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Background: Glucagon-like peptide-1 (GLP-1) is an incretin hormone that plays an

important role in glucose homeostasis and food intake. In people, GLP-1 receptor

agonists (GLP-1RAs) are commonly used for the treatment of type 2 diabetes mellitus

(DM) and obesity; however, non-adherence to injectable medications is common.

OKV-119 is an investigational drug delivery system intended for subdermal implantation

and delivery of the GLP-1RA exenatide for up to 6 months.

Hypothesis/Objectives: Develop protocols for the subcutaneous (SC) insertion and

removal of OKV-119 and to evaluate its tolerability, in vivo drug-releasing characteristics,

and weight-loss effects in cats.

Animals: Two cadaveric and 19 purpose-bred cats.

Methods: In cadavers, OKV-119 insertion protocol and imaging were performed at three

SC locations. The safety and tolerability of OKV-119 implants were assessed in a small (n

= 4 cats) 62-day study. Weekly plasma exenatide concentrations and body weight were

measured in a 42-day proof-of-concept study designed to evaluate OKV-119 prototypes

implanted in cats (n = 15).

Results: In anesthetized cats, the duration of insertion and removal procedures was

1–2min. OKV-119 was easily identified on radiographs, and well-tolerated without any

apparent implant site reactions. Following implantation, exanatide plasma concentrations

were observed for up to 35 days. Plasma exenatide concentrations were correlated to

weight loss.

Conclusion and clinical importance: Our findings suggest that OKV-119 could be

easily inserted and removed during a routine clinic visit and can be used to safely and

effectively deliver exenatide. Future studies of OKV-119, configured to release exenatide

for a longer extended months-long duration, are warranted to determine whether the

combination of metabolic improvements and beneficial weight-loss, coupled withminimal

impact on pet-owner’s lifestyle, lead to improved outcomes for obese cats and feline

DM patients.

Keywords: diabetes, obesity, adherence, compliance, exenatide, feline, glucagon-like peptide-1, glucagon-like

peptide-1 receptor agonist
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INTRODUCTION

Glucagon-like peptide-1 (GLP-1), an important incretin
hormone that is secreted from the intestines during a meal
and participates in the regulation of systemic metabolism, food
intake, gastrointestinal motility, and more (1). GLP-1 exerts its
main regulatory effect by stimulating glucose-dependent insulin
secretion from pancreatic islets (1). GLP-1 receptor agonists
(GLP-1RAs) are now a cornerstone treatment of type 2 diabetes
mellitus (DM) in human medicine (2), with exenatide being the
first-in-class GLP-1RA to be approved (3). GLP-1RAs have also
been shown to beneficially reduce body weight in non-diabetic
obese people, without causing hypoglycemia or other serious
adverse events (AEs) (4–7). Weight-reducing effects are partly
attributed to GLP-1 inhibitory effects on gastric emptying,
postprandial glucagon release, and stimulation of hypothalamic
satiety centers (8).

Although limited, data in cats demonstrate that GLP-1RAs
generally have similar effects to those seen in human patients
and might be useful in treating feline DM (9–16). Feline obesity,
formally classified as a disease, is also major health concern
(17). Obesity in cats is associated with numerous cormobidities
including DM, osteoarthritis, impaired respiratory function, and
certain types of neoplasia (18, 19). Given the clinical challenge
of managing feline obesity (19, 20), it is equally intriguing
to determine whether, like in human medicine, GLP-1RAs
administered to non-diabetic, clinically obese cats can be used to
treat obesity and prevent, or delay, the onset of DM and other
untoward health outcomes.

