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More than 50 million cattle are likely exposed to bovine tuberculosis (bTB) worldwide,

highlighting an urgent need for bTB control strategies in low- and middle-income

countries (LMICs) and other regions where the disease remains endemic and test-and-

slaughter approaches are unfeasible. While Bacillus Calmette-Guérin (BCG) was first

developed as a vaccine for use in cattle even before its widespread use in humans, its

efficacy against bTB remains poorly understood. To address this important knowledge

gap, we conducted a systematic review and meta-analysis to determine the direct

efficacy of BCG against bTB challenge in cattle, and performed scenario analyses with

transmission dynamic models incorporating direct and indirect vaccinal effects (“herd-

immunity”) to assess potential impact on herd level disease control. The analysis shows

a relative risk of infection of 0.75 (95% CI: 0.68, 0.82) in 1,902 vaccinates as compared

with 1,667 controls, corresponding to a direct vaccine efficacy of 25% (95% CI: 18,

32). Importantly, scenario analyses considering both direct and indirect effects suggest

that disease prevalence could be driven down close to Officially TB-Free (OTF) status

(<0.1%), if BCG were introduced in the next 10-year time period in low to moderate

(<15%) prevalence settings, and that 50–95% of cumulative cases may be averted

over the next 50 years even in high (20–40%) disease burden settings with immediate

implementation of BCG vaccination. Taken together, the analyses suggest that BCG

vaccination may help accelerate control of bTB in endemic settings, particularly with early

implementation in the face of dairy intensification in regions that currently lack effective

bTB control programs.
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INTRODUCTION

Bovine tuberculosis (bTB) is a chronic infectious disease of cattle
that is predominantly caused byMycobacterium bovis, a zoonotic
agent (1). The disease remains endemic in most low- andmiddle-
income countries (LMICs) where it negatively impacts livestock
productivity and represents a significant threat to public health.
A live attenuated strain of M. bovis, the “Bacille de Calmette et
Guérin” (BCG), has been used for experimental vaccination of
cattle against bTB since 1913, well before its first trials in humans
(2). Following Calmette and Guérin’s promising early reports
demonstrating safety of BCG and BCG-induced protection of
cattle against experimental challenge withM. bovis, several trials
were carried out in different countries in the early 20th century to
better define its efficacy (3). Despite the repeated demonstration
of BCG vaccine-induced protection in cattle, field use was not
pursued because of the incomplete protection reported and,
more importantly, because as a live attenuated vaccine, BCG
sensitizes animals to the current World Organisation for Animal
Health (OIE)-recommended purified protein derivatives (PPD)-
based skin tests. This compromises the specificity of the standard
tuberculin skin test and results in an inability to differentiate
infected from vaccinated animals (DIVA) (4). Therefore, bTB
control programs that use the OIE-prescribed tuberculin skin test
also prohibit the use of BCG vaccination (5).

In the last decade, research in the field has focused on
identifying antigens that are present inM. bovis and absent or not
immunogenic in BCG. In particular, the antigens ESAT-6, CFP10
and Rv3615c have shown promise for differential diagnosis
of bTB (4, 6, 7). The DIVA capability of these antigens has
been demonstrated in both experimental and naturally infected
animals, hence enabling the use of BCG vaccination as part of
future bTB control programs (8, 9).

In order to assess the potential utility of BCG vaccination as
a component of future bTB control programs, accurate estimates
of its efficacy are first required. We sought to address this major
knowledge gap through a systematic review and meta-analysis
of the existing literature on efficacy of BCG vaccination against
bTB in cattle. Vaccines can protect populations through two
main modes of action—reducing the susceptibility of vaccinates
to infection or by reducing the potential for transmission
by vaccinates after infection. The latter effect is particularly
relevant for BCG vaccination where reduction in pathology
has been reported more frequently (10, 11) than sterilizing
immunity. However, also estimating reduction in infectiousness
requires either large scale field trials or carefully designed natural
transmission studies (11). The vast majority of published efficacy
studies of BCG in cattle have used experimental challenge models
with a relatively high infectious dose that can only measure
a reduction in susceptibility rather than assess the impact
on transmission.

For our quantitative meta-analysis, we therefore focus on the
effect of the vaccine to reduce susceptibility to infection (vaccine
efficacy, εs) defined by the presence or absence of visible lesions
and/or confirmed by culture. We also review the evidence that
supports what the possible range of efficacy BCG may offer
in terms of a reduction in infectiousness (εI) and explore the

implications for disease control using a conceptual dynamic
transmission model.

RESULTS

Characteristics of Included Studies
A total of 1,392 articles were screened, and 24 articles were
included in the analyses (Figure 1) (12–35). In the instance
that an article evaluated different doses and strains of BCG,
different routes of vaccine administration, breeds of cattle, etc.,
each was considered as separate strata level data and included
as a unique study. For instance, the study by Wedlock et al.
(20) was extracted into three strata level data, representing the
three different strains or variants of BCG tested (BCG Danish
1331, BCG Danish 1331 freeze-dried and BCG Pasteur 1173P2)
(20). In total, 49 strata level data were extracted from the 24
publications included in the systematic review. The included
publications spanned the time period from 1972 to 2018,
and represented a total of 1,902 vaccinates compared against
1,667 control animals. All included studies are summarized
in Table 1.

Meta-Analysis
A funnel plot of the log risk ratio against standard error
was constructed to assess potential publication bias (Figure 2).
This revealed a large degree of asymmetry suggesting the
presence of publication bias. There was no obvious difference
in symmetry between random-effects (RE) and fixed-effects
(FE) funnel plots. Similarly, visual inspection of the predicted
vs. empirical observations (Normal Q-Q plot) also did not
show any major differences in data fit for RE and FE models
(Supplementary Figure 1).

Given the suggestion of publication bias in the data, we focus
on the REmodel, which adjusts for variability between individual
studies, as the more appropriate model to assess the relative risk

FIGURE 1 | Schematic representation of literature selection procedure for the

systematic review of BCG efficacy against bTB.
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TABLE 1 | List of strata-level data (n = 49) extracted from a total of 24 publications for inclusion in our meta-analysis.

