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Postoperative ileus (POI), a decrease in gastrointestinal motility after surgery, is an

important problem facing human and veterinary patients. 37.5% of horses that develop

POI following small intestinal (SI) resection will not survive to discharge. The two major

components of POI pathophysiology are a neurogenic phase which is then propagated

by an inflammatory phase. Perioperative care has been implicated, namely the use of

opioid therapy, inappropriate fluid therapy and electrolyte imbalances. Current therapy

for POI variably includes an early return to feeding to induce physiological motility,

reducing the inflammatory response with agents such as non-steroidal anti-inflammatory

drugs (NSAIDs), and use of prokinetic therapy such as lidocaine. However, optimal

management of POI remains controversial. Further understanding of the roles of the

gastrointestinal microbiota, intestinal barrier function, the post-surgical inflammatory

response, as well as enteric glial cells, a component of the enteric nervous system,

in modulating postoperative gastrointestinal motility and the pathogenesis of POI may

provide future targets for prevention and/or therapy of POI.
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INTRODUCTION

Postoperative ileus (POI), “a delay in the return of normal gastrointestinal motility following
surgery” is a disease syndrome that has become increasingly important to manage in both
veterinary and human health (1, 2). POI is a complex syndrome that first requires healthcare
professionals to agree on correct terminology and definition in order to properly recognize and
treat it. Among human healthcare professionals, the American Society for Enhanced Recovery After
Surgery (ERAS) has defined a scoring system for what they termed “postoperative gastrointestinal
dysfunction” (POGD) (3, 4). The system describes varying degrees of POI with a 0–2 normal
score as nausea and vomiting within the first 24–48 h and progresses all the way to scores
over 6 that qualify as POGD with painful abdominal distension with tympany, unrelenting
nausea when treated with antiemetics, no bowel movements, and large volumes of bilious emesis
(3, 4). In the equine field, efforts have been made to define POI as exhibiting over 4 L of
gastric reflux with a pH >4.0 upon nasogastric intubation or 2 L/h with repeated intubation,
persistent heart rate over 40 beats/min, abdominal discomfort, and evidence of distended SI on
ultrasound or rectal palpation (2, 5). Due to variations in past terminology, the ranges of reported
incidence rates are wide. Incidence is thought to be between 2 and 60% in human patients, and
equine incidence following abdominal surgery is thought to be between 0 and 62% (2, 6–8).
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Even with a wide range of reported incidence, POI is estimated
to cost the US healthcare 1.5 billion dollars each year, and
it is well established that increased time within a hospital
increases complications (8–13). POI is a critical postoperative
complication in the equine field. Horses that develop POI
following SI resection are 29.7 times less likely to survive to
discharge than similar patients without POI (14). A unique
aspect of equine veterinary medicine is that acute abdominal
pain, or more commonly referred to as colic, is the most
common medical emergency (15). Up to 17.5% of colicking
horses require exploratory laparotomy (16–23). With this
high incidence of equine patients undergoing gastrointestinal
surgery and the significant impact of POI on patient survival
rate, it is clear that the equine veterinary field provides a
significant opportunity for the study of POI pathophysiology
and therapy that will aid human health. In order to properly
treat and prevent POI, an attempt must be made to understand
its multifactorial pathophysiology. Combining the current
knowledge that POI is incited by a rapid neurogenic response
and then propagated through an inflammatory response with a
better understanding of how breakdown of the intestinal mucosal
barrier resulting in translocation of luminal contents contributes
to the inflammatory response, and an increasing interest of the
role of the microbiota and enteric glia in physiologic function
of the gastrointestinal tract, we may hope to develop more
successful interventions for our patients.

RISK FACTORS

While POI is a multifactorial disease process, medical
professionals have been able to observe a variety of risk
factors in both human and equine patients. Both species share
a correlation between increased age and increased risk of
POI as well as hypovolemia (2, 9–13, 24). In human patients,
hypovolemia is noted specifically as blood loss in surgery, while
in equine patients it is described as status at admission with
tachycardia, increased packed cell volume, and increased serum
total protein (2, 9–13, 24). Human risk factors for POI also
include male gender, history of airway disease, and perioperative
opiate use. Equine patients with SI surgical lesions are known to
have an increased risk of POI, while human patients undergoing
an ileostomy procedure are also at increased risk (2, 9–13, 24).