In human medicine, non-adherence to antidiabetic
medications is common and results in poor long-term glycemic
control and the development of diabetic complications (21–
23). Medication non-adherence and non-persistence, or
discontinuation, have been shown to be particularly common
among those taking injectable antidiabetic medications (23).
A research survey evaluating injectable insulin has shown that
human patients consider injections to be a serious burden and
have a negative impact on quality of life (24). Not surprisingly,
human studies in real-world settings report low adherence of
only 30–50% for injectable GLP-1RAs (25, 26). While adherence
and persistence have not been studied in people giving injectable
antidiabetic medications to cats, it is anticipated that the
problems noted in human patients will only be compounded by
the physical and emotional challenges of performing repeated
injections in cats. Treatment strategies that account for real-
world constraints and limit pet owner responsibilities (e.g.,
eliminate at-home glucose monitoring) may help to improve
long-term outcomes (27).

Long-term extended-release (ER) technologies that minimize
injection burden have been shown to be well-tolerated and
improve self-reported quality of life in human diabetic patients
(28, 29). Given the known challenges of administering chronic
medicines to feline patients (30, 31), the benefits of a “hassle-
free” long-term drug delivery system may be magnified in

Abbreviations: AE, Adverse events; ER, Extended-release; GLP-1, Glucagon-like

peptide-1; GLP-1RA, GLP-1 receptor agonists; HL, Hepatic lipidosis.

cats. Moreover, due to the inherently short half-life and rapid
clearance of exenatide in cats (10, 14), an ER preparation
may mitigate undesirable side effects associated with “peak-and-
valley” pharmacokinetic profiles (32).

Herein, we report our initial experiences with an
investigational drug delivery system (OKV-119; Figure 1)
that will be designed to produce constant, months-long delivery
of exenatide. Our first objective was to develop protocols
for the subcutaneous insertion and removal of OKV-119
in cats. The second objective was to evaluate the safety of
supratherapeutic exenatide doses and to assess the tolerability
of the implant in healthy purpose-bred cats. The third objective
was to concept test the in vivo drug releasing properties of
OKV-119 prototypes over a 42-day period. Therefore, weekly
exenatide plasma concentrations and corresponding weight-loss
effects were measured in healthy cats implanted with OKV-119
prototype systems.

MATERIALS AND METHODS

Investigational Drug-Delivery System
The overall design and primary working principle of the
OKV-119 systems used herein were based on the prototype
depicted previously (33, 34). Made from titanium and titania,
the implant is composed of a cylindrical drug reservoir with
the NanoPortalTM membrane attached at one end and a molded
silicone septum closure at the other end (Figure 1A). OKV-119
is optimized for biocompatibility; once fully assembled, the only
material in contact with the body is titanium oxide and silicone.
All OKV-119 components, excipients, and materials have been
used in FDA approved products.

The rate of exenatide released from the OKV-119 implant
is controlled by adjusting pore size and the exposed number
of nanotubes (Figure 1B) (33, 34). Smaller nanotube pore size
(generated by increased atomic layer deposition) and fewer
exposed nanotubes elicit slower drug release rates. OKV-119
prototypes used in the present study released a peak of ∼50–100
µg exenatide per day.

Insertion and Removal Procedures
An initial study was performed in two cat cadavers to
develop insertion and removal techniques of OKV-119 and to
evaluate radiopacity and echogenicity of the implant following
implantation (University of Florida Institutional Animal Care
and Use Committee protocol #201910973). OKV-119 implants
were placed in three subcutaneous locations in each cat: the
medial brachium, dorsal lumbar, and lateral crus. Imaging was
performed using digital radiography and ultrasound of each
location to determine the most suitable modality for locating the
implant before removal in live animals. Implantation sites were
compared for ease of insertion and removal in this species.

In a subsequent safety and tolerability study, cats (n= 4) were
anesthetized with 2 mg/Kg xylazine (20 mg/mL) and 1 mg/Kg
ketamine (100 mg/mL) followed by administration of inhaled
4% isoflurane. A 4 × 4 cm area was clipped and aseptically
prepared on the dorsal lumbar area. A 12 g needle was loaded
with OKV-119 through its beveled tip until it was entirely within
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FIGURE 1 | Schematic of the OKV-119 components, titanium reservoir (part 1), NanoPortal membrane (part 2) and silicone septum (part 3) (A). This drug delivery

system measures 2mm by 21.5mm. Exenatide is delivered from solution inside a reservoir at a rate that remains constant until the drug is nearly fully depleted. The

rate of drug release is controlled by a nanoporous membrane composed of biocompatible titanium oxide (titania) nanotubes and is fabricated affixed to a

biocompatible titanium substrate. Target delivery rates can be achieved by adjusting the number of accessible nanotubes (i.e., the number of windows is correlated to

release rate) and the size of the nanopores (i.e., larger pores have faster release rates) (B). [figures reproduced from Fischer et al. (33) and Fischeret al. (34)].