Database

#

Authors Source Location Tpos Tneg Cpos Cneg BCG dose Route Method Infection

measurement

method

Sample allocation

method

101 Wedlock et al. (20)_1 BCG Pasteur 1173P2 New Zealand 9 1 10 0 1–4 × 106 CFU Subcutaneous Experimental Culture Stratified Random Sample

101 Wedlock et al. (20)_2 BCG Danish 1331 New Zealand 8 2 10 0 1–4 × 106 CFU Subcutaneous Experimental Culture Stratified Random Sample

101 Wedlock et al. (20)_3 BCG Danish

freeze-dried

New Zealand 9 1 10 0 1–4 × 106 CFU Subcutaneous Experimental Culture Stratified Random Sample

120 Buddle et al. (17) BCG Pasteur 1173P2 New Zealand 16 2 7 2 1 × 105 CFU Subcutaneous Experimental Culture Stratified Random Sample

579 Ameni et al. (35) BCG Danish 1331 Ethiopia 14 9 22 4 1–4 × 106 CFU Subcutaneous Natural Culture Random Sample

802 Buddle et al. (16) BCG Pasteur 1173P2 New Zealand 5 4 5 4 5 × 105 CFU Subcutaneous Experimental Culture Random Sample

826 Buddle et al. (14)_1 BCG Pasteur 1173P2 New Zealand 5 11 10 5 6 × 104 CFU Subcutaneous Experimental Culture Not specified

826 Buddle et al. (14)_2 BCG Pasteur 1173P2 New Zealand 4 12 10 5 6 × 106 CFU Subcutaneous Experimental Culture Not specified

828 Buddle et al. (15)_1 BCG Pasteur 1173P2 New Zealand 4 5 6 3 2 × 105 CFU Subcutaneous Experimental Culture Random Sample

828 Buddle et al. (15)_2 BCG Pasteur 1173P2 New Zealand 4 5 6 3 2 × 103 CFU Subcutaneous Experimental Culture Random Sample

828 Buddle et al. (15)_3 BCG Pasteur 1173P2 New Zealand 3 6 6 3 2 × 105 CFU Intratracheal Experimental Culture Random Sample

956 Berggren (13) BCG Glaxo Malawi 75 129 82 128 8–26 × 106 CFU Subcutaneous Natural Culture Alternate calves vaccinated

1065 Wedlock et al. (22) BCG Pasteur 1173P2 New Zealand 5 5 7 3 1 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1080 Buddle et al. (21)_1 BCG Pasteur 1173P2 New Zealand 3 7 7 3 1 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1080 Buddle et al. (21)_2 BCG Pasteur 1173P2 New Zealand 2 8 7 3 1 × 109 CFU Oral Experimental PM Stratified Random Sample

1080 Buddle et al. (21)_3 BCG Pasteur 1173P2 New Zealand 3 7 7 3 * Subcutaneous

and oral

Experimental PM Stratified Random Sample

1213 Buddle et al. (18)_1 BCG Pasteur 1173P2 New Zealand 6 4 10 0 1 × 106 CFU Subcutaneous Experimental Culture Random Sample

1213 Buddle et al. (18)_2 BCG Pasteur 1173P2 New Zealand 9 1 10 0 1 × 106 CFU Subcutaneous Experimental Culture Random Sample

1213 Buddle et al. (18)_3 BCG Pasteur 1173P2 New Zealand 8 2 10 0 1 × 106 CFU Subcutaneous Experimental Culture Random Sample

1263 De Klerk et al. (24) BCG Pasteur 1173P2 South Africa 8 6 9 4 3.2 × 107 CFU Intramuscular Combined Culture Random Sample

1266 Ameni et al. (23) BCG Danish 1331 Ethiopia 4 9 11 3 1 × 106 CFU Subcutaneous Natural Culture Random Sample

1296 Thom et al. (28)_1 BCG Danish 1331 UK 6 3 8 1 1–4 × 106 CFU Subcutaneous Experimental Culture Stratified Random Sample

1296 Thom et al. (28)_2 BCG Danish 1331 UK 9 0 9 0 1–4 × 106 CFU Subcutaneous Experimental Culture Stratified Random Sample

1303 Parlane et al. (31)_1 BCG Danish 1331 New Zealand 14 2 16 1 2–8 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1303 Parlane et al. (31)_2 BCG Danish 1331 New Zealand 11 4 16 1 2–8 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1304 Buddle et al. (29)_1 BCG Danish 1331 New Zealand 2 7 10 0 1–4 × 105 CFU Subcutaneous Experimental PM Stratified Random Sample

1304 Buddle et al. (29)_2 BCG Danish 1331 New Zealand 3 6 10 0 1–4 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1337 Buddle et al. (33) BCG Danish 1331 New Zealand 6 6 7 5 1.5 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1358 Nugent et al. (34)_1 BCG Danish 1331 New Zealand 0 30 8 122 1 × 108 CFU Oral Natural PM Random Sample

1358 Nugent et al. (34)_2 BCG Danish 1331 New Zealand 1 33 8 122 3 × 105 CFU Subcutaneous Natural PM Random Sample

1358 Nugent et al. (34)_3 BCG Danish 1331 New Zealand 3 169 9 108 1 × 108 CFU Oral Natural PM Random Sample

1358 Nugent et al. (34)_4 BCG Danish 1331 New Zealand 11 166 12 74 1 × 108 CFU Oral Natural PM Random Sample

1358 Nugent et al. (34)_5 BCG Danish 1331 New Zealand 12 156 26 83 1 × 108 CFU Oral Natural PM Random Sample

(Continued)
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TABLE 1 | Continued

Database

#

Authors Source Location Tpos Tneg Cpos Cneg BCG dose Route Method Infection

measurement

method

Sample allocation

method

1358 Nugent et al. (34)_6 BCG Danish 1331 New Zealand 4 93 8 81 1 × 108 CFU Oral Natural PM Random Sample

1366 Buddle et al. (19)_1 BCG Pasteur 1173P2 New Zealand 6 4 9 1 1 × 108 CFU Oral Experimental PM Stratified Random Sample