NEUROGENIC PATHOPHYSIOLOGY

The development of POI is first incited by a neurogenic
response to surgery. Figure 1 demonstrates an outline of how
the progression of a surgical procedure leads to dysmotility
(24). There is an overall shift in the relative activity of
the two major branches of the autonomic nervous system,
from normal parasympathetic tone that serves to regulate
physiological motility patterns, to an abnormal level of
sympathetic tone that tends to reduce motility, potentially
leading to functional obstruction (24). Although it would be
intuitive to conclude that POI is initiated at the intestinal
level, in actuality, POI pathophysiology is initiated with an

abdominal incision causing a glutamate release and an adrenergic
inhibition of motility (25–28). A study in which a non-
selective adrenoceptor antagonist, guanethidine, or an alpha two
adrenoceptor antagonist, yohimbine, improved colon motility
postoperatively in rats supports this notion (29). The trauma
of intestinal manipulation is sensed by the vagus afferent
nerves which signal to the hypothalamus (2). The hypothalamus
activates a shift toward sympathetic neuronal control, and
motility is further inhibited (2). There is also thought to
be activation of splanchnic afferent neurons that leads to a
non-adrenergic and non-cholinergic stimulation of the vagus
nerve and reduction of gastrointestinal motility by vasoactive
intestinal peptide and nitric oxide (25, 30). This pathway was
demonstrated by adrenergic blockade only partially preventing
decreased intestinal motility in rats. The addition of nitrergic
blockade to adrenergic blockade successfully prevented POI
in this model (25, 31). The impact of vagal and splanchnic
activation on reduced gastrointestinal motility from abdominal
surgery has also been demonstrated by an observed improvement
to motility by cutting both of the nerves in dogs (32).
Similarly, gastrointestinal motility following surgery has also
been improved in human patients by high epidural local
anesthesia (33–36). Most of the neuronal effect is thought to be
abated after surgery is completed, however, it is important to
consider the effects of a resection and anastomosis procedure
on coordination of peristaltic waves (Figure 1) (37, 38). A study
performed in mice receiving a SI resection demonstrated an
impact on the interstitial cells of Cajal, and ultimately, slow
waves and contractions (23). Similar effects have been observed
in human distal colon resections (39, 40).

INFLAMMATORY PATHOPHYSIOLOGY

The decreased motility induced by the initial neurogenic
response is further compounded through an inflammatory
response in the intestinal muscularis (Figure 1). The peritoneal
incision and intestinal manipulation induce the release of
proinflammatory molecules in a complex process that requires
further definition (41, 42). It has been theorized that tissue
handling increases epithelial permeability, which allows
pathogen-associated molecular patterns (PAMPs) to travel into
the tissue from the intestinal lumen (43). This underexplored
mechanism may provide a method of POI prevention to be
shown in further detail later. Further, it is hypothesized that
the resident muscularis macrophages are stimulated and release
prostaglandins and nitric oxide (44, 45). It is important to note
that while murine macrophages have demonstrated release of
nitric oxide in vitro, this has yet to be show in human and equine
macrophages (46, 47). Monocytes, mast cells, and neutrophils
enter the muscularis and the leukocytes release inflammatory
molecules including inflammatory cytokines, reactive oxygen
intermediates, and protease (44, 48–52). Leukocytic chemotaxis
has been noted at 3 h postoperatively and is thought to peak
at 24 h postoperatively (2). Infiltration of the intestine by
inflammatory cells is thought to impair motility by inducing
intestinal wall edema via increased capillary permeability and the
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FIGURE 1 | Pathways involved in the development of POI. The surgical incision and manipulation of tissue incite a neurogenic and inflammatory response. The

combination of shift in autonomic balance and inflammatory products impair gastrointestinal motility by edema formation and decreased contractility. The impaired

gastrointestinal motility is further propagated through the anastomosis site serving as an electromechanical barrier. Postoperatively, improper fluid therapy, opioid use,

and potential changes to gastrointestinal peptides, further suppress motility.

