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Bovine tuberculosis, caused by infection with members of the Mycobacterium

tuberculosis complex, particularly Mycobacterium bovis, is a major endemic

disease affecting cattle populations worldwide, despite the implementation of

stringent surveillance and control programs in many countries. The development

of high-throughput functional genomics technologies, including RNA sequencing, has

enabled detailed analysis of the host transcriptome to M. bovis infection, particularly

at the macrophage and peripheral blood level. In the present study, we have analysed

the transcriptome of bovine whole peripheral blood samples collected at −1 week

pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points.

Differentially expressed genes were catalogued and evaluated at each post-infection

time point relative to the −1 week pre-infection time point and used for the identification

of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially

expressed gene sets were also used for examination of cellular pathways associated

with the host response to M. bovis infection, construction of de novo gene interaction

networks enriched for host differentially expressed genes, and time-series analyses to

identify functionally important groups of genes displaying similar patterns of expression

across the infection time course. A notable outcome of these analyses was identification

of a 19-gene transcriptional biosignature of infection consisting of genes increased in

expression across the time course from +1 week to +12 weeks post-infection.

Keywords: biomarker, cattle, gene expression, host-pathogen interaction, immune response, time series,
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INTRODUCTION

Bovine tuberculosis (BTB) is caused by Mycobacterium bovis
and other intracellular bacterial pathogens of theMycobacterium
tuberculosis complex (MTBC), which display 99.9% DNA
sequence identity at the genome level (1–3). Each member of
the MTBC has a distinctive host spectrum, such that tuberculosis
(TB) affects a wide range of mammals including humans (4). In
addition, BTB has been classified as the fourth most important
disease of livestock in terms of zoonotic and economic impact
globally (5, 6). It has also been conservatively estimated that
BTB costs $3 billion annually and imposes a large financial
burden on farmers with infected herds (7, 8). Furthermore, as
a zoonosis, M. bovis infection has important implications for
human health; transmission from cattle to humans does occur
and is responsible for a small but significant number of human
TB cases, particularly in developing countries (9–11).

Tuberculous mycobacteria—primarily M. bovis and
M. tuberculosis, the main cause of human TB—are generally
inhaled from the environment within aerosol droplets and are
phagocytosed by host alveolar macrophages (AMs); therefore,
infection is normally initiated within, and restricted to, lung
tissues (12–15). Tuberculous mycobacteria have evolved a wide
range of mechanisms to modulate, suppress, and manipulate
specific host immune mechanisms, including inhibition of
phagosomal maturation, detoxification of reactive oxygen
and nitrogen species (ROS and RNS), repair of ROS- and
RNS-induced cellular damage, resistance to antimicrobial and
cytokine defences, modulation of antigen presentation, and
induction of cellular necrosis and inhibition of apoptosis (16–
19). Tuberculous disease is characterised by lesions located at the
site of infection, which are formed when AMs and other immune
cells engage and eliminate most of the bacilli. The remaining
intact mycobacterial cells are confined in granulomas that act to
contain the infection, but may, under certain conditions, actually
facilitate expansion and dissemination of mycobacteria to spread
infection (20–22).

In Ireland, a test and slaughter policy for BTB was
introduced in the early 1950s as part of the national BTB
eradication scheme (23, 24). This policy includes compulsory
screening of all animals using the single intradermal comparative
tuberculin test alone or in conjunction with an in vitro
enzyme-linked immunosorbent assay–based interferon γ (IFN-
γ) release assay (IGRA) that increases the sensitivity of diagnosis
(25). However, limitations of current diagnostic methods
prevent early and accurate detection and subsequent removal
of all infected animals from a herd, thereby contributing
to the ongoing persistence of BTB, which continues to
impact cattle production in Ireland, the United Kingdom,
and other countries (24, 26). Therefore, the most important
objective of an effective BTB control strategy—to identify
and remove all infected cattle from a herd regardless of
the stage of infection—is substantially hindered by current
diagnostic technologies. Novel methods of BTB diagnosis
are urgently required to augment current test procedures
in conjunction with appropriate wildlife reservoir control
measures (27).

In recent years, the availability of a well-annotated bovine
genome sequence combined with high-throughput functional
genomics technologies has provided an unprecedented
opportunity to gain a deeper understanding of host–pathogen
interaction, identify blood-derived RNA-based biomarkers, and
develop new diagnostic methods for BTB caused by infection
withM. bovis (28–33).

Previous transcriptomics studies of the host immune response
to M. bovis have been performed using blood-derived RNA
obtained from both naturally and experimentally infected
animals, as it has been shown that host immune responses
occurring in peripheral blood reflect those at the primary site of
disease in BTB (34). In this regard, the dynamic transcriptome
of circulating blood, which contains a large pool of “biosensors”
in the form of RNA transcripts, can reflect physiological and
pathological events occurring elsewhere in different tissues and
organs, thereby providing a comprehensive overview of the
status of the immune system (35, 36). In addition, peripheral
blood has provided information on the pathobiology of many
diseases; it is accessible and easily collected, making it ideally
suited for the development of diagnostic biomarker tests based
on transcriptional profiling (37–39).

For the experimental work described here, RNA sequencing
(RNA-seq) was used to study the bovine whole peripheral blood
transcriptome in response to infection with M. bovis across
a large-scale 14-week animal infection time course. The main
objectives of the study were to examine the host peripheral
blood transcriptional responses across the early stages ofM. bovis
infection and identify differentially expressed (DE) genes across
the infection time course that represent promising candidate
biomarkers for BTB. In addition, we aimed to identify host
canonical pathways and interaction networks enriched for DE
genes, which may shed light on the immunobiology of M. bovis
infection in cattle. We also used time-series analysis and Gene
Ontology (GO) information to identify functionally important
groups of DE genes across the infection time course.

MATERIALS AND METHODS

Overview of Animal Infection Time Course
Experiment
Animal resources for the present study were obtained from a
26-week vaccination and challenge experiment of age- and sex-
matched cattle infected with M. bovis (40–44). Ten male age-
matchedHolstein–Friesian calves (4–6months old) were sourced
from farms known to be free of BTB disease. The animals used
for the experimental work described here were the naive control
group (non-vaccinated) for a vaccine efficacy study (40). Figure 1
shows the experimental schedule used by Dean et al. (40) and
details the sampling time points for the 10 non-vaccinated
control cattle used for the research work described here.