1366 Buddle et al. (19)_2 BCG Pasteur 1173P2 New Zealand 7 3 9 1 1 × 109 CFU Oral Experimental PM Stratified Random Sample

1366 Buddle et al. (19)_3 BCG Pasteur 1173P2 New Zealand 5 5 9 1 1 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1371 Hope et al. (27)_1 BCG Danish 1331 UK 7 0 7 0 2 × 106 CFU Subcutaneous Experimental PM and Culture Not specified

1371 Hope et al. (27)_2 BCG Pasteur 1173P2 UK 3 4 7 0 2 × 106 CFU Subcutaneous Experimental PM and Culture Not specified

1373 Lopez-Valencia et al. (25) BCG Tokyo Mexico 6 59 15 51 1 × 106 CFU Subcutaneous Natural Skin test and IFNg

assay

Alternate calves vaccinated

1379 Buddle et al. (26)_1 BCG Danish 1331 New Zealand 2 7 6 4 1 × 106 CFU Subcutaneous Experimental PM Stratified Random Sample

1379 Buddle et al. (26)_2 BCG Danish 1331 New Zealand 5 4 6 4 1 × 108 CFU Oral Experimental PM Stratified Random Sample

1379 Buddle et al. (26)_3 BCG Danish 1331 New Zealand 5 4 6 4 1 × 107 CFU Oral Experimental PM Stratified Random Sample

1379 Buddle et al. (26)_4 BCG Danish 1331 New Zealand 6 3 6 4 1 × 106 CFU Oral Experimental PM Stratified Random Sample

1383 Dean et al. (30) BCG Danish 1331 UK 4 6 9 1 1 × 106 CFU Subcutaneous Experimental Culture Not specified

1385 Dean et al. (32)_1 BCG Danish 1331 UK 8 2 8 1 1 × 106 CFU Subcutaneous Experimental Culture Random Sample

1385 Dean et al. (32)_2 BCG Danish 1331 UK 5 5 8 1 5 × 105 CFU Subcutaneous

and endobronchial

Experimental Culture Random Sample

1385 Dean et al. (32)_3 BCG Danish 1331 UK 5 5 8 1 1 × 106 CFU Endobronchial Experimental Culture Random Sample

1410 Nugent et al. (36) BCG Danish 1331 New Zealand 2 518 8 289 3 × 105 CFU Subcutaneous Natural PM and Culture Block Randomization

*Buddle et al. (21)_3 used a combination of Oral and Subcutaneous BCG; Study no. 1263 (24) was performed in buffaloes. Tpos and Cpos are animals classified as positive for bTB in vaccinates and controls, respectively. Tneg and

Cneg are animals that remained negative for bTB in vaccinates and controls, respectively.

Multiple strata level data extracted from a single study are represented with numbers at the end in the Author column. For example, Database #101, Wedlock et al had 3 strata level data represented as Wedlock et al._1, Wedlock et al._2

and Wedlock et al._3. Buddle_a is Reference (14) and Buddle_b is Reference (15). a1, a2, and b1, b2 are strata level data of those respective studies.
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FIGURE 2 | Funnel plots (left: RE; right: FE) of the log risk ratio against standard error demonstrate potential publication bias.

ratio (RR). The relative risk ratio is defined as the probability
of an outcome in an exposed group to that in an unexposed
group (37). The RE model estimated RR to be 0.75 (95% CI: 0.68,
0.82), suggesting a 25% reduction in risk of infection (vaccine
efficacy, εS) as measured by PM and/or culture in BCG vaccinates
compared to control animals. Cochran’s (Q) value (Q = 76.1,
df = 50, and p = 0.01) and Higgins statistic (I2 = 32.1%)
were computed to test for heterogeneity (I 2 < 50% represents
low heterogeneity). While both the Q value and I2 statistic are
classical measures of heterogeneity, neither is comprehensive
since Cochran’s (Q) suffers low power and I2 is imprecise in the
case of meta-analyses of relatively small numbers of included
studies. We used a forest plot to graphically summarize the
variation in RR between studies (Figure 3).

To explore the potential impact of publication bias on the
estimated RR, we carried out a sensitivity analysis using the
trim and fill method (38). This is an algorithmic method to
adjust for publication bias in a meta-analysis by imputing the
values of missing studies (39). Here, the estimated number of
missing studies on the right side of the funnel plot was found
to be 21 (Figure 4). The Paul-Mantel method was used due to
convergence issues with the maximum likelihood based methods
(Maximum-Likelihood (ML), Restricted Maximum-Likelihood
(40) and Empirical Bayes (EB) estimators). The adjusted RR
estimate per this sensitivity analysis was found to be 0.84 (95%
CI: 0.73, 0.98).

Meta-Regression
Several important biological factors varied between published
studies, which a priori could have an impact on the estimated
vaccine efficacy. Such confounding factors could also potentially
lead to systematic patterns of bias as shown by the funnel

plot analysis. We therefore constructed a multivariable meta-
regression model using these factors to explore whether they
could improve model fit and to assess the relative effect of these
biological variables on estimates of vaccine efficacy. The factors
included BCG source, dose, route, whether or not revaccination
was performed, and challenge method (Table 2).

An omnibus test of all the moderator variables (QM = 23.7,
df = 13, p = 0.03) indicates that the explained variance by the
model is greater than the unexplained variance. However, this
amounts to only 49.1% of the total heterogeneity and only one
moderator (BCG Glaxo source) has a RR significantly different
than 1 (at the 95% level). Given the relatively small sample sizes,
reflective of the logistical constraints of experimental studies,
this lack of statistical significance is unsurprising and does not
rule out the potential biological importance of these variables
and highlights the critical need for additional well-powered
investigations to better assess the impact of these confounders on
overall vaccine efficacy.