its lumen. AK-wire was then inserted into the opposite side of the
needle while tilting the needle upwards and avoiding expulsion
of the implant through the beveled tip of the needle. Next, the
skin was incised (1mm) with a scalpel. The skin was held with
forceps close to the incision and the 12 g needle (and the and
K-wire in it) was inserted about 3 cm into the subcutaneous
tissue through the incision. The needle was then retracted over
the K-wire while stabilizing the K-wire, causing the OKV-119
implant to be pushed out of the needle and into the space that
was created by the retracted needle. The K-wire was removed, the
skin edges were apposed, and the incision closed with a drop of
tissue glue. Finally, the anesthesia was discontinued and the cat
was monitored until fully awake.

Lastly, in a OKV-119 proof-of-concept study, cats (n = 15)
were anesthetized and the implant site was prepared as described

above. The skin was incised (2–3mm) with a scalpel. The scalpel
was then used to gently create a small subcutaneous cavity.
The OKV-119 implant was inserted using Brown-Adson tissue
forceps to hold the implant at its center. After insertion, the
skin edges were apposed, and the incision closed with a drop of
tissue glue.

To extract the implant, cats were sedated with 2 mg/Kg
xylazine and 1 mg/Kg ketamine and a 4 × 4 cm area was
clipped and aseptically prepared over the implant. Using Brown-
Adson tissue forceps to hold the implant at its center, the tip
of the implant was pushed toward the skin incision. The tissue
surrounding the tip of the implant was dissected using a scalpel
until it was exposed. The implant was then pulled out and the skin
incision closed with a drop of tissue glue (Videos of the insertion
and removal procedures are provided online).
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Safety and Tolerability Study
The safety and tolerability of OKV-119 was initially assessed over
an 8-week period. In this part of the study, prototype OKV-119
implants configured to release supratherapeutic exenatide doses
were inserted subcutaneously in healthy, purpose-bred, domestic
short hair cats in the lateral crus (n = 2) and dorsal lumbar
(n= 2).

Cats were considered healthy at time of enrollment based on
physical examination. They were acclimated for 7 days prior to
treatment in the room where they were to be housed during
the study. During the course of the study, cats were housed
separately in pens in compliance with current recommendations
for the Guide for the Care and Use of Laboratory Animals
and under the standard operating procedures of the testing
facility. Cats were fed a standardized pelleted feline diet ad
libitum, with fresh feed provided once daily in the morning.
The amount of food provided and consumed was recorded
throughout the study. Water was supplied ad libitum. Daily
physical exams were performed. Body weight measurements and
exenatide plasma samples were taken weekly during the course
of the study. Serum biochemistry and complete blood counts
were measured at baseline and on the last study day. The study
protocol was approved by the AAALAC accredited test facility
(IACUC protocol #TH200118).

OKV-119 Drug Release Proof-Of-Concept
Study
A 6-week study, in which weekly exenatide plasma
concentrations were measured, was performed to evaluate
OKV-119 implants configured to release exenatide at three
different rates. Cats in Group 1 were implanted with OKV-119
configured with the largest nanopores (i.e., fastest release rate),
while the implants used for Group 3 were configured using the
thickest ALD profile (i.e., slowest release rate). The selection of
these prototype OKV-119 configurations was informed by prior
studies performed in rats (unpublished data).