Inoculation With M. bovis Strain AF2122/97
The challenge strain, M. bovis AF2122/97 (2, 45), was delivered
endobronchially at 2 × 103 colony-forming units per animal
using the following procedure described by Whelan et al. (46).
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FIGURE 1 | Schedule for the M. bovis infection time-course experiment. Sampling time points for the 10 non-vaccinated control cattle used are indicated by green

arrows.

Prior to endobronchial inoculation animals were sedated with
Rompun R© (Bayer Animal Health, Newbury, UK) according
to the manufacturer’s instructions. Following this, an LSVP
22 VGS89x14 endoscope (Veterinary Endoscopy Services,
Welshpool, UK) lubricated with Vet-Lubigel (Millpledge
Veterinary, Clarborough, UK) was inserted through a nostril
into the trachea and placed above the bronchial opening to
the cardiac lobe and the main bifurcation between left and
right lobes. A cannula of 1.8-mm internal diameter (Veterinary
Endoscopy Services) was inserted through the endoscope and
used to deliver the M. bovis AF2122/97 inoculum in 2mL of
phosphate-buffered saline (PBS). Following this, an additional
2mL of PBS was then used to wash the cannula, and the
cannula and endoscope were withdrawn. For each individual
animal, a new sterile cannula was used, the internal channel of
the endoscope, through which the cannula was inserted, was
rinsed with 20mL of PBS, and the outside of the endoscope
was cleaned thoroughly with sterilising tissue wipes (Medichem
International, Sevenoaks, UK).

Individual responses to infection across the time course
and disease pathology for the animals used in this study have
been described in detail previously and include whole-blood
IFN-γ assay, evaluation of peripheral blood mononuclear cell
(PBMC) cytokine responses by intracellular cytokine staining,
gross (visible) pathology and histopathology, and evaluation of
bacterial load in lymph nodes (40, 41).

Peripheral Blood Collection and Total RNA
Extraction
Approximately 3mL of ex vivo peripheral blood was sampled
from all 10 naive control animals at −1 week pre-infection
and then at +1, +2, +6, +10, and +12 weeks post-
infection (Figure 1). All blood samples were obtained during
the morning (between 7:00 and 10:00 A.M.) of each collection
day and directly collected into TempusTM blood RNA tubes
(Applied Biosystems R©/Thermo Fisher Scientific, Warrington,
UK). Immediately after blood collection at each time point,

TempusTM tube samples for each animal were vortexed for∼10 s
to ensure complete red blood cell lysis. TempusTM tube blood
lysate samples for animals at each of the nine time points
were then stored at −80◦C until they were used for total RNA
extraction and purification.

The TempusTM Spin RNA Isolation Kit (Applied
Biosystems R©/Thermo Fisher Scientific) was used for total
RNA extraction and purification using the following protocol
provided by the manufacturer. TempusTM tube blood lysate
samples were thawed at room temperature prior to RNA
extraction and purification. Once thawed, for each sample,
∼3mL of blood lysate was transferred to a 50-mL plastic
centrifuge tube, and PBS was added to a final volume of 12mL.
Each sample was then mixed by vortexing for 30 s and then
centrifuged at 3,000 × g for 30min at 4◦C. The supernatant was
then removed, and the remaining RNA-containing pellet was
resuspended with a brief vortex in 400 µL of the proprietary
RNA Purification Resuspension Solution. Following this, the
resuspended RNA sample was pipetted into the RNA purification
filter inserted into a 1.5-mL microcentrifuge tube for waste
collection. The RNA purification filter/microcentrifuge tube was
then centrifuged at 16,000 × g for 30 s, and the liquid waste
and microcentrifuge tube discarded. The RNA purification
filter was then placed in a clean microcentrifuge tube, 500 µL
of proprietary RNA Purification Wash Solution 1 was added,
followed by another centrifugation step at 16,000× g for 30 s and
disposal of the liquid waste and microcentrifuge tube. This step
was then repeated using 500 µL of proprietary RNA Purification
Wash Solution 2 with a centrifugation step at 16,000 × g for
30 s. A final wash step was then performed with 500 µL of RNA
PurificationWash Solution 2 and centrifugation at 16,000× g for
30 s followed by disposal of the liquid waste and microcentrifuge
tube. The RNA purification filter was then placed in a clean
microcentrifuge tube and centrifuged at 16,000 × g for 30 s
to dry the membrane. The RNA purification filter was then
inserted into a clean RNase-free collection microcentrifuge tube
and 100 µL of Nucleic Acid Purification Elution Solution was
added and incubated for 2min followed by centrifugation at
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16,000 × g for 30 s; the RNA eluate was then pipetted back onto
the filter membrane, and the centrifugation step was repeated.
Approximately 90 µL of the final RNA eluate was then pipetted
(avoiding particulate material) into a new labelled RNase-free
collection microcentrifuge for long-term storage at−80◦C.

RNA Quality Checking and Quantification
RNA quantity and quality checking were performed using a
NanoDropTM 1000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA) and an Agilent 2100 Bioanalyzer using
an RNA 6000 Nano LabChip kit (Agilent Technologies, Cork,
Ireland). The majority of samples displayed a 260/280 ratio >1.8
and RNA integrity numbers >8.0 (Supplementary Table 1 in
Supplementary Material 1). RNA quality and quantity checking
revealed that three samples did not have measurable quantities
of RNA, and these were excluded from downstream RNA-seq
library preparation (15, ID 6520, +2 weeks; 21, ID 6522, +2
weeks; and 27, ID 6526,+ 2 weeks).

