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Latent class analysis is a well-established method in human and veterinary medicine

for evaluating the accuracy of diagnostic tests without a gold standard. An important

assumption of this procedure is the conditional independence of the tests. If tests with

the same biological principle are used, this assumption is no longer met. Therefore, the

model has to be adapted so that the dependencies between the tests can be considered.

Our approach extends the traditional latent class model with a term for the conditional

dependency of the tests. This extension increases the number of parameters to be

estimated and leads to negative degrees of freedom of the model, meaning that not

enough information is contained in the existing data to obtain a unique estimate. As a

result, there is no clear solution. Hence, an iterative algorithm was developed to keep

the number of parameters to be estimated small. Given adequate starting values, our

approach first estimates the conditional dependencies and then regards the resulting

values as fixed to recalculate the test accuracies and the prevalence with the same

method used for independent tests. Subsequently, the new values of the test accuracy

and prevalence are used to recalculate the terms for the conditional dependencies.

These two steps are repeated until the model converges. We simulated five application

scenarios based on diagnostic tests used in veterinary medicine. The results suggest that

our method and the Bayesian approach produce similar precise results. However, while

the presented approach is able to calculate more accurate results than the Bayesian

approach if the test accuracies are initially misjudged, the estimates of the Bayesian

method are more precise when incorrect dependencies are assumed. This finding shows

that our approach is a useful addition to the existing Bayesian methods, while it has the

advantage of allowing simpler and more objective estimations.

Keywords: conditional dependence, sensitivity, specificity, maximum likelihood, veterinary medicine

INTRODUCTION

Information about the occurrence of livestock diseases in an animal population is important
in many applications, such as surveillance and vaccination programs or the verification of the
freedom from the disease. Therefore, the disease status of the individual animals is assessed using
a diagnostic test. However, every test also has a number of incorrect results, which, depending on
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the disease, may have serious economic, social or political
consequences. This result can be avoided by sequentially
examining a subset of the animals with a different test or by
testing all the animals with multiple diagnostic tests from the
outset and thus confirming the diagnosis (1).

The latter was the chosen approach in a field trial to determine
the prevalence of Brucella abortus in cattle in Northern Ireland
in 2003/2004 (2). Each animal was examined with six serological
tests simultaneously, which yielded conflicting results for a large
number of the animals. For example, there were two positive and
four negative test results for one animal. Knowledge of the test
accuracy and therefore the probability of a false diagnosis of the
tests are the basis for assessing the true underlying disease status.
This information is obtained by evaluating the diagnostic tests
used. To assess the sensitivity and specificity, the diagnostic test
is usually compared with a gold standard test or is applied to
animals with known disease status (1).

However, the test accuracy depends on many biological
factors, such as the animal species, race, sex and immune
history. For this reason, the diagnostic test accuracy varies
across populations, and the values obtained in clinical evaluation
studies are only conditionally applicable to the field settings (3).
Therefore, if the exact values of the test accuracy for a set of
diagnostic tests in a field study are of interest and a gold standard
or animals with known disease status are not available, a latent
class model can be used (4).

In this context, latent class analysis (LCA) is based on
the assumption that observed categorical indicators imperfectly
measure an underlying latent structure. By sampling the values
of the categorical variable for a set of observations, the method
is able to discover the latent structure and the error in the
indicators. Applying this principle to the field of diagnostic test
evaluation, the true unknown disease status is measured by
observed diagnostic tests. By analyzing the response pattern of
a set of tests, the prevalence of the disease in the sample and
the diagnostic accuracy of every test used in this model can be
discovered. Hence, the specific test performance under the given
conditions such as the study settings and the structure of the
subpopulation can be estimated.

The Bayesian approach to latent class models of the test
accuracy is widely used in veterinary medicine (5). However,
latent class analyses can also be implemented in a frequentist
framework, and the model parameters can be estimated by
classical inference (6, 7). This method does not require any
prior distribution and therefore allows an easy and objective
estimation of the parameters. A prior distribution can be a
benefit for the estimation if there is much information that can
be incorporated into the model. However, when new or less
established tests are used, there is limited previous knowledge
and it is difficult to determine an informative prior distribution.
The Bayesian model requires also a burn-in phase and is often
more time consuming, since the convergence and therefore the
termination condition are difficult to assess. Consequently, it
seems reasonable to use classic frequentist methods, especially
when the user has little or no prior knowledge of the distributions
due to the biological methods used. Regardless of the chosen
method, the basis for most latent class models is that (i) the
tested individuals can be divided into two or more populations

with different prevalence values; (ii) the tests have the same
sensitivity and specificity in all populations; and (iii) the tests
are conditionally independent (i.e., given the true disease status).
These assumptions are known as the Hui-Walter paradigm
(6). However, in many cases, the assumption of conditional
independence is hard to justify, especially if the tests are based on
the same biological principle, such as the detection of antibodies.
Ignoring the dependency structure among the diagnostic tests
will introduce bias in the estimates so that a positive association
will overestimate the test properties while a negative association
will lead to an underestimation of the test accuracy (8).

Some Bayesian methods allow the consideration of
conditionally dependent tests. A fixed effects model and a
random effects model for data from a single population were
developed in one approach (9), while another study used a
simple method for two diagnostic tests that can be applied
when two or more populations are studied (10). Moreover, three
different models were described for varying forms of conditional
dependence (11).