This laboratory-based study in healthy purpose-bred domestic
short hair cats was conducted under conditions that were nearly
identical to the safety and tolerability study detailed above.
Briefly, acclimated cats were randomized to Group 1 (n = 3),
Group 2 (n = 6), or Group 3 (n = 6). Cats were individually
housed and monitored throughout the study. Body weight and
exenatide plasma measurements were collected weekly. Implants
were removed from the cats on a pre-determined weekly schedule
(Table 1) to evaluate the integrity of the drug delivery system.
The study protocol was approved by the AAALAC accredited test
facility (IACUC protocol #TH200118).

Blood Sampling and Exenatide Plasma
Concentration Assay
Blood samples were collected once prior to implantation (Day 0)
and then weekly for the duration of each study. In the proof-of-
concept study, all samples were collected after an overnight fast.

Blood samples were collected from the jugular vein and placed
in pre-chilled EDTA tubes that were immediately placed on
ice. Samples were then centrifuged (4◦C, 3,000 RPM, 15min),

plasma was collected, divided into 4 aliquots and stored at−80◦C
until analysis.

A qualified LC-MS/MS method for the determination of
exenatide concentrations in feline plasma was developed at an
independent laboratory1. Assay range was 0.5–100 ng/ml. Linear
regression for expected vs. observed results in serial dilutions in
this range were R2 = 0.997 (P< 0.0001), slope= 1.0± 0.02 (CI=
0.96–1.07) and a Y intercept=−0.73± 0.91. Recovery of quality
control material was 106.6% at 3 ng/mL and 103.0% at 75 ng/mL.
When plasma exenatide concentrations were below the level of
detection (0.5 ng/mL), a value of 0 ng/mL was assigned.

Statistical Analysis
Statistical analysis was performed using a commercially available
computer software2. Clinical parameters, AEs, exanatide plasma
concentrations, and laboratory parameters were summarized
descriptively. Data are presented as median [range]. Outliers
were identified by visualization of the plasma concentration
data and removed the analysis. Data were assessed for
normality using Shapiro-Wilk. Pearson’s r was used to assess
the correlation between weekly percent change in body weight
and exenatide concentration measurements in the safety and
tolerability study. In the subsequent OKV-119 proof-of-concept
study, weekly percent change in body weight and exenatide
concentration measurements were not normally distributed and
their correlation was assessed by the Spearman test. Outliers were
identified by the Rout test and removed the correlation analysis.
Significance was set at p ≤ 0.05.

RESULTS

After insertion in the SC space, the implant is palpable. To
prepare for the possibility of migration over time and the need
to locate the implant anywhere in the body, radiographs were
obtained after inserting implants at different locations in 2 cat
cadavers. The implant is radiopaque and was easily identified
on radiographs at all insertion sites including when overlaid by
bone (Figure 2). The echogenicity of the implant was similar
to surrounding SC tissue during ultrasound examination. The
tubular shape of the implant could be identified when the location
of the device was known to the ultrasonographer but it was
estimated that locating a implant that migrated from the site of
insertion would be challenging using this modality. Based on the
ease of access and low risk for damage to vital structures, the
dorsal lumbar and lateral crus sites were consideredmost suitable
for future studies in live animals.

In anesthetized cats, the duration of insertion and removal
procedures was 1–2 min.

Tolerability and Safety
Cats appeared to tolerate the implants well. Cats did not lick or
scratch the implant site and no visible evidence of inflammation
was observed in the skin overlying the implant (Figure 3). There
were no apparent systemic drug-related AEs clinically and no

1Alturas Analytics, Inc., 1324 Alturas Drive, Moscow, ID 83843.
2GraphPad Prism, version 8.0; GraphPad Software Inc, La Jolla, CA.
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TABLE 1 | Exenatide plasma concentrations (ng/ml) in cats after subcutaneous implantation of OKV-119 in Group 1 (n = 3, largest NanoPores with the fastest release),

Group 2 (n = 6, medium thickness ALD), and Group 3 (n = 6, smallest NanoPores with a slower release).