Strand-Specific RNA-Seq Library
Preparation and Sequencing
For RNA-seq library preparation, 1 µg of total RNA from each
sample was used to prepare individually barcoded strand-specific
RNA-seq libraries. Two rounds of poly(A)+ RNA purification
were performed for all RNA samples using the Dynabeads R©

mRNA DIRECTTM Micro Kit (Ambion R©/Thermo Fisher
Scientific, Austin, TX, USA) according to the manufacturer’s
instructions. The purified poly(A)+ RNA was then used to
generate strand-specific RNA-seq libraries using the ScriptSeqTM

v2 RNA-Seq Library Preparation Kit, the ScriptSeqTM Index
PCR Primers (sets 1–4), and the FailSafeTM PCR enzyme system
(all sourced from Epicentre R©/Illumina R© Inc., Madison, WI,
USA) according to the manufacturer’s instructions. RNA-seq
libraries were purified using the Agencourt R© AMPure R© XP
system (Beckman Coulter Genomics, Danvers, MA, USA)
according to the manufacturer’s instructions for double size
selection (0.75× followed by 1.0× ratio). RNA-seq libraries were
quantified using a Qubit R© fluorometer and Qubit R© dsDNA
HS Assay Kit (InvitrogenTM/Thermo Fisher Scientific, Carlsbad,
CA, USA), whereas library quality cheques were performed
using an Agilent 2100 Bioanalyzer and High Sensitivity DNA
Kit (Agilent Technologies Ltd.). Individually barcoded RNA-seq
libraries were pooled in equimolar quantities, and the quantity
and quality of the final pooled libraries (three pools in total)
were assessed as described previously. RNA-seq library sample
barcode index sequences are detailed in Supplementary Table 1

(Supplementary Material 1).
Prior to high-throughput sequencing, the content of several

RNA-seq libraries was validated using conventional Sanger
dideoxy sequencing. Library inserts from 16 libraries were cloned
using the Zero Blunt R© TOPO R© PCR Cloning Kit according
to the manufacturer’s instructions (InvitrogenTM/Thermo Fisher
Scientific). Sanger sequencing of 36 plasmid inserts from these
selected libraries confirmed that the RNA-seq libraries contained
inserts derived from bovine mRNA. Plasmid sequencing was
outsourced (Source Bioscience Ltd., Dublin, Ireland), and
sequences generated were validated using BLAST searching

of the DNA sequence database (47). Cluster generation and
high-throughput sequencing of the pooled RNA-seq libraries
were performed using an Illumina R© HiSeqTM 2000 Sequencing
System at theMSU Research Technology Support Facility (RTSF)
Genomics Core (https://rtsf.natsci.msu.edu/genomics; Michigan
State University, MI, USA). Each of the three pooled libraries
was sequenced independently on five lanes split across multiple
Illumina R© flow cells. The pooled libraries were sequenced
as paired-end 2 × 100 nucleotide reads using Illumina R©

version 5.0 sequencing kits. Additionally, after exploratory data
analysis (Supplementary Figures 1, 2), it was decided to remove
animal ID 6522 completely from the analysis and proceed
with 52 RNA-seq sample data sets (Supplementary Table 1 in
Supplementary Material 1). All RNA-seq data generated for this
study have been deposited in the European Nucleotide database
with experiment series accession numbers (PRJEB27764 and
PRJEB44470).

Bioinformatics Analyses of RNA-Seq Data
Except where indicated, bioinformatics procedures and
analyses were performed on a 32-core Compute Server
running Linux Ubuntu (version 12.04.2) hosted at the
UCD Research IT Data Centre (stampede.ucd.ie) and
administered by the UCD Animal Genomics Group.
All of the bioinformatics workflow/pipeline components
including Linux Bash, Perl, and R scripts used were
deposited in a GitHub repository (https://github.com/
kmcloughlin1/RNA-sequencing) and were modified
from published methods described by our group (48).
Supplementary Figure 3 shows a schematic of the complete
RNA-seq bioinformatics workflow and the downstream
tools used for time-series analysis and various systems
biology methods.

Deconvolution (filtering and segregation of sequence reads
based on the unique RNA-seq library barcode index sequences;
Supplementary Table 1 in Supplementary Material 1) was
performed by the MSU RTSF Genomics Core using a pipeline
that simultaneously demultiplexed and converted pooled
sequence reads to discrete FASTQ files for each RNA-seq
sample with no barcode index mismatches permitted. The
RNA-seq FASTQ sequence read data were then downloaded
from the MSU RTSF Genomics Core FTP server, and a
custom Perl script was used to filter out paired-end reads
containing adapter sequence contamination (with up to
three mismatches allowed) and to remove poor quality
paired-end reads (i.e., one or both reads containing 25%
of bases with a Phred quality score <20). The quality of
individual RNA-seq sample library files was then reassessed
postfiltering using the FastQC software package (version
0.10.1) (49).

Paired-end reads, from each filtered individual library, were
aligned to the Bos taurus reference genome (UMD3.1.73)
(50) using the STAR aligner software package (version 2.3.0)
(51). For each library, raw counts for each gene based on
the sense strand data were obtained using the featureCounts
software from the Subread package (version 1.3.5-p4) (52).
The featureCounts parameters were set to unambiguously
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assign uniquely aligned paired-end reads in a stranded manner
to the exons of genes within the UMD3.1.73 B. taurus
reference genome annotation. The gene count outputs were
then used to perform differential gene expression analysis
using the edgeR Bioconductor package (version 3.2.4) (53)
within an R-based pipeline that was customised to perform the
following functions:

1. Use biomaRt (54) to generate a detailed bovine gene
annotation for downstream analyses, then filter out all bovine
rRNA genes.

2. Filter out genes displaying expression levels below a minimal
detection threshold of one count per million in at least
n = 9 individual libraries (where n = smallest group of
biological replicates).

3. Calculate normalisation factors for each library using the
trimmed mean of M values method (55).

4. Identify DE genes between the pre-infection animal group
(−1 week) and each of the post-infection animal groups (+1,
+2,+6,+10, and+12 weeks) using a paired-sample approach
with the edgeR package. Differential expression was evaluated
by fitting a negative binomial generalised linear model for
each gene.

5. Correct for multiple testing using the Benjamini–Hochberg
method (56) with a false discovery rate (FDR) threshold
of ≤0.05.

Systems Analyses of RNA-Seq Gene
Expression Data
The Ingenuity R© Pathway Analysis (IPA) software package (57)
with the Ingenuity R© Knowledge Base (Qiagen Corp., Redwood
City, CA, USA; release date July 2014; www.ingenuity.com) was
used to identify overrepresented (enriched) canonical pathways
and construction of biological interaction networks for sets of
DE genes at each post-infection time point (+1, +2, +6, +10,
and +12 weeks) compared to the pre-infection time point (−1
week). For identification of overrepresented canonical pathways,
a multiple testing correction (Benjamini–Hochberg method) was
applied with an FDR threshold ≤0.05. The IPA Biomarker Filter
tool was also used to identify and prioritise molecular biomarker
candidates such that only experimentally observed and high-
confidence predicted biological relationships were included.
All the IPA data sources were used for three mammalian
species in the IPA Knowledge Base (Homo sapiens, Mus
musculus, Rattus norvegicus). Biological interaction networks
were ranked according to Network Score values generated
algorithmically by IPA and based on the hypergeometric
distribution and calculated with the right-tailed Fisher exact
test (58).