There are also some frequentist approaches for incorporating
a dependence structure into the latent class analysis. A latent
marginal model (12), different random effect models (13–
15) and a more generalized mixture model (16) have been
proposed. Another approach uses log-linear and logistic models
to investigate conditional dependence (17). However, this model
assumes that the true disease status of each individual is available,
which is not possible in most diagnosis applications.

Although the solutions addressed above are available, we
propose a frequentist method for estimating the prevalence,
diagnostic test accuracy and dependence structure because we
would like to present an easy-to-apply approach even for
situations with no accessible prior information. The solution was
intended to fit even when only three diagnostic tests are available
and the status of each individual is unknown. We present the
model as well as the algorithm and discuss its performance
in different simulated scenarios, which were adopted from
real-world examples in veterinary medicine to examine the
performance of our method under different circumstances. The
non-mathematically inclined reader may skip the following three
subsections describing the statistical model.

MATERIALS AND METHODS

The Latent Class Model
In a latent class model, it is assumed that there is a latent
variable with C classes. The proportion of each class is estimated
by M observed variables. Let the vector Yi = (Yi1, . . . ,YiM),
i = 1, . . . ,N represent individual i’s response pattern with the
possible values 0, . . . , rm for observation Yim. The probability of
membership in the latent class c can be expressed as γc with
∑C−1

c=0 γc = 1, and the probability of the response rm to variable
m in class c can be expressed as ρm,rm|c. Let I(·) be the indicator
function. Then, the likelihood of parameters γ and ρ for the
observations y is denoted by Formula (a).

L (γ , ρ|Y )=

N
∑

i=1

C−1
∑

c=0

γc

M
∏

m=1

Rm
∏

rm=0

ρ
I(yim=rm)
m,rm|c

(a)
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In this publication, we discuss the application to the diagnostic
test evaluation for dichotomous diagnoses (i.e., with/affected
vs. without/not affected). Thus, we only allow dichotomous
responses for the observed variables and for two latent classes.
This results in the simplified likelihood, which can be written as
Formula (b).

L (γ , ρ|Y )=

N
∑

i=1

1
∑

c=0

γc

M
∏

m = 1

1
∏

rm = 0

ρ
I(yim = rm)
m,rm|c

(b)

It differs from the two-test, two-population scenario originally
proposed by Hui and Walter (6) only in the number of
populations and tests used. However, due to this parameter
changes there are no closed-form maximum-likelihood solutions
for this model and the values are estimated iteratively.

Key assumption of the approach is the conditional
independence (i.e., given the true disease status) of all the
tests (6). Therefore, within a latent class, the result of one test
does not give any indication of the result of the other tests. If
there are diagnostic tests with the same biological principle used
in the analysis, that assumption no longer holds because the
same external factors influence their diagnoses. As ignoring this
underlying dependence structure leads to biased results (8), a
term to describe the dependency must be included when using
tests with the same (biological) testing principle.

Conditional Dependence—The Interaction
Term
If diagnostic tests are independent, the conditional response
probabilities result from the product of the tests’ individual
response probabilities as described in the likelihood (b). It can
be written in the simplified term (c) for three diagnostic tests i, j,
and k.

ρi,ri|c·ρj,rj|c·ρk,rk|c= P
(

ri,rj,rk
∣

∣c
)

(c)

However, if the tests are conditionally dependent on the
underlying disease status, these dependencies must be taken
into account when calculating the conditional item response
probabilities. They are determined within the two latent classes
containing the observations with a positive and a negative disease
status, respectively.

The pairwise dependencies ηcij of tests i and j conditional
on the latent class c are estimated by comparing the observed
matching correct response patterns P(c, c|c) with the test
accuracies of the diagnostic tests used. If the observed test
agreement is stronger than expected based on the known test
accuracy, there is a positive dependency between the tests that
cannot be attributed to the underlying disease status alone.
If the test agreement is weaker than expected, there is a
negative dependency. Formula (d) denotes the dependency of
the diagnostic tests conditional on the latent class of the not
affected/diseased animals c = 0, with Spi and Spj denoting the
known specificities of tests i and j.

η0ij= P(0, 0|0)− SpiSpj (d)

The dependency of three tests i, j and k can be estimated
analogously by calculating the difference between their observed
test agreement P (c, c, c|c) and the expected proportion of correct
observations in class c. However, since the tests are pairwise
dependent on each other, these values must be taken into
account, as they are expected to influence the result. Due
to their dependency, matching test results have an increased
item response probability (i.e., prevalence) compared to the
independent cases whereas the probabilities of the deviating test
results decrease. This means that the pairwise dependencies must
be added to the product of the test accuracies to calculate the
expected test agreement. In addition, a possible dependency of
the pairwise dependent tests on the third test is considered by
multiplying the dependency term by the test accuracy of the third
test. This results in the conditional dependency of three tests in
the latent class of the not affected/diseased animals c = 0 to be
calculated as described in Formula (e).

η0ijk= P(0, 0, 0|0)− (SpiSpjSpk+η0ijSpk+η0ikSpj+η0jkSpi) (e)

The conditional dependencies for the class of the in-/affected
animals c = 1 can be calculated analogously.