Implications for bTB Control
To explore the implications of the estimated efficacy of
vaccination of εS ∼ 25% for disease control, we carried out
scenario analyses using a conceptual herd level transmission
dynamic model. Given the potential density dependence of
transmission rates of bTB within herds, intensification of
production in emerging dairy industries is a particular concern
for LMICs (41). Thus, we consider a scenario with an initial herd
size of 30 but growing in size at a rate of 15% per year to 134
animals after 50 years. Motivated by estimates from India we
consider an initial bTB prevalence (5, 10, and 15%) together with
a set of higher prevalence scenarios (20, 30, and 40%) (42). There
are currently no published quantitative estimates of transmission
rates from LMICs, hence for this model population we use a
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FIGURE 3 | Forest plot visualizing the relative risk ratio calculated for each included publication in the meta-analysis. The weight given to each included publication

per the RE model is shown. “bTB+” refers to the number of animals reported to have infection and/or pathology (per culture and/or postmortem examination). And

“bTB-” refers to the number of animals not reported to have infection and/or pathology.

density dependent transmission function estimated from herds
in Great Britain (11).

In the absence of estimates of indirect BCG effects based on
empirical trials, we used data from long-term natural challenge
models to estimate the relative contribution of indirect effects
when force of infection is low (representative of field setting).
Overall efficacy in those recent field trials included in this

meta-analysis [excluding the older Berggren (13) study] was
estimated to be of 61% (95% CI: 40, 74) for natural transmission
compared to 18% (95% CI: 11, 24) for experimental challenge
studies (Table 3). The key distinction between experimental
challenge and natural transmission studies—beyond being more
representative of a field setting—is that the latter measures
the total effect of vaccination (Figure 5). The total effect
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FIGURE 4 | Funnel plot showing the 21 studies (open circles, on the right side)

imputed by the trim-and-fill method to carry out a sensitivity analysis for

publication bias.

TABLE 2 | Multivariable meta-regression of the selected predictors on BCG

efficacy (R2
= 49.10%, n = 49).

Moderators Categories RR (95% CI) p-value (RE)

Revaccination No Reference

Yes 1.04 (0.79, 1.38) 0.77

BCG route Endobronchial Reference

Intramuscular 2.16 (0.55, 8.50) 0.27

Intratracheal 1.01 (0.28, 3.67) 0.99

Oral 2.04 (0.75, 5.53) 0.16

Subcutaneous 1.46 (0.71, 3.00) 0.3

Subcutaneous and

Endobronchial

1 (0.38, 2.66) 1.00

Challenge method Natural Reference

Experimental 0.83 (0.40, 1.70) 0.61

BCG source Danish 1331 Reference

Danish freeze-dried 1.14 (0.77, 1.68) 0.51

Glaxo 12.14 (1.52, 97.09) 0.02

Pasteur 1173P2 0.98 (0.77, 1.23) 0.84

BCG Dose 0.68 (0.31, 1.51) 0.35

Time from vaccination

to challenge

1.00 (0.99, 1.001) 0.5

Length of exposure to

challenge

0.998 (0.997, 1) 0.06

of vaccination will be greater than the direct protection of
individuals (εs) due to the reduction in transmission from herd
immunity effects, along with any additional protection from
reduction in infectiousness (εI) of vaccinated individuals.

In the absence of control, the null model predicts a gradual
increase in prevalence with herd size saturating around∼70% for

all initial conditions (Figure 6). We considered a vaccine efficacy
to reduce infectiousness (εI) at two hypothetical thresholds: (i)
∼36%, approximating the difference between average overall
efficacy in the natural transmission studies (0.61) and the overall
direct efficacy as revealed by the meta-analyses of 0.25; and (ii)
∼49%—representing the difference between the upper bound of
efficacy in the natural transmission studies (0.74) and overall
direct efficacy as revealed by the meta-analyses of 0.25.

Our model scenarios illustrate the benefits of early
intervention. Even with only a modest efficacy (εs) of 25%,
a window of up to 25 years of slightly lower than the current
disease prevalence levels may be achieved (Figure 6A), should
BCG be implemented immediately in the low to moderate
prevalence scenario (5, 10, 15%). With an additional reduction
in infectiousness (εI) of vaccinates (49%), disease prevalence
could be driven down close to Officially TB Free (OTF) status
(<0.1% per the European Union) if BCG were introduced in
the next 10-year time period in low to moderate prevalence
settings. Immediate implementation, but with a lower εI of
36%, prevalence may start to rise again in 30–40-years, driven
by increased herd size, suggesting that other strategies will also
be required.

These scenarios predict considerable benefits in terms of
reducing cumulative cases if BCG is implemented now. With an
impact of vaccination on infectiousness, between ∼80 and 100%
of cases can be saved in 50 years, driven by the strength of indirect
effects on transmission (Figure 6B). Encouragingly, this model
also predicts that from ∼50 to 95% of cumulative cases can be
averted in higher disease burden settings (>15%) if acted upon
now (Figure 6).

DISCUSSION

Following promising initial studies conducted by Calmette,
Guérin and others that showed both safety of BCG and
BCG-induced protection of cattle against both natural and
experimental challenge with M. bovis, several trials were carried
out through the early and mid 20th century in many different
countries to better assess and define the efficacy of ancestral
variants of BCG in cattle and showed varying levels of protection
(3, 44) (Supplementary Table 1). While BCG went on to become
the most widely used of all human vaccines (and the only
available vaccine against human TB), it has not been considered
for routine use in domestic livestock despite early promise. This
is primarily because of the fact that BCG sensitizes animals to
the widely used and OIE-recommended PPD based skin tests,
which precludes its use where skin test-based control is being
actively pursued (5), and it is with this context that an Expert
Committee of the WHO/FAO Expert Committee on Zoonoses
(45) stated that: “generally speaking, vaccination has no place in
the eradication of tuberculosis in cattle.”

The early proof-of-concept experiments conducted by
Calmette and Guérin in the early 1900s to demonstrate safety
of BCG and protection against progressive TB in cattle were
replicated and refined by several other investigators in both
Europe and the Americas (44, 46–53). Their findings led to
considerable international interest in exploring the possibility
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TABLE 3 | Natural transmission studies included in the meta-analysis.