Time-Series Analysis of RNA-Seq Gene
Expression Data
Time-series analysis of gene expression data from the animal
infection time-course experiment was performed using the
Short Time-series Expression Miner (STEM) software package
(59). The computational procedure for selecting model profiles
that are representative and distinct is described by Ernst

et al. (60). The software package implements a method
for clustering short time-series expression data that can
differentiate between real and random patterns of temporal
gene expression changes and assigns each gene to the
model profile that most closely matches the temporal gene
expression profile for that gene as determined by the correlation
coefficient. A permutation test is then used to determine
which model profiles have a statistically significant number
of genes assigned compared to random expectations from
the mean number assigned to each profile based on the
permuted data (59). STEM also incorporates GO enrichment
functionality for biological interpretation of time-series gene
expression data.

RESULTS AND DISCUSSION

RNA-Seq Summary Statistics
Deconvolution and filtering of sequence reads to remove
adaptor-dimer contamination yielded a mean of 20.6 ± 2.0
million reads per individual barcoded RNA-seq sample library
(n = 52 libraries and ± SD); this corresponded to a mean of
82% reads that passed this filtering step. These filtered reads
were then aligned to the B. taurus UMD3.1.73 genome build.
This yielded a mean of 15.4 ± 1.7 million filtered reads (91.5%)
that uniquely mapped to this bovine genome build with a mean
mapped length of 195.6 ± 0.6 bp; a mean of 0.77 ± 0.19 million
reads (4.6%) that mapped to multiple genomic locations and 0.67
± 0.17 million reads (3.9%) that did not map to any genomic
location. Further analysis demonstrated that a mean of 63.1%
of the filtered uniquely mapping reads (9.7 ± 1.1 million reads)
were assigned to Ensembl gene IDs for the UMD3.1.73 genome
build and 36.9% (5.7 ± 0.86 million reads) were ambiguous
or could not be assigned to an annotated genomic region.
Supplementary Table 2 (Supplementary Material 1) and
Supplementary Figure 4 show the RNA-seq summary statistics.
Filtering of the RNA-seq data using 52 samples (60 minus the
three technical dropouts and the animal ID 6522 samples at −1,
+1, +6, +10, and +12 weeks) produced 12,406 genes suitable
for downstream differential expression analysis.

Multidimensional scaling plots (Supplementary Figure 5)
demonstrated that it was not possible to differentiate the infected
animals from non-infected animals during the early stages of
the animal infection time course (+1 week post-infection vs. −1
week pre-infection, and +2 weeks vs. −1 week pre-infection).
Conversely, discrimination of infected and non-infected animals
was partially observed at +6 weeks post-infection and was
clearly evident at +10 weeks post-infection, but this pattern
of discrimination effectively disappeared by +12 weeks post-
infection. Previous work by our group has shown that microarray
and RNA-seq gene expression data sets from peripheral blood
leukocytes (PBLs) can be used to unambiguously discriminate
M. bovis–infected from non-infected control cattle (28, 31).
However, it is important to note that the M. bovis–infected
animals used for these earlier studies were heavily infected
animals, which were maintained for ongoing disease surveillance
and potency testing of diagnostic reagents.
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Differentiation of M. bovis–Infected and
Non-infected Control Groups: Toward the
Development of Transcriptomics-Based
Biomarkers
The concept and the implications regarding biomarker
identification and biosignature development for infectious
disease have been explored thoroughly by Chaussabel et
al. (36, 61, 62). In particular, these researchers emphasise
that leukocytes present in peripheral blood convey valuable
information about the status of the immune system that can
be translated to biomarkers and onward to sensitive and
specific biosignatures of infection. In addition, peripheral
blood is easily accessible and can be stabilised and processed

for high-throughput transcriptomics analyses using RNA-seq
and other massively parallel gene expression technologies
such as microarrays. It is also notable that development of
transcriptional biomarkers in cattle is relatively straightforward
because very low levels of globin gene transcripts (HBA and
HBB) are observed in bovine peripheral blood compared to other
mammalian species (63, 64).

Statistical analysis of the RNA-seq gene expression data
with a B-H FDR adjusted P ≤ 0.05 demonstrated that
differential gene expression was evident between each of
the five post-infection time points (+1, +2, +6, +10, and
+12 weeks) and the −1 week pre-infection time point
(Figure 2A). Relatively small numbers of DE genes were
detected at +1 week (37 exhibited increased and 20 exhibited

FIGURE 2 | Statistically significant differentially expressed genes. Five post-infection time points are shown relative to the −1 week pre-infection time point (B-H FDR

adjusted P ≤ 0.05). (A) Bar graph showing numbers of genes with increased and decreased expression and (B) Venn diagram showing the overlaps of DE genes for

every multiple-time-point comparison.
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decreased expression) and +2 weeks (83 increased and 10
decreased); however, the numbers of DE genes were substantially
greater at +6 weeks (415 increased and 272 decreased), +10
weeks (1,278 increased and 1,305 decreased), and +12 weeks
(222 increased and 116 decreased). Supplementary Tables 3–7

(Supplementary Material 2) provide detailed information on the
differential expression analysis results at each of the five post-
infection time points relative to the −1 week pre-infection time
point for the complete set of 12,406 filtered genes. Figure 2B
also shows a Venn diagram for the significant DE genes at each
of the five post-infection time points (relative to the −1 week
pre-infection control time point). In addition, Table 1 provides
detailed information for 19 genes shown in Figure 3 that were
significantly DE across all the five post-infection time points
compared to the−1 week pre-infection control time point.

As shown in Figure 3, there is a striking concordance between
the patterns of expression for these 19 genes across the infection
time course and earlier PBL microarray and RNA-seq studies
published by our group (28, 31). These results provide good
support for the hypothesis that a biosignature of M. bovis
infection can be generated using transcriptomics data from
cattle with early- and later-stage BTB. It also provides evidence
that putative transcriptional biomarkers, identified using an
experimental challenge with a relatively high M. bovis infectious
dose, can be translated as diagnostic tools for use in naturally
infected animals. Diagnostic biosignature development focusing
on smaller panels of transcriptomics-based biomarkers has been
used with notable success for human TB. In this case, research
work has focused on specificity and differentiating active TB from
latent TB and also TB disease from non-infected controls and
diseases with similar pathology but distinct aetiology such as
sarcoidosis, pneumonia, and lung cancer (35, 39, 65–71).