Some authors use the terms “dependency” and “correlation”
interchangeably (18, 19). We prefer “dependency” and
therefore use it in this publication because the related term
calculates concordance rather than a traditional correlation of
quantitative variables.

The latent disease status determines the correct diagnosis of an
observation, while other external factors trigger a misdiagnosis.
Thus, only matching incorrect results are of interest to assess the
dependency of the tests. The proportion of incorrect results, i.e.,
the proportion of incorrectly diagnosed animals, is determined
by the accuracy of the test, which causes specific restrictions
for the dependency parameter settings (20). This means, the
higher the accuracies, the greater the agreement due to the correct
diagnosis and the smaller the possible dependency. For example,
if both tests have test accuracies of 100%, then all of their results
match and their conditional dependency is zero. Therefore, the
test accuracy of the examined tests determines the possible range
of the dependencies.

For the dependencies to be comparable, they have to
be detached from the test accuracies. In case of pairwise
dependencies, this is achieved by standardizing Formula
(d) to Formula (f). The three-test dependencies are
standardized analogously.

Z0
ij=

η0ij
√

Spi(1− Spi)
√

Spj(1− Spj)
(f)

This model is applicable in situations when the results of at least
two diagnostic tests are available (21). However, here, we focus
on the three-test model.

The dependencies of the diagnostic tests are calculated
within both latent classes and remain constant for all possible
combinations of the results of the three tests in the respective
class. Therefore, these values can also be determined by using all
observed response patterns. Only the signs of the dependencies

Frontiers in Veterinary Science | www.frontiersin.org 3 February 2021 | Volume 8 | Article 588176

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Schoneberg et al. Iterative, Frequentist Latent Class Analysis

have to be adjusted due to matching or differing test results.
Changing these equations results in the functions (g) of the
conditional items response probabilities for the class of non-
infected animals c = 0.

P (0, 0, 0|0)= Sp1Sp2Sp3+η012Sp3+η013Sp2+η023Sp1+η0123

P (0, 0, 1|0)= Sp1Sp2
(

1− Sp3
)

+η012
(

1− Sp3
)

−η013Sp2

−η023Sp1−η0123

P (0, 1, 0|0)= Sp1
(

1− Sp2
)

Sp3−η012Sp3+η013
(

1− Sp2
)

−η023Sp1−η0123

P (0, 1, 1|0)= Sp1
(

1− Sp2
) (

1− Sp3
)

−η012
(

1− Sp3
)

−η013(1− Sp2)+η023Sp1+η0123 (g)

P (1, 0, 0|0)=
(

1− Sp1
)

Sp2Sp3−η012Sp3−η013Sp2

+η023
(

1− Sp1
)

−η0123

P (1, 0, 1|0)=
(

1− Sp1
)

Sp2
(

1− Sp3
)

−η012(1− Sp3)+η013Sp2

−η023(1− Sp1)+η0123

P (1, 1, 0|0)=
(

1− Sp1
) (

1− Sp2
)

Sp3+η012Sp3−η013(1− Sp2)

−η023(1− Sp1)+η0123

P (1, 1, 1|0)=
(

1− Sp1
) (

1− Sp2
) (

1− Sp3
)

+η012
(

1− Sp3
)

+η013(1− Sp2)−η023(1− Sp1)−η0123

The item-response probabilities conditional on the latent class of
the affected/diseased animals c = 1 are determined analogously.

The (standardized) dependency (e) indicates the strength
of the interdependence of the tests, i.e., the share of their
concordant false diagnoses. To interpret this measure, the size
and direction should be considered. If two tests completely
agree on their incorrect diagnosis (i.e., both tests assign the
incorrect disease status to exactly the same animals), then they
have a (standardized) dependency of 1. If the two tests agree
only at random regarding the incorrect diagnosis of the disease
status, the observed agreement between these tests matches the
expected agreement between two independent tests. Hence, the
(standardized) dependency is zero. The dependency is negative
when there are fewer matching results than expected by chance.
Thus, this measure has an interpretation similar to Cohen’s
Kappa. However, here, negative values play a subordinate role in
the application to diagnostic tests, since similar testing principles
tend to lead to increased agreement in incorrect decisions. It is
very unlikely that two tests with a similar test procedure have
a negative dependency, as this phenomenon would imply that
higher biological similarity leads to a lower level of agreement.

Conditional Dependence—Illustrative
Examples
To obtain a better idea of the magnitude of the conditional
dependency, published studies that contain observations with a
confirmed latent status may be discussed. Although publications
with the information needed are rare and provide a rather
rough indication on the size of the dependencies realized
under the given study conditions, they may yield a valuable
starting value for subsequent analyses. The following examples

set the framework for the magnitude of the dependency in
our simulation.

First, we calculated the standardized dependency from study
data on toxoplasmosis in pigs (10). In that study, the dependency
between a microscopic agglutination test and an ELISA was
0.33 for the positive results and 0.49 for the negative results.
In another investigation, the direct detection of Strongyloides
infection in the stools of Cambodian refugees in Canada was
compared with a serological examination (22). Based on these
data, we calculated dependencies of 0.18 and 0.17 for the positive
and negative observations, respectively.