Age (months) Gender Day 7 Day 14 Day 21 Day 28 Day 35 Day 42

Group 1

Cat 1 47.0 Male 3.02 2.55 2.71 4.87a

Cat 2 47.0 Male 2.67 3.86a

Cat 3 66.5 Male 1.65a

Median 2.67 3.21

Group 2

Cat 1 47.0 Male 2.78 2.42 2.62 1.04 0.732 0a

Cat 2 47.0 Male 4.33 2.02 0.30 1.11 0.961 0.575a

Cat 3 67.0 Male 0.332 0.315 0.268 1.04a

Cat 4 66.5 Male 1.94 1.73a

Cat 5 66.5 Male 2.3 12.9b 21.8a,b

Cat 6 40.0 Female 4.2a

Median 2.54 2.02 1.444 1.04 0.8465 0.2875

Group 3

Cat 1 47.0 Male 2.83 1.37 2.71 4.14 1.47 0.266a

Cat 2 66.5 Male 0.657a

Cat 3 47.0 Male 0.471 0.242

Cat 4 22.0 Male 0 0.983 1.05 6.36 0.433 0a

Cat 5 40.0 Female 0.603 1.3 1.13 0.78a

Cat 6 21.5 Male 0 0.206 0.3 0.57 1.02 0.613a

Median 0.54 0.98 1.09 2.46 1.02 0.27

aOKV-119 implants were removed on a pre-determined weekly schedule.
bOutliers were excluded from the analysis. Shaded areas correspond to time-points after which the OKV-119 implants were removed.

FIGURE 2 | Radiographic images show that the OKV-119 implant is

radiopaque (yellow arrows) and can be identified after implantation in cats at

the (A) medial brachium, (B) lateral crus, and (C) dorsal lumbar regions. For

comparison, the appearance of the OKV-119 implant before implantation is

shown in (D).

significant abnormalities on serum biochemistry and complete
blood counts during the study period.

Exenatide Plasma Concentrations and
Body Weight Observations
In all cats studied, plasma exenatide concentrations were below
the level of detection at baseline. In the safety and tolerability
study, there was no difference in body weight between day −7

FIGURE 3 | Implanted OKV-119 systems in four purpose-bred cats (A–D).

Images were taken on Day 61 prior to the removal procedure.

and day 0 (median [range] difference = 35 g [−55 to +107 g]).
Following insertion of OKV-119 systems configured to release
supratherapeutic doses of exenatide, mean exenatide plasma
concentrations peaked at week 1 (median [range] = 9.3 ng/mL
[4.7–10.5]), and were maintained above 2 ng/mL in all cats for
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FIGURE 4 | Body weight (left axis, black circles) and exenatide plasma

concentrations (right axis, open squares) in 4 healthy purpose-bred cats over 9

weeks, before and after insertion of OKV-119 configured with supratherapeutic

levels of exenatide. Shown are mean (±SD).

28 days (Figure 4). Weight loss was observed in all four cats in
the first 3 weeks (Figure 4). After the first month, body weight
started to rebound when exenatide was depleted and no longer
being released (Figure 4).

In the subsequent OKV-119 drug-releasing concept study,
average Day 7 plasma exenatide levels were 2.45 ng/ml (range:
1.65–3.02 ng/ml) and 2.65 ng/ml (range: 0.33–4.33 ng/ml) in
Groups 1 and 2, respectively (Table 1 and Figure 5). In Group 3,
the average Day 7 plasma exenatide levels were noticeably lower
(0.76 ng/ml), and were below the level of detection in 2 out of
6 cats (Table 1 and Figure 5). Exenatide plasma concentrations
were measured for up to 35 days in all three groups (Table 1 and
Figure 5).

Following implantation, weekly plasma exenatide
concentrations were correlated with weight loss in the safety
and tolerability study (r = −0.8 [95% CI = −0.9 to −0.6], p <

0.0001) and the larger study evaluating drug release of OKV-119
prototypes (−0.44 [95% CI = −0.64 to −0.18], p < 0.0013 after
removing three outliers). Consistent weight loss was observed in
all three groups (Figure 6).