Previous work on M. tuberculosis and human
immunodeficiency virus infection in humans has shown that
CXCR4 is upregulated in blood monocytes and bronchoalveolar
lavage cells from human patients with pulmonary TB (72–74).
In addition, a loss-of-function mutation in the murine Thbd
gene that impairs activated protein C production results in
uncontrolled lung inflammation in mice infected with M.
tuberculosis, highlighting the importance of the THBD gene
in mammalian TB disease (75). Galietti et al. have also shown
that M. tuberculosis– and M. bovis–infected, but not M. avium–
infected, human monocytes showed increased expression of the
CDKN1A protein encoded by CDKN1A (76). A range of studies
have shown that levels of the protein product of the PLAUR
gene are elevated in serum from human patients infected with
M. tuberculosis (77–81). Increased expression of the OSM gene
and induction of matrix metalloproteinases, which contribute
to tissue damage characteristic of TB, have been demonstrated
in M. tuberculosis–infected human monocytes (82). High
expression of OSM was also observed in the blood transcriptome
of patients presenting with high mycobacterial load sputum (83).
In addition, the OSM gene is located within a candidate QTL
region for TB susceptibility identified using admixture mapping
in humans (84).

Ten of the 19 genes that showed consistently increased
expression across all post-infection time points were observed to

overlap with results from RNA-seq of an in vitro infection time-
course experiment using bovine AMs stimulated with M. bovis
(48). FOSB andNR4A1were upregulated in AMs at 2 hpi;CXCL8,
NR4A1, PLAUR, and RGS16 were upregulated at 6 hpi; EVI2A,
CXCL8, FOSB, HBEGF, OSM, PLAUR, RGS16, and THBD were
upregulated at 24 hpi; the eight genes observed at 24 hpi plus the
CDKN1A gene were also upregulated at 48 hpi.

One of the most notable putative transcriptional biomarkers
represented in the panel of 19 genes and in the independent
PBL studies is CXCL8 (previously known as IL8). CXCL8 is
a chemokine encoded by the CXCL8 gene, which is a strong
neutrophil chemoattractant and also chemotactic for monocytes
and T cells (85, 86); it has been observed to exhibit increased
expression for different mycobacterial infections in a range
of mammalian systems (87–95). CXCL8 enhances killing of
mycobacteria by neutrophils and macrophages (96, 97), and
these immune cells also secrete CXCL8 when stimulated by M.
tuberculosis (98). In this regard, Godaly and Young showed
that M. bovis bacillus Calmette–Guérin (BCG) induces CXCL8
secretion by human neutrophils viaMyD88-dependent signalling
through TLR2 and TLR4 (99). Also, stimulation of human
lung fibroblasts in vitro using conditioned medium from M.
tuberculosis–infected monocytes caused prolonged expression of
CXCL8mRNA and >10-fold increase in CXCL8 secretion (88).

With regard to the CXCL8 mRNA transcript as a biomarker
of infection, Alessandri et al. were able to detect significantly
elevated levels of the CXCL8 cytokine in plasma from patients
with pulmonary TB (87). More recently, based on reversion of
IGRA test results in a Chinese cohort, it has been proposed that
decreased serum levels of CXCL8 are associated with clearance
of M. tuberculosis infection (100). In addition, using microarray
and reverse transcriptase–qualitative polymerase chain reaction
technologies, Widdison et al. have shown that M. tuberculosis–
andM. bovis–infected bovine AMs express high levels of CXCL8
transcripts compared to non-infected control cells (90). In
support of this, using RNA-seq, we have shown that CXCL8
increases in expression in bovine AMs infected with either
M. tuberculosis or M. bovis across a 48-h time course (101).
CXCL8 has also been shown to be significantly increased in
expression after in vitro PPD-b stimulation of PBMCs from
cattle infected withM. bovis (102) and bovine monocyte-derived
macrophages (103). CXCL8 also exhibited increased expression
in PBL (28) but decreased expression in non-stimulated PBMCs
from M. bovis–infected cattle (104). Also, Almeida de Souza et
al. have shown that antimycobacterial treatment reduces high
plasma levels of CXCL8 and other CXC chemokines detected in
plasma from human patients with active TB (91), and Huang
et al. have also demonstrated that AMs and PBMCs from
TB patients express CXCL8 at significantly higher levels than
healthy controls (94). Interestingly, the potential specificity of
increased CXCL8 gene expression as a biomarker for M. bovis
infection in cattle is illustrated by recent results obtained by
Alonso-Hearn et al. (105). Using similar RNA-seq methodology,
they observed significantly decreased expression of CXCL8 in
peripheral blood from cattle infected with M. avium subsp.
paratuberculosis, the causative agent of Johne disease. Finally, it is
important to note that several primary studies and meta-analyses
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TABLE 1 | Nineteen genes that exhibited statistically significant differential expression for each of the five post-infection time points vs. the −1 week pre-infection control time point.

Ensembl ID Gene

symbol

Gene name +1 week post-

infection

+2 weeks post-

infection

+6 weeks post-

infection

+10 weeks post-

infection

+12 weeks post-

infection

Fold-change B-H FDR

P-value

Fold-change B-H FDR

P-value

Fold-change B-H FDR

P-value

Fold-change B-H FDR

P-value

Fold-change B-H FDR

P-value

ENSBTAG00000000306 ITK IL-2–inducible T-cell

kinase

+1.28 0.006848 +1.36 0.000235 +1.23 0.009551 +1.37 0.000001 +1.35 0.000044

ENSBTAG00000000507 NR4A1 Nuclear receptor

subfamily 4, group A,

member 1

+2.51 0.026721 +3.52 0.000214 +4.49 0.000000 +11.04 0.000000 +2.51 0.007555

ENSBTAG00000001060 CXCR4 Chemokine (C-X-C

motif) receptor 4

+1.99 0.004449 +2.05 0.003150 +2.13 0.000126 +3.09 0.000000 +2.30 0.000037

ENSBTAG00000002758 THBD Thrombomodulin +1.89 0.033131 +2.01 0.015038 +2.76 0.000001 +3.10 0.000000 +1.86 0.012975