The Algorithm
In the last subsections it was described how the classical
frequentist latent class analysis can be extended by a term to
describe the conditional dependencies between the diagnostic
tests. Due to the general misspecification of the describing
parameters within the setting of conditional dependency, an
iterative algorithm is proposed. Here, we present a solution for
the use of three diagnostic tests. The basic idea of the algorithm
is to consider alternately the test accuracies and the conditional
dependencies as fixed values. Thus, the method presented here
has the advantage of always resulting in a positive number of
degrees of freedom in each iteration step for three tests in one
population compared to other methods for the estimation of test
accuracies for conditionally dependent tests [e.g., (10, 12, 13, 21)].
The algorithm includes the following steps:

(i) Choose suitable starting values for the test accuracies and
the conditional dependencies between the tests.

(ii) Consider the conditional dependencies as fixed. Execute the
expectation maximization (EM) algorithm to estimate the
best-fit test accuracies for the data. For this step, we followed
the EM algorithm described in a conditional independent
latent class approach (7) and slightly adopted it by replacing
the conditional item response probabilities described in
Formula (b) by the conditionally dependent item response
probabilities (g) in the likelihood function.

(iii) Recalculate the conditional dependency in two substeps:

(1) Use the conditional dependencies and the test
accuracies from the previous step to calculate the latent
class membership probabilities P (r1, r2, r3|c) of the
observations by using Formula (g). An observation
is assigned to the class for which it has the
highest probability.

(2) With the knowledge of the latent status, determine the
conditional dependency by using Formulas (d, e).

(iv) Start again with step (ii) until the model converges, i.e.,
the log-likelihood of two consecutive models differs by
<0.00001 or the algorithm reaches 1,000 iterations.

We implemented the algorithm in R [version 3.5.0; (23)] by
programming three main functions. The first function calculates
the dependencies for fixed test accuracies and a set of observed
response patterns, the second one determines the test accuracies
and the prevalence for the given dependencies and response
patterns (EM algorithm) and the third one combines the first two
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functions by calling them alternately (see Supplementary File 27

for complete source code).

Simulation Study—General Framework
We tested the applicability of the algorithm for three diagnostic
tests in a single population by conducting a simulation study.
Therefore, we took different combinations of the test accuracies,
prevalence and conditional dependencies into account. These
scenarios allowed an assessment of the performance of the
iterative approach presented in this publication compared with
that of the conditionally independent latent class analysis and
the Bayesian approach for conditionally dependent tests. All the
simulation scenarios are motivated by diagnostic tests used in
veterinary medicine. As a small sample size leads to an increased
margin of error, we simulated 10,000 observations.

We considered the following cases:

(1) Three independent diagnostic tests with high test accuracies in
a population with a moderate prevalence:

Diagnostic tests are conditionally independent if they are based
on different biological principles, for example, if a tumor is
detected using physical examination, medical imaging (e.g.,
sonography) and microscopic examination of a tissue sample.
Scenarios such as this one should not cause any problems in
the conditionally independent latent class analysis and result
in very accurate estimates of that method. Therefore, it should
provide the same results in the new approach presented in
this publication as well as in models assuming conditional
independent diagnostic tests. Hence, this scenario serves as basic
validation for the newly fitted model.

(2) Two highly dependent tests with low test accuracies and a
third test with low dependencies and high test accuracies in
a population with a high prevalence:

This scenario may be the most problematic in the conditionally
independent latent class model: The two dependent tests may
cause many matching results that lead to an overestimation of
their test accuracies and underestimated values in the third test.
This situation applies, for instance, to the diagnosis of infectious
diseases with one antibody test applied to two different sample
types (e.g., serum, feces, milk, etc.) and the often more accurate
direct detection of the pathogen (24). By using the same test
twice, the results are highly interdependent. The third test uses
a different detection method and is therefore independent of the
other results. This scenario may act as validation for the method
proposed here to identify dependency structures in data and
improve the correctness of model estimates.

(3) Two highly dependent tests with low test accuracies and a
third test with low dependencies and high test accuracies in
a population with a low prevalence:

This is generally the same scenario as (2) but with a lower
prevalence, which is common for many diseases. In this
case, only a small proportion of the sample contains positive
responses compared to the other possible response patterns. This
phenomenon makes the estimation of both the prevalence and
sensitivities more ambiguous and therefore more prone to errors.

(4) Three diagnostic tests with moderate test accuracies and
medium dependencies in a population with a high prevalence:

In this scenario, all three tests are conditionally dependent
on each other, resulting in an overestimation of their test
accuracies in the latent class model, which assumes conditional
independence. For instance, three different veterinarians may
perform a physical examination on the same group of animals
with a suspected disease. They all have different qualifications
and therefore different diagnostic sensitivities and specificities.
However, experience in the same work environment with the
same time and budgetary constraints can be the cause of
consistent misdiagnoses (25). This scenario serves as validation
for the method proposed to recognize dependency structures and
calculate more accurate values.

(5) Three diagnostic tests and a population with values for the test
accuracies and the prevalence from a practical example with
estimated values for the dependency structure:

To ensure that the procedure is evaluated under realistic
conditions, this scenario uses the results from a prevalence
study for Brucella abortus in cattle in Northern Ireland (2) that
was mentioned in the introduction. It simulates a population
at risk with a high prevalence. In the study, six different
antibody tests were used from which we selected three for the
simulation: an indirect ELISA, a competitive ELISA and a serum
agglutination test. Since we had no information about the exact
test dependencies of these tests, we based the simulations on
their accuracies and biological principles. The two ELISA tests
have low sensitivities, so they have a high proportion of false
negative results, which may have similar causes in many cases
due to similar biological principles and results in a high level
of dependency in the positive latent class. As both tests have
high specificities, similar detection methods have only a minor
influence on the dependencies of the negative latent class. The
serum agglutination test uses a different approach, but it is also
based on the detection of antibodies; therefore, we assume it is
only slightly dependent on the other tests.