Database # Authors Location BCG source BCG route BCG dose Controls_n Vaccinates_n Reported

efficacy

579 Ameni et al. (35) Ethiopia BCG Danish 1331 Subcutaneous 1–4 × 106 CFU 26 23 30%

1266 Ameni et al. (23) Ethiopia BCG Danish 1331 Subcutaneous 1 × 106 CFU 14 13 60%

1358 Nugent et al. (34) New Zealand BCG Danish 1331 Oral and Subcutaneous 1 × 108 CFU 531 644 67%

1373 Lopez-Valencia et al.

(25)

Mexico BCG Tokyo Subcutaneous 1 × 106 CFU 66 65 60%

1410 Nugent et al. (36) New Zealand BCG Danish 1331 Subcutaneous 3 × 105 CFU 297 520 85%

The studies conducted in Ethiopia by Ameni et al. (23, 35) used a reactor to sentinel ratio of >1. Nugent et al. (34) included 1,286 free-ranging cattle (676 vaccinates and 531 naïve

controls) stocked at low densities, and challenged with a low force of infection, mimicking a more representative field setting. This was followed up with a subsequent field study (36)

conducted in ∼800 free-ranging cattle that were followed up for over 3 years and similarly showed a relatively high overall protective efficacy of ∼85%. Lopez-Valencia et al. (25) did not

conduct necropsy.

FIGURE 5 | Measures of vaccine-induced protection. (A) BCG vaccine confers a spectrum of protection ranging from complete (for a limited time period in certain

population) to none. While completely protected individuals are immune, and unprotected ones succumb to infection and become heavily diseased, BCG can also be

partially protective by reducing risk of disease transmission to unvaccinated individuals. (B) The green herd is partially vaccinated and the blue herd is unvaccinated.

“Direct protection” is the reduction in susceptibility of vaccinated animals (as measured by εs). “Indirect protection” is a reduction in transmission due to any reduction

in infectiousness of vaccinated individuals that become infected (as measured by εI) in addition to the reduction in transmission from herd immunity effects. “Total”

protection is the risk of infection in vaccinated animals compared to that of unvaccinated animals. “Overall protection” is the reduction in rate of transmission in a

population with vaccination program compared to that in a population with no vaccination program. This stems from both vaccinated and unvaccinated individuals

and is used to evaluate the impact of a vaccination program at the population level. (B) Is adapted from Halloran et al. (43).

of eradicating bTB by vaccinating cattle with BCG as has
been reviewed elsewhere (3, 10, 54–57). As part of the current
systematic review, we extracted data from eight studies that were
published between 1930 and 1972 (Supplementary Table 1).
However, given that these studies used ancestral strains of BCG
and doses that are not possible to accurately estimate, these
studies were excluded from the formal analyses. However, it
is noteworthy that these studies provided key foundational
evidence that highlighted both the variable protection afforded
by BCG in experimental and natural challenge, as well as showed
that BCG vaccination sensitizes animals to tuberculins and
hence would confound ongoing test and slaughter tuberculosis
eradication programs. However, recent attempts to develop
BCG-compatible diagnostic tests have shown great promise

and paved the way for implementation of BCG-based control
programs in LMICs and other endemic regions (7–9). Thus,
there is renewed interest in exploring the use of BCG vaccination
as a component of national control programs, particularly where
test and slaughter is unfeasible (58, 59).

We systematically reviewed the literature to obtain
estimates of the efficacy of BCG against bTB and assessed
its potential utility in future control programs. The analyses
suggest an overall vaccine efficacy of 25% (95% CI: 18,
32) as measured by the presence of visible lesions and/or
culture. The potential contribution of vaccine strain as a
confounder or predictor of BCG efficacy is intriguing. This is
relevant since a majority of the studies that were included
in the current review used either BCG Pasteur 1173P2
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FIGURE 6 | Scenario analysis for impact of BCG vaccination in an expanding dairy herd. We compare a baseline “control” scenario (with no vaccination) to the

introduction of whole-herd vaccination at 1, 10, 20, 30, and 40 years which only provides direct protection (εs of 25%), and one with an additional reduction in

infectiousness of vaccinates (εI of 36 and 49%). We compare the effect of vaccination in terms of % prevalence and cumulative cases averted with assumed initial

(A,B) moderate prevalence of 5, 10, and 15% (rows), and (C,D) high prevalence of 20, 30, and 40%.

(9 out of 24 studies) or BCG Danish 1331 (10 out of 24
studies). The meta-regression model suggests that neither
of these strains had any significant effect on the observed
heterogeneity. However, given the small sample size, further
investigations may be warranted to assess the robustness of
these inferences.

Given the large variability in the age at which animals
were vaccinated in the included studies, the ideal timing for
vaccination could not be subjected to rigorous analysis. While
there is evidence in the published literature showing that BCG
vaccination within a few days of birth (<1 month of age) can
induce high levels of protective immunity (18, 60), there is a need
for more studies in relevant settings, such as in bTB-endemic
regions where high burden of environmental mycobacteria has
been reported (61). In these settings, some studies suggest
prior sensitization with environmental mycobacteria prevent
induction of protection in calves, while others report that
exposure to M. avium helps induce protection against M. bovis
(17, 62). It is plausible that these seemingly contradictory
results could be because exposure to different environmental
mycobacteria could either enhance or reduce BCG’s efficacy,
and hence, future studies are needed to help clarify the role of
these confounders to vaccine efficacy. Curiously, despite the early

recognition by Calmette and Guerin and other investigators of
the need for revaccination (at annual or 18 month intervals)
in order to maintain protection (3), only a total of five studies
performed revaccination, highlighting the scarcity of reliable data
available on duration of immunity and revaccination intervals
to formulate evidence-based approaches to control bTB (13, 16,
18, 24, 31). Thus, it is important to assess the true duration
of immunity and role, if any, of revaccination to obtain better
estimates of the efficacy of BCG and inform the parameterization
of robust transmission dynamics and econometric models that
may be used to guide development and implementation of future
cost-effective vaccine-based intervention strategies (18, 31).

