledge, this is the first study of resistant
commensal enterococci recovered from wild animals in the
Brazilian Pampa biome. We believe that our research will serve
as a foundation for future studies on the Pampa biome.
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52. Aslantaş Ö, Tek E. Isolation of ampicillin and vancomycin
resistant Enterococcus faecium from dogs and cats. Kafkas

Univ. Vet. Fak. Derg. (2019) 25:263–9. doi: 10.9775/kvfd.2018.
20912

53. Iseppi R, Di Cerbo A, Messi P, Sabia C. Antibiotic resistance and
virulence traits in vancomycin-resistant enterococci (VRE) and extended-
spectrum β-lactamase/ampc-producing (esbl/ampc) Enterobacteriaceae from
humans and pets. Antibiotics. (2020) 9:1–14. doi: 10.3390/antibiotics
9040152

54. Nowakiewicz A, Zieba P, Gnat S, Trościańczyk A, Osińska M,
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