Table 1 shows the parameter settings in the five simulated
scenarios in detail. We considered only positive pairwise
dependencies since negative values are not biologically justifiable.

Simulation Study—Starting Values
We applied nine different sets of starting values (6 well-chosen
and 3 poorly chosen) to each of the five scenarios. As it can
be assumed that prior knowledge of the applied tests, their
dependency structure and the studied population is available, we
considered six different sets of well-chosen “informative” starting
values as follows (see Supplementary Table 1):

(1) The correct values for the test accuracies, the dependency
structure and the prevalence.

(2) The correct values for the test accuracies and the prevalence;
the dependency of the tests is stronger than that simulated.

(3) The correct values for the test accuracies and the prevalence;
the dependency of the tests is weaker than that simulated.
The only exception is scenario 1 (independent tests): As
weakening the dependency of independent tests leads to
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TABLE 1 | Input parameter values for the data simulation of the five scenarios.

Scenario Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Prevalence in % 30.00 40.00 3.00 40.00 20.00

Sensitivity Test 1 90.00 90.00 90.00 80.00 72.00

Sensitivity Test 2 85.00 70.00 70.00 66.00 65.00

Sensitivity Test 3 90.00 65.00 65.00 70.00 97.00

Specifity Test 1 95.00 99.00 99.00 95.00 98.00

Specifity Test 2 95.00 80.00 80.00 85.00 99.00

Specifity Test 3 99.00 85.00 85.00 88.00 98.00

η+
12 (Standardized) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.038 (0.200) 0.129 (0.600)

η+
13 (Standardized) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.046 (0.250) 0.008 (0.100)

η+
23 (Standardized) 0.000 (0.000) 0.121 (0.600) 0.121 (0.600) 0.087 (0.400) 0.012 (0.150)

η+
123 (Standardized) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) −0.004 (−0.050) 0.000 (0.000)

η−
12 (Standardized) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.016 (0.200) 0.001 (0.100)

η−
13 (Standardized) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.018 (0.250) 0.003 (0.150)

η−
23 (Standardized) 0.000 (0.000) 0.086 (0.600) 0.086 (0.600) 0.046 (0.400) 0.001 (0.100)

η−
123 (Standardized) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) −0.001 (−0.050) 0.000 (0.000)

negative dependencies and negative dependencies are not
biologically justifiable, another set of positive dependencies
is used instead.

(4) The correct values for the dependency structure; the
test accuracies are better than those simulated, and the
prevalence differs from the simulated value.

(5) The correct values for the dependency structure; the
test accuracies are poorer than those simulated, and the
prevalence differs from the simulated value.

(6) The values for the test accuracies, the dependency
structure and the prevalence all differ (slightly) from
the simulated data.

On the other hand, if a new diagnostic test is used, false
assumptions about the underlying dependency structure, the
test accuracy and even the prevalence are possible. Therefore,
we also took three sets of poorly chosen starting values into
consideration, that deviate greatly from the simulated values in
terms of the test accuracy and the dependency structure (see
Supplementary Table 2):

(1) A value of 50% for all the test accuracies and the prevalence;
the tests are assumed to be independent of each other.

(2) Incorrect assumptions about which tests are dependent on
each other, an incorrect ratio of the test accuracies and a
prevalence that differs from the simulated value.

(3) The results from the conditionally independent latent class
analysis for the test accuracies and the prevalence as well as
the incorrect dependencies.

Simulation Study—Parameter Restrictions
In some cases, there are justifiable restrictions for the resulting
parameter values. As an example, negative dependencies between
two diagnostic tests with the same biological testing principle are
very unlikely. Another example for a justifiable restriction is to
set the dependencies of known independent tests fixed to zero.
Since the test accuracies are already limited to the unit interval

by the EM algorithm, further restrictions always depend on the
situation and are therefore difficult to determine.

We examined the effect of parameter restrictions on the
estimations of the iterative approach by repeating the calculations
and adding restriction rules. As all limitations of the resulting
parameter values require knowledge of the population, the
disease and the diagnostic tests used in the study, they depend
on the setting and are not generalizable. Thus, we focused on
the most basic limitations and excluded unrealistic dependencies
[standardized values<−1 or>1; (20)] and allowed only positive
pairwise dependencies. Therefore, we modified the algorithm by
adding an additional query to check whether the dependencies
are within the newly defined limits. If that was not the case,
they were adjusted in the next step. For this analysis, we limited
ourselves to the scenario with the worst results (largest deviations
from the simulated values) since these estimates needed the
most improvement.