The roles of dose and type of challenge (experimental
challenge or natural infection) were also investigated. A total
of 17 studies that are part of this meta-analysis performed
experimental challenge of their animals to infection. These
studies call for high dose infection protocols in order to generate
high levels of infection in control animals, which do not reflect
the reality in natural conditions where animals most likely are
not exposed to such high numbers of virulent bacteria as a
single bolus. Such experimental challenge models with high
infection doses do not allow BCG protection to be revealed.
One reason for this may be that these models are often used
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for the development of novel vaccines aimed at improving BCG
efficacy and not per se to study BCG efficacy. This highlights the
importance of conducting robust natural transmission studies
in field conditions and in endemic settings where the real need
for vaccination lies. It is noteworthy that most experimental
trials have used M. bovis as the challenge strain. However,
M. bovis is not the only causative agent of bTB since M.
tuberculosis and other members of the M. tuberculosis complex
are frequently isolated from cattle samples, and certain species
of non-tuberculous mycobacteria (NTM) that contain virulence
factors encoded in the Region of Difference-1 are also known to
cause TB-like lesions (63, 64). Hence, future studies are needed
to better estimate efficacy of BCG vaccine-induced protection
with locally relevant bTB causing mycobacteria other than
M. bovis.

It is important to note that there are several limitations
to systematic reviews and meta-analyses. They can provide a
summary of published evidence about a specific question, but
our ability to answer it is limited by variation in experimental
design and the consistency and completeness of reporting. This
systematic review was limited to studies in English indexed in
the four databases screened, and hence may have missed relevant
investigations. Studies that did not report essential details were
excluded. It is not surprising that systematic biases in the fit
of the meta-analysis models suggest existence of publication
bias and the potential to inflate or underestimate estimates of
direct vaccine efficacy. One of the primary limitations of the
included studies is that the reported measures of protection,
evidence of lesions at necropsy and culture, together with
immune reactions, are the current “gold standards,” but have
variable sensitivity and specificity (65). In order to address any
potential bias in measurement of the outcome, we focused on
studies which reported culture or necropsy data for calculation
of RR estimation and further analyses. An exception was made
however for the Lopez-Valencia et al. (25) study since it was
one of only five estimates from a recent natural transmission
study. This study considered an animal to be infected if there
were positive reactions to the tuberculin skin test and the IFNγ

release assay upon stimulation with PPD-B and recombinant
ESAT6-CFP10 (25). While many studies followed a simple
or stratified sampling strategy for randomization, two studies
(13, 25) used a more systematic approach of vaccinating every
alternate calf in the herd which may have introduced potential
biases from the randomization process (Table 1). However, a
rigorous assessment of other risks of bias due to deviations
from intended interventions, missing outcome data and selection
of reported result could not be performed due to lack of
access to the complete data or detailed experimental protocols
from these studies. Another limitation is that only the direct
effect of vaccination (reduction in susceptibility, εS) could be
estimated from the experimental challenge experiments (66).
This is important, in particular, given our scenario analyses which
demonstrate the transformative effect an additional reduction in
infectiousness of vaccinates (εI) could have (67, 68). Thus, studies
to assess the impact of BCG on infectiousness of vaccinates
through natural transmission experiments or field trials are
urgently needed (67).

Herd-size is perhaps the most important risk factor associated
with transmission of bTB (69), leading to the common
assumption that transmission is density dependent and increases
with herd size (70, 71). This poses a particular challenge
for bTB control in emerging dairy markets in LMICs where
intensification of the dairy sector may make achieving control
increasingly difficult over time. We developed herd level
transmission dynamic models and performed scenario analyses
using deterministic models to illustrate this challenge. The
results of these analyses are striking—and suggest that despite
the relatively modest direct protection afforded by BCG, a
strong case may be made for implementing vaccination for bTB
control sooner rather than later, with overall benefits reducing
progressively over time to intervention (72) (Figure 6). Overall,
a leaky vaccine like BCG could still play a pivotal role in disease
control, particularly if implemented sooner than later in the face
of dairy intensification efforts in bTB endemic countries.

Finally, even while scenario analyses are for illustrative
purposes, there are several limitations to these analyses that we
recognize and should be addressed in future investigations. To
begin with, in the absence of surveillance programs in LMICs,
transmission estimates are lacking and should be determined to
accurately assess risk. Given that recent studies show increasing
prevalence in intensifying cattle herds in endemic settings (69),
these observations have major implications for informing and
implementing disease control policy and suggest a potential role
for BCG vaccination that has hitherto remained unexplored.
Next, in order to realize herd-level benefits of vaccination,
estimating the reduction in the risk of transmission from
vaccinated individuals (εI) is crucial. Animal trials in relevant
endemic settings are urgently needed to evaluate the potential of
BCG to reduce onward transmission in the field (11).

It is important to note that in addition to cattle, tuberculosis
affects a wide variety of livestock and both free-living and captive
wildlife species including goats, sheep, pigs, cervids, wild boars,
badgers, brushtail possums, and ferrets, many of which are
recognized as potential reservoir hosts. Indeed, experimental and
field trials to study the response to BCG vaccination of some
these species suggests that, while vaccination confers incomplete
protection, it’s use in domestic and captive or free-living wildlife
species should be seriously considered to reduce risk of cross-
species spillover (73). Alternative approaches to control bTB,
such as test-and-segregate and treatment with anti-mycobacterial
agents including isoniazid have also been explored (74, 75).
Treatment with isoniazid is uneconomical and not advised given
the long duration of treatment needed and the need to withdraw
milk together with reports that bacterial shedding may resume
as soon as isoniazid is withdrawn (76). Moreover, use of a
first line antimycobacterial agent in food animals is of major
concern due to potential for contribution to the spread of drug
resistant tuberculosis (77). Over the past decade, research in
the field has also focused on improving TB vaccination using
alternative approaches including the heterologous prime-boost
strategy, introducing genetic modifications in BCG strains to
increase immunogenicity, and also completely replacing BCG
with attenuated M. bovis strains (78–82). Heat-inactivated M.
bovis vaccines have also recently shown promise in wild boars,
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pigs, red deer, badgers, and goats (73, 83–88). However, despite
significant efforts and promising results in preclinical studies,
there is only limited evidence from clinical and field trials
for significant gains in efficacy of these newer generation or
modified BCG vaccines. Interestingly, both heat-inactivated and
attenuated vaccines for another major mycobacterial disease,
paratuberculosis (Johne’s disease), have been licensed and tested
extensively for use in cattle and small ruminants, but their use
is limited in countries because of potential for interference with
tuberculin testing and diagnostic tools currently used in bTB
eradication and control programs (89, 90).