DISCUSSION

This is the first report, in cats, of an investigational drug delivery
system (OKV-119) that is under development for the treatment
of feline obesity and diabetes mellitus. We present our initial
experiences with the implant insertion and removal procedures,
as well as preliminary tolerability and safety observations. The
proof-of-concept study demonstrates that exenatide was released
for a 35-day period and suggests that the OKV-119 drug delivery

system is tunable and can be configured for cats. Additional
study of OKV-119 implants will be needed to verify that constant
target drug delivery rates can be maintained for longer, months
long duration.

The subcutaneous insertion and removal of the implant in
cats was found to be quick and simple, suggesting that these
procedures may be performed during routine clinic visits under
short anesthesia (for example with a dexmedetomidine injection
that is then reversed with atipamezole). No implant-site AEs were
observed, but larger and longer studies will be needed to verify
that the OKV-119 implant is biocompatible and will be well-
tolerated by cats over months and years. In particular, although
feline injection site sarcomas are believed to be exceedingly
rare and have not been linked to daily insulin injections or to
microchip implants (35–37), this risk will need to be ruled out
for the OKV-119 implantable system.

Feline obesity is a significant health concern with current
weight management strategies largely limited to restricting
caloric intake (38, 39); however, given their clinical success
in managing obesity in human patients, GLP-1RAs may also
have beneficial weight-loss properties in cats (14). In the initial
safety and tolerability study, supratherapeutic exenatide plasma
concentrations coincided with rapid and substantial weight loss
in healthy cats (>10% in the first week, >15% in the first
3 weeks). In the subsequent OKV-119 concept study testing
prototype delivery systems, weight loss was also correlated with
exenatide plasma concentrations but with a lower (and more
clinically relevant) rate of change, especially in the “slow release”
group. These observations are consistent with other studies
which demonstrate the weight-loss effects of GLP-1ARs in cats
(14, 40–42).

Studies show that overweight people administered exenatide
generally experience clinically beneficial weight loss within the
first weeks of treatment, with body weight stabilizing after a
few months, and then remaining relatively unchanged over
years of treatment (29, 43, 44). The present study design
did not enable us to capture sufficient exenatide plasma
concentrations to characterize the full pharmacokinetic profiles,
nor were we able to characterize target exanatide plasma
concentrations required to achieve the desired weight loss in
cats [e.g., 1–2% loss of body weight per week (18)]. Based
on these preliminary observations, future dose-ranging studies
evaluating OKV-119 systems configured to achieve exenatide
plasma concentrations in the range of 1–4 ng/mL are warrented.
Prospective studies of longer duration with longer exposure
to exenatide in client-owned cats will also be required to
establish whether, as reported in people, beneficial weight
loss stabilizes, is safely maintained, and leads to metabolic
improvements (7, 29, 45).

Following extended exposure to exenatide, anti-exenatide
antibody formation has been detected in rats, monkeys,
and humans. The presence of antibodies does not appear
to have neutralizing activity in these species, although
antibody titers were observed to influence pharmacokinetic
parameters [NDA #22-200]. It is suspected that higher
anti-drug antibody (ADA) titers may lead to an apparent
increase in exposure because of the perturbation of the
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FIGURE 5 | Exenatide plasma concentrations in in healthy purpose-bred cats randomized to Group 1 (n = 3, largest NanoPortal configuration, fast release), Group 2

(n = 6, medium configuration), and Group 3 (n = 6, thickest NanoPortal configuration, slow release). The horizontal line in each box represents the median, the lower

and upper boundaries of the boxes the interquartile range, and the ends of the bars the minimum and maximum values.