Bayesian Estimation
We also calculated the results for the five scenarios (Table 1)
in the Bayesian framework of the presented latent class model
(see Supplementary File 28 for complete source code). For this,
Formula (g) was implemented in the open source software
OpenBUGS. In contrast to the presented iterative method, the
algorithm requires prior information in the form of distribution
functions. We used the package rjags in R (26) to calculate these
priors. The basis for the calculation were the same starting values
as in the iterative approach (Supplementary Tables 1, 2), but we
also took a maximum possible uncertainty in the initial estimate
of ±10% into account. OpenBUGS estimated the parameters
using a Gibbs sampler, a special case of the Markov chain Monte
Carlo (MCMC) algorithm (27). We ran the model with 10,000
iterations and a burn-in phase of 1,000 steps and compared the
results with those of the iterative approach.
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RESULTS

The five simulation scenarios consider different possible
applications. Hence, we reflect on their results individually before
we analyze them jointly to investigate possible differences. All
results are shown in detail in Supplementary Tables 3–26.

Scenario 1: Three Independent Tests
(Supplementary Tables 3, 8, 15, 20)
All three latent class analysis approaches were able to estimate
the parameters precisely when independence was initially
assumed (see Supplementary Tables 3, 15). However, under
the assumption of dependent tests with incorrect accuracies
the results deviated up to 4% from the simulated values in
the iterative, frequentist approach. In the Bayesian model,
these deviations increased to up to 7%. Only the first set of
poorly chosen starting values resulted in incorrect estimates
of the prevalence (see Supplementary Table 8) in the iterative,
frequentist approach.

Nevertheless, overall, the results showed that all three
approaches are equally applicable for evaluating independent
diagnostic tests.

Scenario 2: Two Highly Dependent Tests in
a Population With a High Prevalence
(Supplementary Tables 4, 9, 16, 21)
The conditionally independent latent class analysis was not
able to detect the connection between the tests (for none of
the applied starting values) and therefore misjudged their
accuracy by up to 20%. In contrast, the iterative method was
able to determine the simulated parameters with only minor
deviations of at most 8% for all well-chosen starting values (see
Supplementary Table 4). However, the method yielded incorrect
results for the accuracy parameters if the iterative process
started with poorly chosen values (see Supplementary Table 9).
This phenomenon was more prominent the more the ratio
of the test accuracies and the dependencies differed from
the simulated values. The Bayesian approach led to very
similar results (see Supplementary Tables 16, 21). Thus,
the algorithm is able to determine the correct parameter
values, but initial information about the dependencies
and the test accuracies is needed to choose the appropriate
starting values.

Scenario 3: Two Highly Dependent Tests in
a Population With a Low Prevalence
(Supplementary Tables 5, 10, 17, 22)
The low prevalence in this scenario complicated the
estimation. While the conditionally independent latent
class analysis resulted in strongly deviating and unrealistic
values for the outcome (e.g., a sensitivity of 13% for test
1), the iterative approach was mostly able to calculate the
simulated values by using well-fitting starting values. Only
the results for the sensitivity of test 1 posed a problem
in two cases with deviations of more than 50% (see

Supplementary Table 5). The estimations of the specificities
were more accurate.

This scenario resulted in the largest differences from the
simulated values in the iterative approach (see Figure 1);
therefore, we considered it for the modified algorithm with
parameter restrictions.

The Bayesian approach led to better results than the
frequentist method, as the deviations in the values for the
sensitivity of test 1 reached a maximum of 11% for the
well-chosen starting values (see Supplementary Table 17).
In contrast, the divergences of the estimated specificity
and prevalence were approximately the same size
and therefore slightly worse than those from the
frequentist approach. Poorly chosen starting values
resulted in both methods in incorrect values (see
Supplementary Tables 10, 22).

Scenario 4: Three Moderately Dependent
Tests With a High Prevalence
(Supplementary Tables 6, 11, 18, 23)
The estimates of the conditionally independent latent class
analysis deviated by up to 16% from the simulated values while
the iterative method and the Bayesian approach were able to
obtain results that were more precise (maximum deviations of
6 or 12%; see Supplementary Tables 6, 18).

However, there was one exception in the Bayesian approach.
Starting value set 5 (underestimated prevalence and test
accuracy) led to values that deviated up to 20% from
the simulated values. The initial misjudgment of the test
accuracies and the prevalence therefore has a stronger effect
on the Bayesian approach in this scenario than on the
frequentist method.

The results of the poorly chosen starting values differed
considerably from the simulated values in both methods (see
Supplementary Tables 11, 23).

Scenario 5: Brucellosis Example
(Supplementary Tables 7, 12, 19, 24)
While the conditionally independent latent class analysis
overestimated the values by almost 20% in this simulation, all six
sets of well-chosen starting parameters resulted in approximately
correct values for the iterative approach. The deviations in
the estimated sensitivities reached up to 8%, whereas they
were at most 2% for the specificities and the prevalence (see
Supplementary Table 7).

The Bayesian method resulted in similar values for most of
the well-chosen starting values with deviations up to 6% for
the sensitivities and 5% for the specificities and the prevalence
(see Supplementary Table 19). However, the model did not
converge using starting value set 3, and the algorithm aborted
the calculation.

Both the iterative, frequentist approach and the Bayesian
approach resulted in strongly deviating parameter values with the
poorly chosen starting values (see Supplementary Tables 12, 24).
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FIGURE 1 | Differences between the configured input data and model outcomes using six sets of starting values for the latent class model assuming conditional

independence and the iterative model under the conditions of scenario 3 [CLCA, conditionally independent LCA; SV1, set of starting values 1 (Sv2-Sv6 are defined

analogously); Pr, Prevalence; Se1, Sensitivity of test 1; Sp1, Specificity of test 1 (Se2, Se3, Sp2, and Sp3 are defined analogously)].