ENSBTAG00000003553 ZFP36L2 ZFP36 ring finger

protein-like 2

+1.52 0.035631 +1.58 0.020932 +1.69 0.000259 +1.87 0.000001 +1.52 0.011716

ENSBTAG00000003650 NR4A2 Nuclear receptor

subfamily 4, group A,

member 2

+2.49 0.029283 +3.49 0.000308 +4.32 0.000001 +9.96 0.000000 +2.59 0.006347

ENSBTAG00000004305 RGS16 Regulator of G-protein

signalling 16

+2.42 0.037004 +3.09 0.000829 +2.84 0.000682 +4.84 0.000000 +2.27 0.028004

ENSBTAG00000006806 KRT17 Keratin 17 +5.57 0.003229 +7.94 0.000098 +10.26 0.000001 +14.58 0.000000 +4.16 0.010868

ENSBTAG00000008182 FOSB FBJ murine

osteosarcoma viral

oncogene homologue

B

+2.50 0.004449 +4.02 0.000001 +5.05 0.000000 +6.27 0.000000 +2.93 0.000079

ENSBTAG00000008353 CDKN1A Cyclin-dependent

kinase inhibitor 1A

(p21, Cip1)

+1.71 0.049537 +2.24 0.000142 +2.59 0.000000 +3.73 0.000000 +2.03 0.000391

ENSBTAG00000009354 EVI2A Ecotropic viral

integration site 2A

+1.34 0.002116 +1.26 0.047028 +1.43 0.000003 +1.57 0.000000 +1.37 0.000092

ENSBTAG00000013125 PLAUR Plasminogen activator,

urokinase receptor

+3.52 0.001379 +5.30 0.000001 +5.96 0.000000 +13.03 0.000000 +3.81 0.000049

ENSBTAG00000016163 OSM Oncostatin M +2.44 0.029283 +4.03 0.000023 +3.83 0.000003 +6.79 0.000000 +2.61 0.004204

ENSBTAG00000019716 CXCL8 Chemokine (C-X-C

motif) ligand 8

+3.09 0.001379 +6.56 0.000000 +5.93 0.000000 +14.19 0.000000 +4.87 0.000000

ENSBTAG00000021766 HBEGF Heparin-binding

EGF-like growth factor

+3.94 0.001379 +4.18 0.000308 +5.45 0.000001 +9.77 0.000000 +3.00 0.007067

ENSBTAG00000031707 FRMD6 FERM domain

containing 6

+1.29 0.013896 +1.28 0.022194 +1.36 0.000059 +1.41 0.000001 +1.44 0.000001

ENSBTAG00000035224 — Uncharacterized

protein

+6.24 0.002116 +5.88 0.001857 +7.06 0.000071 +22.21 0.000000 +6.64 0.000304

ENSBTAG00000037608 — Uncharacterized

protein

+2.94 0.030981 +3.43 0.005467 +4.08 0.000066 +9.59 0.000000 +3.07 0.006033

ENSBTAG00000039037 SERPINB4 Serpin peptidase

inhibitor, clade B

+3.50 0.017337 +4.90 0.000308 +5.58 0.000006 +12.68 0.000000 +4.24 0.000868

Linear mean fold-change values are shown for each gene at each post-infection time point vs. the −1 week pre-infection control time point.
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FIGURE 3 | Heat map showing linear fold-change values for the panel of 19 consistently DE genes across the M. bovis infection course. Linear fold-change values for

the post-infection time points are shown relative to the −1 week pre-infection time point. Also shown are the equivalent results obtained using RNA-seq and

Affymetrix® GeneChip® Bovine Genome Array technologies by McLoughlin et al. (31).

have provided evidence that a single-nucleotide polymorphism
(rs4073) at the human CXCL8 gene locus is associated with
resistance/susceptibility toM. tuberculosis infection (106–109).

Functional Biology of Peripheral Blood
Gene Expression Across the Infection Time
Course
Of the 12,406 genes (50.40% of total B. taurus reference genes)
that were suitable for differential expression analysis, 10,703
genes (86.27%) were mapped to molecules in the IPA Knowledge
Base. IPA was used to identify overrepresented canonical
pathways and construct biological interaction networks for sets
of DE genes at each post-infection time point (+1, +2, +6,
+10, and +12 weeks) compared to the pre-infection control
time point (−1 week). Only DE genes that were significant after
a multiple testing correction was applied (Benjamini–Hochberg
method, FDR threshold ≤0.05) were used. The gene expression
data for the panel of 19 genes (Table 1) were also analysed using
IPA and to identify enriched canonical pathways and biological
interaction networks. However, these analyses did not reveal
any notable functionally relevant pathways or networks (results
not shown).

+1 Week Post-infection Time Point

Forty-eight of the 57 DE genes detected between sample
groups at +1 week post-infection and −1 week pre-infection

were mapped to the IPA Knowledge Base (84.21%); however,
no statistically significant canonical pathways were detected
for this gene expression contrast. Four biological interaction
networks were generated from this 57-DE-gene set using
the IPA Knowledge Base. Supplementary Figure 6 shows the
highest-ranked network, which is associated with embryonic
development, organismal development, and reproductive system
development and function, and has the ubiquitin C protein
encoded by the UBC gene as a central hub.

+2 Weeks Post-infection Time Point

Eighty-one of the 93 DE genes detected between sample
groups at +2 weeks post-infection and −1 week pre-
infection were mapped to the IPA Knowledge Base (87.10%).
Supplementary Table 8 (Supplementary Material 3) details the
overrepresented IPA canonical pathways for this DE gene set.
The top-ranked canonical pathway at +2 weeks post-infection
was the Glucocorticoid Receptor Signalling pathway with eight
genes displaying increased expression (CDKN1A, CXCL8,
DUSP1, FOS, IL10, PLAUR, PTGS2, and SGK1) out of a total
of 275 members of this pathway (P = 1.05 × 10−5). The main
effects of glucocorticoid steroid hormones signalling through
the cytosolic nuclear receptor subfamily 3, group C, member
1 (glucocorticoid receptor) (NR3C1) protein on the immune
system are to upregulate expression of anti-inflammatory
genes and downregulate expression of proinflammatory genes
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(110, 111). Therefore, glucocorticoid receptor signalling activity
evident in the peripheral blood transcriptome during the
early stages of M. bovis infection may reflect perturbation of
homeostasis (112) and possible modulation of host cellular
mechanisms at the site of infection in the lungs.