In conclusion, in the short-term, in endemic regions where
test and slaughter approaches to bTB control have not been
shown to be effective or, BCG vaccination alongside a DIVA
diagnostic test appears to be the most promising option in the
near future. However, it is important to continue to develop
and assess next generation vaccines as well as complementary
strategies of disease control alongside that of BCG. For instance,
the assessment of routine testing and segregation of reactor
animals, mandatory pasteurization of milk fed to calves and
sold for human consumption, enhanced husbandry practices,
such as segregation of reactor or likely infected animals, herd
certification policies for recruitment of disease-free animals,
slaughterhouse surveillance, regulating movement and trade of
reactor animals, etc., in conjunction with or as alternatives to
BCG need to be rigorously evaluated in different production
settings and epidemiological contexts. Together, our studies
highlight an urgent need as well to perform sensitivity analyses
and build econometric frameworks to assess the cost-benefit
impacts of implementing vaccine-based control strategies to
establish the business case for (or against) implementation of
BCG vaccination as a component of a national bovine TB
control program.

CONCLUSION

This systematic review and meta-analysis of the efficacy of
BCG vaccination in cattle together with transmission dynamic
model-based scenario analyses provides strong evidence for the
consideration of implementation of BCG vaccine-based bTB
control strategies, particularly in LMICs and other high burden
settings. Despite a relatively small but positive protective effect,
conservative transmission models suggest an important role
for BCG in limiting spread of the disease and buying time
for improvement of vaccine efficacy or the development of
alternative approaches to disease control. Taken together with the
predicted increase in prevalence associated with intensification
of dairy production, our investigations suggest that BCG
vaccination may indeed be simply good (enough) to accelerate
control of bTB in endemic settings.

METHODS

Literature Search Strategy
A systematic search was performed for published articles
reporting the effect of BCG against bTB in cattle as of February
24, 2020. Various combinations of Boolean operators and MeSH

TABLE 4 | Study inclusion/exclusion criteria.

Inclusion Exclusion

Bovine TB Wrong disease

Cattle or buffalo Wrong species

Used BCG to vaccinate (and

specified the strain used)

Wrong vaccine

Evaluated efficacy of BCG vaccination Wrong type of study

English Language limitation: not in English

Full text of publication obtanied Full-text unavailable

Other

terms common to known articles of interest were evaluated
before the following search terms were finalized: (BCG AND
((“mycobacterium bovis” OR tuberculosis) AND (cows OR cattle
OR bovine) AND (protect∗ OR effica∗ OR lesion∗ OR immune∗

OR vaccin∗))). In order to minimize publication bias, search
terms were kept uniform across the four databases (PubMed,
CAB, Biological Abstracts, and Web of Science), which were
selected for their inclusion of major and minor international
journals. No limits were placed on publication date, and only
published studies were considered. EndNote X8, a citation
software program, was used to organize the articles generated
by the four databases as well as remove duplicate publications.
The study conforms to Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) guidelines (91).

Study Inclusion Criteria
Inclusion and exclusion criteria are detailed in Table 4. All
included studies compared the potentially protective effects
induced by a BCG variant against natural or experimental
challenge with bTB in a vaccinated group of cattle and a
control group of unvaccinated cattle. Studies with no control
group, such as surveys evaluating the effectiveness of vaccination
campaigns, were excluded. Additionally, articles that failed to
report the BCG vaccine strain tested were excluded (summarized
in Supplementary Table 1). While efforts were made to identify
articles manually, all final included articles were represented
in the formal database search. Primary studies were included
when available. However, review articles were included when
the primary article was inaccessible and adequate information
on BCG strain, bTB challenge, and protection was detailed for
vaccinate and control groups.

Data Extraction
A uniform data extraction form was developed based on
information of interest from pre-identified articles and used
by each of the extractors. Study identifiers included author,
publication date, title, journal, study location, and study
time period. Headings for study design included control
and vaccinate group sizes; BCG strain (Danish 1331, Danish
freeze-dried, Glaxo, Pasteur 1173P2, Tokyo); BCG dose; and
BCG administration route (subcutaneous, endobronchial,
intratracheal, intramuscular, oral); cattle age at time of
vaccination; revaccination timing, frequency, and dose (if
applicable); animal breed; and time from vaccination to
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TABLE 5 | A summary of all studies included in the meta-analysis.

Infection

Yes No

Vaccination Yes 362 1,540

No 530 1,137

Out of a total of 1,902 BCG vaccinated animals, 356 were found to be positive (either by

culture and/or presence of visible lesions) for bTBwhile 1,502 remained negative. Similarly,

out of 1,667 control animals, 520 were infected while 1,104 animals neither had lesions

nor any growth in culture.

challenge. Headings detailing bTB challenge methods included
challenge type (natural or experimental) and duration (from
challenge to slaughter or end of study period); as well as challenge
strain, route (intratracheal, subcutaneous, oral, endobronchial)
and dose if challenge type was experimental. Headings for
protection included the infection measurement method (post-
mortem, culture), number of vaccinates and controls affected,
and the protection percentage reported. Vaccine efficacy was
measured based on culture growth, and in the absence of culture
data, presence or absence of visible lung or lymph node lesions
in the control and treatment groups was used.

Prior to the formal review of all articles in the pool, data
extractors (SS, LE, and CH) conducted a pilot run of 20
random articles in order to test inclusion/exclusion criteria and
finalize the data extraction form. SS, LE, and CH independently
performed the formal review of all articles, which comprised
an initial screening of article titles and abstracts for inclusion
or exclusion. Full-text review for data extraction from included
studies was performed by SS and LE. When discrepancies arose
in study inclusion/exclusion or extracted data between reviewers,
studies were collectively revisited and discussed in order to reach
a final decision.

Included studies used common protection measurement
methods, primarily post-mortem examination (PM) and/or
culture. In the case that a study used both PM and culture
to measure protection, preference was given to culture (65); in
the case that lung and lymph node lesions were reported, we
considered positivity per lung lesions for effect measure. We only
included studies that specified the challenge strain. A majority
of the included publications performed experimental (17/24)
challenge and did not revaccinate animals (18/24). A complete
list of all included and excluded studies is publicly available at
https://doi.org/10.26208/pykx-8s25.