FIGURE 2 | Differences between the configured input data and model outcomes using the six sets of starting values for the latent class model assuming conditional

independence and by using the iterative model under the conditions of scenario 3 with only positive pairwise dependencies allowed [CLCA, conditionally independent

LCA; SV1, starting values 1 (Sv2-Sv6 are defined analogously); Pr, Prevalence; Se1, Sensitivity of test 1; Sp1, Specificity of test 1 (Se2, Se3, Sp2, and Sp3 are defined

analogously)].

Parameter Restrictions
(Supplementary Tables 13, 14, 25, 26)
The limitation to reasonable positive dependencies had no
effect on the results for most starting values since the resulting

dependencies were already within the defined boundaries.
For starting value set 5, however, the differences between
the input data and the outcome decreased remarkably (see
Supplementary Table 13 and Figure 2). While it led to the
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TABLE 2 | Maximum deviations of the three compared methods to the simulated

values in the five simulated scenarios with well-chosen starting values displayed

as values in percent.

Independent LCA Bayesian LCA Iterative LCA

Scenario 1 1.0 6.9 4.4

Scenario 2 20.4 6.9 7.7

Scenario 3 77.0 15.0 86.41

Scenario 4 15.7 18.72 5.9

Scenario 5 19.6 5.93 8.1

Parameter restriction 77.0 15.1 57.51

1Strongest deviation for the estimated sensitivity of test 1, the other parameters in the

other scenarios had a maximum deviation of about 13%.
2Strongest deviation for the estimations of starting values 5, the parameters in the other

scenarios had a maximum deviation of 11.8%.
3The model did not converge using starting values 3 and the algorithm aborted the

calculation.

strongest deviations in the unrestricted model, the restricted
model was able to reduce the differences to a maximum of
6%. Even the poorly chosen starting values reached partially
better results when the boundaries were considered (see
Supplementary Table 14).

In contrast, the parameter restrictions had very little effect
in the Bayesian model (see Supplementary Tables 25, 26).
Most results did not change at all. Some values, especially
the prevalence estimates, were slightly worse (0.5%) in the
restricted model.

Overall Results
The latent class analysis considering the dependency structure
was able to calculate less biased parameter values than the
classical frequentist latent class analysis for most of the
informative stating values. Both the Bayesian and iterative
methods produced very similar results (see Table 2). The
estimated values differed considerably from the simulation
settings if the prevalence of the simulated disease was low or
if the starting values differed substantially from the simulated
data. However, there were differences between the two methods.
While the proposed iterative approach needed relatively accurate
prior knowledge of the dependency structure, it was better able
to deal with a slight-to-moderate initial misjudgment of the
test accuracies and the prevalence than the Bayesian approach.
However, in some rare situations, both methods are prone to
restricted convergence or strongly biased results.

Although the iterative approach yielded varying results for
the different starting value sets, the associated log-likelihood
always had the same value within all five simulation scenarios.
This finding indicates that all results within a scenario, although
they have very different values, represent a local maximum
and are therefore equally likely under the observed responses.
These results were estimated in only a few iteration steps in all
five scenarios (a maximum of 9 iteration steps in scenario 3,
see Supplementary Tables 5, 10). Thus, the convergence of the
iterative approach was not noticeably slower than that of the
conditionally independent latent class model. However, it was
significantly faster than the convergence of the Bayesian method,
for which 11,000 iterations were set.

DISCUSSION

In this publication, we presented an iterative, frequentist latent
class approach for the evaluation of conditionally dependent
diagnostic tests. We compared it to the Bayesian method and
the classical conditionally independent analysis by performing a
simulation study.

If two diagnostic tests with the same biological principle
are used, the same reasons (e.g., cross-reactions, pathogen
concentration) will lead to incorrect diagnoses, which strongly
connect the outcome of these tests (28). Applying the classical
latent class model without consideration of these dependencies
leads to results that differ strongly from the true underlying
parameters. The simulation studies presented in this publication
confirmed this hypothesis.

These differences decrease or are even eliminated by using a
model that considers the conditional dependencies. However, the
accuracy of the estimates from the presented iterative method as
well as the Bayesian approach strongly depends on two factors:
the starting values and the size of the underlying parameters.

Starting values for the test accuracy of the diagnostic tests
used can be obtained from the manufacturer’s evaluation studies
or from previous studies employing these tests. The conditional
dependencies can be estimated by examining the biological
methods of the tests and comparing them to each other. Similar
procedures are more likely to be highly dependent (21). However,
if there is no prior knowledge for the applied tests and no
information on the biological procedures used, it is difficult to
determine the correct starting parameters, and they must be
chosen randomly. Thus, there is no assurance that the selected
parameters are actually correct. However, if good estimates are
available, the presented iterative procedure will be able to find the
right parameters in just a few steps.