Nine biological interaction networks were generated from this
81-DE-gene set using the IPA Knowledge Base. Figure 4 shows
the highest-ranked network, which was centred on increased
expression of the IL10, CXCL2, CXCR4, and CXCR2 genes with
Cellular Movement, Haematological System Development and
Function, and Immune Cell Trafficking as the top IPA disease
and function categories. In this regard, IL-10, an inhibitory
and anti-inflammatory pleiotropic cytokine with a major role
in suppression of macrophage and dendritic cell functions, has
been hypothesised as a target for modulation and manipulation
by mycobacterial pathogens (113, 114). Also, IL-10 is linked
to chronic mycobacterial infection in the mouse model (115–
117). It has been shown that mycobacterial RNA induces
IL-10 production in infected cells through TLR3-mediated
activation of the PI3K/AKT signalling pathway (118) and that
M. tuberculosis infection of THP-1 cells induces IL10 expression
through perturbation of the histone deacetylases HDAC6 and
HDAC11 (119). In addition, it has been observed that increased
levels of IL-10 cytokine in TB patients lead to impaired T-cell
function, thereby contributing to an inefficient host immune
response (120).

+6 Weeks Post-infection Time Point

Six hundred twenty-six of the 687 DE genes detected between
sample groups at +6 weeks post-infection and −1 week
pre-infection were mapped to the IPA Knowledge Base
(91.12%). Supplementary Table 9 (Supplementary Material 3)
details the overrepresented IPA canonical pathways for this
DE gene set. Twenty-five biological interaction networks were
generated from this 626-DE-gene set using the IPA Knowledge
Base, and Supplementary Figure 7 shows the highest-ranked
network, which contains mostly down-regulated focus molecules
associated with DNA replication, recombination and repair, and
control of gene expression and the cell cycle.

+10 Weeks Post-infection Time Point

For the +10 weeks post-infection vs. −1 week pre-infection
contrast, 2,247 of the 2,583 DE genes were mapped to
the IPA Knowledge Base (86.99%). Supplementary Table 10

(Supplementary Material 3) details the overrepresented IPA
canonical pathways for this DE gene set. The top-ranked
canonical pathway was the Protein Ubiquitination Pathway,
with 40 of 64 entities present in the pathway containing
255 members (P = 1.36 × 10−11) exhibiting decreased
expression relative to the −1 week pre-infection group. In this
regard, it is noteworthy that M. tuberculosis has recently been
demonstrated to suppress innate immunity by exploiting the host
ubiquitination system (121–124).

Twenty-five biological interaction networks were generated
from this 2,247-DE-gene set using the IPA Knowledge Base.
Figure 5 shows the highest-ranked network, which was centred
on the amyloid β (A4) precursor protein encoded by the APP

gene (previously known as ABPP) as a central hub, and the top
IPA disease and function categories represented were Antigen
Presentation, Carbohydrate Metabolism, and Cardiovascular
Disease. Currently, there are few published research works
demonstrating differential expression of the APP gene during TB
in vertebrates (125, 126); however, the presence of this network
at +10 weeks post-infection suggests that the represented genes
and gene products may have roles in BTB development and host–
pathogen interactions. In addition, using RNA-seq, the APP gene
was also significantly increased in expression in PBL from M.
bovis–infected cattle compared to non-infected controls (31).

+12 Weeks Post-infection Time Point

There was a marked decrease in the number of DE genes at +12
weeks compared to +10 weeks post-infection, which may reflect
control of the infection by the immune system at this stage of
the time course. Two hundred ninety-three of the 338 DE genes
detected between sample groups at+12 weeks post-infection and
−1 week pre-infection were mapped to the IPA Knowledge Base
(86.69%). Supplementary Table 11 (Supplementary Material 3)
details the overrepresented IPA canonical pathways for this DE
gene set. The top-ranked canonical pathway was T Cell Receptor
Signalling with 12 molecules detected from a total of 97 pathway
members (P = 8.96 × 10−9). These 12 genes (CAMK4, CD247,
CD3D, CD3E, CD3G, CD8A, CD8B, FOS, ITK, LCK, PRKCQ, and
ZAP70) all displayed increased expression relative to −1 week
pre-infection, pointing towards the presence of mycobacterial
antigen presentation and T-cell activation via T-cell receptor
(TCR) signal transduction (12, 127, 128).

Nineteen biological interaction networks were generated
from this 293-DE-gene set using the IPA Knowledge Base,
and Figure 6 shows the highest-ranked network, which was
centred on increased expression of the CXCR4, PTGS2, and
KLF4 proteins, and the top IPA disease and function categories
represented were Cellular Development, Haematological System
Development and Function, and Cell-mediated Immune Response.
As described above, the CXCR4 gene is known to be upregulated
in blood monocytes and bronchoalveolar lavage cells from
human patients with pulmonary TB (74). In addition, the PTGS2
gene (previously known as COX-2) encodes prostaglandin-
endoperoxide synthase 2, a key enzyme in prostaglandin
biosynthesis, which is known to be triggered in macrophages—
via a TLR2-dependent mechanism—by ESAT-6 proteins secreted
by virulent M. tuberculosis and M. bovis (129). In this regard, it
has been hypothesised that induction of PTGS2 may facilitate
intracellular mycobacterial survival through inhibition of p53-
dependent apoptosis (130). Conversely, it has also been shown
that PTGS2 enhances bactericidal activity in M. tuberculosis–
infected macrophages through promotion of autophagy (131).