FIGURE 6 | Change in body weight in healthy purpose-bred cats randomized to Group 1 (n = 3, largest NanoPortal configuration, fast release), Group 2 (n = 6,

medium configuration), and Group 3 (n = 6, thickest NanoPortal configuration, slow release). The horizontal line in each box represents the median, the lower and

upper boundaries of the boxes the interquartile range, and the ends of the bars the minimum and maximum values.
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renal clearance of exenatide in the presence of ADA [NDA
#22-200]. In future studies, anti-exenatide antibody titers
will need to be measured to determine whether they have
neutralizing effects in felines and/or whether they affect
drug exposure.

In cats, anorexia and negative energy balance that results in
excessive weight loss are clinical hallmarks of hepatic lipidosis
(HL); however, the pathophysiology is incompletely understood
and it remains unknown why some cats develop HL while
other cats with a similar negative energy balance do not (46–
48). Experimental evidence is mixed, with some laboratory cat
studies showing that rapid weight-loss increases the risk of HL,
while other studies suggest that gradual weight-loss is safe and
is not associated with HL (49–52). In the safety study, we did
not observe any clinical signs consistent with HL despite rapid
weight loss. After Day 28, appetite rebounded and cat weight
returned to normal as exenatide plasma concentrations declined.
Similarly, no evidence of HL was observed in another study in
which rapid weight loss was induced with a GLP-1RA (12). Larger
studies in obese cats will be needed to determine whether the
beneficial hormonal milieu conferred by excess GLP-1 activity
leading to weight-loss and other metabolic improvements are
outweighed by the risk of developing HL. Importantly, one
of the main safety advantages of OKV-119 over ultra-long-
acting injectable depot formulations of exenatide (10, 14) is
the ability to remove the implant and immediately discontinue
exposure to the drug in the case of excessive weight loss, HL or
other AEs.

Following the classification schemes used in human
medicine, diabetic cats generally suffer from a type 2-like
diabetes mellitus that may be phenotypically characterized
by a combination of impaired insulin action in liver,
muscle, and adipose tissue (insulin resistance), and beta-
cell failure (53). Given the pathophysiological similarities
between human and feline T2D, incretin hormones are being
evaluated as treatment options for inducing and maintaining
diabetic remission in cats (9). Metabolic improvements
have been observed in cats administered GLP-1RAs, but
larger, prospective, well-controlled studies will be needed
to characterize the clinical utility of incretin hormones for
managing diabetic cats. The long-term safety profile of GLP-
1RAs, administered at therapeutic drug levels, also need to be
better defined.

Human clinical studies performed under real world
conditions have identified lack of adherence as a significant
factor associated with poorer glycemic control and other
diabetes associated complications (21, 54–59). Identified
barriers to adherence include cost, tolerability, and complexity
and method of administration (60). Importantly, human
patients prescribed injectable medications are less likely to
initiate and maintain treatment compared to those taking
only oral medications (23, 60). Factors affecting cat and dog
owner adherence and persistence, defined as the duration
of time from initiation to discontinuation of therapy, with
injectable antihyperglycemics are not well-defined, but
similar barriers are likely at play when people care for their
pets (61).

Injection concerns (e.g., aversion to needles, needle size) are
believed to negatively impact pet-owner adherence rates and
may partly account for the 10% euthanasia rate reported for
newly diagnosed diabetic pets (62). Treatment persistence with
antihyperglycemics is an equally important determinant in the
long-term prognosis of feline diabetic patients. As a surrogate
measure,>40% euthanasia rates reported in diabetic cats (63, 64)
may be indicative of low persistence rates of long-term injectable
medications such as insulin.

To address real-world adherence and persistence challenges,
OKV-119 delivery systems designed to provide continuous
subcutaneous delivery of exenatide for a months-long duration
are under development. Pharmacokinetic studies, in cats,
using future OKV-119 prototype systems will be needed to
better target in vivo exenatide plasma concentrations relative
to OKV-119 configurations (i.e., release rate). The implant
insertion and removal procedures also need to be refined before
the protocols can be incorporated into routine clinic visits.
Ultimately, clinical studies in client-owned obese and diabetic
feline patients will be needed to evaluate both the clinical
and logistical benefits of the “hassle-free” long-term delivery
of exenatide.
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