The size of the underlying parameters also influences the
quality of the estimates. For scenario 3 with a low prevalence
and a strong dependency, all the compared methods attained
suboptimal performance within the simulation study. This
deteriorated accuracy in populations with low prevalence was
also observed in the Bayesian framework in simulation studies
(29). This finding could cause problems in applications since
there are many diseases with low prevalence in veterinary
medicine [e.g., (30, 31)]. However, there were differences in the
results of the two approaches due to the different estimation
methods. The iterative approach estimated the specificities of the
presented simulation scenarios, especially in the third scenario,
more precisely than the Bayesian method. Due to the higher
values of the specificity, many consistently negative test results
were correctly assigned to the negative latent class in the first
step of the algorithm regardless of the starting values. The
incorrectly assigned positive observations had little influence due
to the low prevalence. Thus, higher test accuracies lead to a
clearer separation of the latent classes and a greater tolerance
toward poorly chosen starting values. Furthermore, the more
the starting values deviated from the given settings, the greater
the deviations in the results were. While the presented iterative
approach fared slightly better with an initial misjudgment of
the test accuracies and the prevalence, the Bayesian method led
to a more accurate convergence when incorrect dependencies
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were initially assumed. Therefore, the best latent class method
for conditionally dependent diagnostic tests depends on the
study population, the tests used and the accuracy of the existing
prior knowledge.

Despite this phenomenon, the log-likelihoods of the different
results within each scenario, the correct and the incorrect ones,
converge to the same value. This finding suggests that the
function has several maxima. Each result found by our method
represents one local maximum and all these maxima are equally
probable with the given dataset. Therefore, this model is not able
to find a unique solution and well-chosen starting values are
needed to ensure convergence to the correct parameter values.
The reason is that the addition of dependency terms increases
the number of parameters to be estimated, while the information
provided by the observed response pattern does not change. The
proposed method takes this property into account by estimating
parameters in a stepwise algorithm that regards the dependency
terms and the test accuracies alternately as fixed. As a result,
there is a positive number of degrees of freedom in each step
of the algorithm, and the identifiability is improved. The model
is applicable to situations in which results from at least two
diagnostic tests are available. However, as the two-test case was
already underidentified without the additional dependency terms
(df = −1) and therefore had no chance for a unique solution
in the proposed iterative approach, we focused our analyses on
the special case of three diagnostic tests. However, the increased
number of tests is not sufficient for a clear result.

The ambiguity of the solutions occurs regardless of the chosen
method, as the addition of dependency terms results in more
parameters to be estimated than information is available in the
data. Therefore, there is no model that takes the dependency
between all tests into account and comes to a unique solution.
This lack of knowledge has to be replaced by accurate prior
information. If the priors are (unknowingly) false, the model is
not always able to find the right solution for some parameter
compositions. This limitation causes uncertainty regarding the
assumptions at the beginning of the analysis; i.e., the results
are not reliable, and not even an iterative calculation is able
to solve this problem. Thus, good prior knowledge is necessary
for accurate estimates, and uninformative priors should not be
used with this method (the Bayesian or the iterative, frequentist
approach). Other researchers have already observed and pointed
out the importance of justified priors in the Bayesian framework
(32, 33). Nevertheless, the Bayesian approach is able to express
the certainty in the prior knowledge in the form of distribution
functions, which may help to reduce the impact of initial
misjudgments but also makes the modeling more complex, while
the iterative, frequentist approach may include more “practical-
use knowledge,” i.e., information on the general biological
framework of the diagnostic method used.

Establishing boundaries for the dependencies improves the
parameter estimates from the iterative approach further if the
dependencies are within a certain interval and the values outside
the interval can be excluded with certainty. These boundaries
can prevent major deviations in the results, as shown in the
second calculation of scenario 3. However, parameter restrictions

should be used with caution. Only unrealistic values for a certain
application should actually be excluded. If that is not the case, a
true underlying parameter value may unknowingly be rejected
as a possible solution, and the algorithm is no longer able to
calculate the correct parameter set. Hence, the restrictions help to
improve parameter estimation but also bear the risk of excluding
the correct results from the start by choosing incorrect limits.
Thus, if one is unsure of which limits to choose, it is better to
completely remove them and carry out the estimation only with
the best possible starting values.

Overall, the fit of the latent class model and the parameter
estimates can be improved by allowing an interaction term. If the
results of three diagnostic tests are available, both the Bayesian
method and the iterative, frequentist approach presented in this
paper are strongly dependent on the prior information due to the
lack of information in the data. If there is insufficient knowledge
about the test accuracies, the prevalence and the dependencies
of the tests, and hence, these values are initially misjudged, both
methods will lead to incorrect results. Extensive prior knowledge
is therefore the basis for the applicability of the latent class
analysis considering of conditional dependencies, both in the
Bayesian and frequentist frameworks.

CONCLUSION

The presented simulation study showed that considering a
possible dependency structure improves the estimation in a
latent class analysis. However, it was unable to clearly determine
which method resulted in more accurate values overall, as
the iterative, frequentist approach and the Bayesian approach
performed differently in the presented scenarios. While both
methods are dependent on prior knowledge in the form of well-
chosen starting values and prior distributions, the simulation
studies carried out in this publication suggest that the iterative,
frequentist method requires previous knowledge that is oriented
more toward practical experience and therefore may be easier
to obtain.

Overall, the simulation studies presented here indicate that
the iterative, frequentist approach is an appropriate method to
evaluate conditionally dependent diagnostic tests.
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