TheKLF4 gene encodes a zinc finger–containing transcription
factor that regulates macrophage polarisation, displaying
increased expression in M2 macrophages and strongly decreased
expression in M1 macrophages (132). Integrative network
analyses of transcriptome, protein–protein interaction, and
transcription factor–binding site data have shown that KLF4 is
an important regulator of lung cell gene expression during the
early events of M. tuberculosis infection in mice (133). It has
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FIGURE 4 | The top-ranked biological interaction network generated using IPA for +2 weeks post-infection. Differential gene expression is represented with a

red–green colour scale. This network consisted of 13 focus molecules (IPA Network Score = 24), and the top IPA Disease and Function categories represented were

Cellular Movement, Haematological System Development and Function, and Immune Cell Trafficking. A detailed legend for IPA biological interaction networks

including a key for node shapes and edge classifications is available at the following link: https://qiagen.secure.force.com/KnowledgeBase/articles/Basic_Technical_

Q_A/Legend.

also been shown that nitric oxide (NO) and KLF4 epigenetically
modify class II transactivator protein causing repression of
major histocompatibility complex (MHC) class II expression
during M. bovis BCG infection of murine macrophages
(134). Furthermore, downregulation of microRNA-26a during
M. tuberculosis infection of murine macrophages upregulates

KLF4, in turn promoting increased arginase and decreased
activity of inducible NO synthase, as well as preventing
trafficking of M. tuberculosis to lysosomes (135). Taken
together, these results support the hypothesis that increased
expression of KLF4 facilitates mycobacterial evasion of host
immune surveillance.
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FIGURE 5 | The top-ranked biological interaction network generated using IPA for +10 weeks post-infection. Differential gene expression is represented with a

red–green colour scale. This network consisted of 35 focus molecules (IPA Network Score = 39), and the top IPA Disease and Function categories represented were

Antigen Presentation, Carbohydrate Metabolism, and Cardiovascular Disease. A detailed legend for IPA biological interaction networks including a key for node

shapes and edge classifications is available at the following link: https://qiagen.secure.force.com/KnowledgeBase/articles/Basic_Technical_Q_A/Legend.

Time-Series Analysis
The STEM tool was designed specifically for analyses of short
time-series data sets (3–8 time points) (59, 60) similar to the
RNA-gene expression data set obtained from theM. bovis animal
infection time-course experiment described here. Time-series
analysis can be a powerful technique for uncovering networks of
coregulated genes in longitudinal time-course experiments (136–
138), particularly for gene expression data associated with host
immunobiological responses to infection (139–142).

For the present study, STEM time-series analyses of
differential gene expression across the M. bovis infection time
course demonstrated that large groups of genes exhibited
comparable patterns of gene expression across the five post-
infection time points (+1, +2, +6, +10, and +12 weeks post-
infection) relative to the −1 week pre-infection time point. Two
different STEM analyses were performed based on (a) expression
data for all detectable expressed genes across the infection time
course, which corresponded to 4,103 genes (STEM analysis 1)
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FIGURE 6 | The top-ranked biological interaction network generated using IPA for +12 weeks post-infection. Differential gene expression is represented with a

red–green colour scale. This network consisted of 21 focus molecules (IPA Network Score = 33), and the top IPA Disease and Function categories represented were

Cellular Development, Haematological System Development and Function, and Cell-mediated Immune Response. A detailed legend for IPA biological interaction

networks including a key for node shapes and edge classifications is available at the following link: https://qiagen.secure.force.com/KnowledgeBase/articles/Basic_

Technical_Q_A/Legend.

and (b) the union set of DE genes from all post-infection time
points vs. −1 week pre-infection, which corresponded to 2,935
genes (STEM analysis 2). Supplementary Figure 8 shows the top
50 time-series model profiles obtained for STEM analysis 1 and
STEM analysis 2.

The top-ranked time-series profiles (by P-value) obtained
using the two different STEM analyses were very similar.
For example, as shown in Supplementary Table 12

(Supplementary Material 4), the first-ranked STEM model
profile for STEM analysis 1 (profile 40; Figure 7) was enriched

for the signal transduction, single organism signalling, cell
communication, regulation of multicellular organismal process,
and cellular response to stimulus GO terms. This profile was also
similar to the second-ranked model profile for STEM analysis 2
(profile 40; Supplementary Figure 9), which was enriched for
many of the same GO terms (signal transduction, single organism
signalling, cell communication; see Supplementary Table 13,
Supplementary Material 4). The third-ranked model profile
for STEM analysis 1 (profile 23; Supplementary Figure 9) was
highly similar to the first-ranked model profile for STEM analysis
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FIGURE 7 | Top-ranked STEM time series profiles. (A) The first-ranked model

profile (profile 40) for STEM analysis 1 (4,103 filtered genes) (303 genes

assigned; 80.7 genes expected; FDR-adjusted P = 3.2 × 10−99) and (B) the

first-ranked model profile (profile 23) for STEM analysis 2 (2,935 filtered genes)

(516 genes assigned; 108.9 genes expected; FDR-adjusted P = 1.6 ×

10−187). The coloured lines in each model profile represent individual genes.

2 (profile 23; Figure 7) with exactly the same overrepresented
GO terms (mitochondrial inner membrane, organelle inner
membrane, mitochondrial part, mitochondrial membrane,
mitochondrial envelope; Supplementary Tables 14, 15,
Supplementary Material 4).

It is interesting to note that STEM profile 40 in each
analysis is characterised by a cluster of ∼300 genes associated

with cell signalling and cellular response to stimuli, which
exhibited increasing expression across the four time points
with a peak at +10 weeks, followed by a substantial decrease
at +12 weeks (Figure 7). Conversely, STEM profile 23 (516
genes for STEM analysis 2) is characterised by genes associated
with mitochondrial components, particularly the mitochondrial
membrane, which displayed an oscillating pattern of expression
with a marked decrease at+1 week 10 post-infection (Figure 7).

These time-dependent patterns of gene expression in
peripheral blood may reflect pathogenesis of early BTB disease
during the infection time course with concomitant host cellular
responses to M. bovis infection, disruption of homeostasis, and
changing cellular, tissue, and organismal energy requirements
(143–145). In addition, it is important to note that although
these longitudinal patterns of gene expression may be due to
coregulation of genes in the same cluster, they are likely to
also reflect fluctuations in peripheral blood cell type populations
comparable to those previously observed for comparisons of M.
bovis–infected and control non-infected cattle (28, 104).

CONCLUSIONS

The results presented here provide good support for the
hypothesis that the peripheral blood transcriptome constitutes a
source of gene expression biomarkers for BTB caused byM. bovis
infection in cattle. This is particularly apparent for the panel of 19
genes exhibiting consistently, statistically significantly increased
expression across the infection time course, the majority of
which (16 genes) were also significantly increased in PBL
harvested from an independent cohort of field-infected cattle.
However, the sensitivity and specificity of putative transcriptional
biosignatures of M. bovis infection will need to be verified and
validated using larger panels of cattle naturally infected with M.
bovis and also populations of animals infected with a range of
viral and bacterial pathogens.
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