Statistical Analysis
All statistical analyses were performed in R (version 3.5.0)
using RStudio (version 1.1.442). Full source codes used for the
statistical analyses are publicly available with this publication
at https://doi.org/10.26208/pykx-8s25. Random effects (RE) (4)
and fixed effects (FE) meta-analysis models were estimated using
the “rma” function of the “metaphor” package and analyzed
using additional functions from the “meta” package (92, 93).
Funnel plots were constructed to assess for systematic bias in
the fitted models. Cochran’s Q statistic was computed to test for
unexplained heterogeneity, and Higgin’s statistic helped describe

the inconsistencies in studies’ results (94, 95). Key parameters
used to define protocols for BCG vaccination trials that were
judged on biological grounds to be important were assessed as
moderators in a multivariate meta-regression model, estimated
using the rma function of the metafor package.

Due to the variability between reporting of pathology between
different studies, vaccine efficacy was measured as a binary
dichotomous variable based on the presence or absence of culture
growth, or visible lesions in the control and treatment groups.
Vaccine efficacy is most commonly measured using the relative
risk or risk ratio (RR) (4), defined as the ratio of attack rate in
the vaccinated and control groups. As well as being more easily
interpretable than other measures (such as odds ratios and risk
differences), RR can be used to define vaccine efficacy (1-RR) and
was estimated here per the REmodel. The 2× 2 contingency table
below provides a summary of included sample size (Table 5).

Scenario Analysis
Thus far, no study on BCG efficacy has attempted to estimate
the efficacy of BCG to reduce the infectiousness of vaccinates
who subsequently become infected. In the absence of empirical
data, the reduction in lesions in vaccinated animals estimated
from natural transmission studies may be considered as a
proxy for reduction in infectiousness. While how the extent of
lesions directly relates to a reduction in infectiousness and thus
transmission risk was not quantified, this significant reduction in
lesion severity following BCG vaccination likely contributes to
reduction in risk of transmission from vaccinates to susceptible
cattle. Here, we conducted scenario analyses to explore the
potential implications for disease control and the importance of
estimating this neglected—but critical—aspect of BCG efficacy.
We consider this proportionate reduction in lesions as a plausible
upper bound for the total vaccine-induced protection.

For a well-mixed population, the critical vaccination threshold
(Vc) for elimination of a disease can be calculated from the
basic reproduction number (R0) using the formula Vc = (1 –
1/R0)/E, where E is the relative (combined direct and indirect)
efficacy of the vaccine (96). For domesticated livestock species
in organized settings, routine vaccinations are often performed
for all animals, hence we can reframe the critical threshold in
terms of the critical efficacy Ec = (1 – 1/R0). Thus, with a
direct vaccine efficacy of 25% (95% CI: 18, 32), BCG could be
expected to successfully eliminate infection from fully vaccinated
herds when the within-herd R0 is 1.32 (95% CI, 1.20–1.45)
or lower.

A simple deterministic model for the within-herd
transmission of bTB was used to explore the potential impact
of BCG vaccination in an expanding dairy sector. The model
assumes a well-mixed herd with animals stratified into four
epidemiological compartments. In an unvaccinated population,
animals are either susceptible (S) or infected and potentially
infectious (I). Vaccinated individuals (V) have a reduced risk of
becoming infected and we add a final infected after vaccination
compartment to model a reduced infectiousness for these
animals (IV ). Density dependence in transmission is modeled
using the non-linear relationship estimated from herds in Great
Britain (GB) using the so-called SORmodel (71). The SORmodel
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subdivides the infectious class into an occult (O) and reactive
(R) groups that differ in their reaction to the tuberculin skin
test, but also assumes infected animals are potentially infectious
immediately and is thus structurally equivalent to the SI(VIV )
model used here.

The full model equations are:

dS

dt
=

(

1− p
)

µN −
β

(N/Nm)q
(I + (1− εI) Iv) S− νS

dI

dt
=

β

(N/Nm)q
(I + (1− ε I) IV ) S− νI

dV

dt
= pµN − (1− εs)

β

(N/Nm)q
(I + (1− ε I) IV ) V − νV

dIV

dt
= (1− εs)

β

(N/Nm)q
(I + (1− ε I) IV ) V − νIV

dC

dt
=

β

(N/Nm)q
(I + (1− ε I) IV) S+ (1− εs)

β

(N/Nm)q
(I + (1− εI) IV ) V

dN

dt
= (µ − ν)N

where εs is the efficacy of vaccination to protect against
infection (reduction in susceptibility), εI is the efficacy of
vaccination with respect to reducing the infectiousness of
vaccinates that subsequently become infected and Nm is a
constant centering parameter (=165) used for the estimation
of q in the original GB model. β is a transmission parameter
which we fix using the assumed initial prevalence (I0) and
initial herd size (N0) for each scenario and q measures
the strength of density dependence of transmission with
q = 0 corresponding to density dependence and q = 1
frequency dependence. For the default scenario we use the
point estimate from Conlan et al. (71) of q = 0.15 and
present an alternative weaker density dependent scenario
(q = 0.71, upper bound of approximate posterior distribution)
in Supplementary Material.

For illustration we consider a herd with initial size N0 = 30,
a 20% per annum replacement rate (ν = 0.2 per year) and per

capita birth rate µ = 1.15 ν to give a population growth rate of
15% per year (N = N0e

−(µ−υ)t).
The basic reproduction ratio for this model (for fixed herd size

N0) can be calculated (next generation method) as:

R0 =
β

υ
N0 (N0/Nm)−q

We set the (97) value of β for each scenario by assuming that
the initial population is at the equilibrium point of the constant
population model. Thus, at t = 0, we assume that:

R0 = 1/(1− I0/N0)

and thus set:

β =
νR0 (N0/Nm)q

N0

Full source codes used for the statistical analyses are publicly
available with this publication at https://doi.org/10.26208/pykx-
8s25.
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