relaxing effect of nitric oxide and prostaglandin E2 on smooth
muscle (53–56). Both the innate and the adaptive immune
system are thought to be involved in this inflammatory response.
A study by Engel et al. (57) utilizing mice provided a major shift
in our understanding of POI by suggesting that the spread of
dysmotility throughout the gastrointestinal tract was through the
involvement of memory Th1 cells and their activation by local
dendritic cells. The impact of inflammation on development
of POI has been demonstrated by the administration of anti-
inflammatory IL-10 improving motility postoperatively in mice
(2, 58). Murine studies have also demonstrated the prevention
of POI through inhibiting mast cell and leukocyte chemotaxis
(49–52). Interestingly, the prevention of monocyte chemotaxis
was not successful in preventing POI and resulted in more
neutrophil infiltration into the muscularis externa (59). Other
experimental models in mice have shown the improvement of
POI in response to mast cell stabilization, macrophage depletion
via chlodronate liposomes, or electric vagal stimulation to impair

macrophage activation (50, 52, 60, 61). Mast cell stabilization was
not successful in improving POI in humans, but laparoscopic
surgery has been shown to decrease their activation (51, 62).
Additional factors such as the need to exteriorize the intestine,
decompress its contents, or perform a resection and anastomosis
will increase the inflammation within the intestinal muscularis
(63, 64).

An interesting aspect of POI is that while only certain
sections of the gastrointestinal tract may be handled during
surgery, ileus is commonly panenteric. As previously mentioned
in the inflammatory response, activation of memory Th1 cells
by IL-12 from dendritic cells at the location of manipulation
could contribute to the panenteric decrease in motility by their
traveling through the bloodstream (57). It has been speculated
that the movement of commensal endotoxins, and PAMPs
into the intestinal muscularis due to increased permeability
from tissue handling can cause systemic inflammation leading
to reduced motility (65). Panenteric decreased motility has
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also been thought to be attributed to mast cell mediators
spread throughout the peritoneum (49, 54, 66). Opioids
and electrolyte imbalances would additionally have systemic
effects (24).

The pivotal study by Engel et al. (57) hypothesized that
intestinal manipulation leads to dendritic cells releasing IL-
12 which brings memory Th1 cells to the gastrointestinal
tract where they simulate resident macrophages with interferon
γ, and the macrophages release nitric oxide. They were
able to support the role of dendritic cells and Th1 cells
by first showing in a co-culture in vitro model that Th1
cells would release interferon γ and second by conditional
knockout of CD11C [+] dendritic cells in mice. They
observed that the conditional knockout mice did not develop
POI after intestinal manipulation. They also demonstrated
that interferon γ knockout mice had improved motility
when compared to control, and IL-12 p35 knockout mice
had normal motility. These results illustrate the need for
further study of the role of intestinal manipulation in
POI pathophysiology.

ADDITIONAL PATHOPHYSIOLOGY
COMPONENTS

Neuropeptides, electrolytes, fluid therapy, and opioid use are
also thought to contribute to POI development. As previously
discussed, the inhibitory neuropeptide vasoactive intestinal
peptide is thought to be involved in the non-adrenergic
and non-cholinergic stimulation of the vagus nerve (25, 30).
Surgery and postoperative fasting impact the levels of vasoactive
intestinal peptide, and other stimulatory neuropeptides such as
motilin and substance P (24). However, an understanding of
neuropeptide levels in patients is required before potential new
therapeutic targets may be developed (24). Electrolyte imbalances
including hypokalemia, hypocalcemia, and hyponatremia have
been observed to be significantly associated with POI and should
be corrected in affected patients (9, 24). Anesthetic drugs are
known to inhibit gastrointestinal motility, however, their use
is unavoidable in many procedures. Opioids functioning at the
u-opioid receptor inhibit gut motility through inhibition of
acetylcholine release which in turn increases smooth muscle
tone (2, 67). Its involvement in human POI is supported
by the ability of alvimopan, a µ-opioid receptor antagonist,
to increase postoperative recovery (68). This knowledge of
opioid involvement appears to go underappreciated in the
equine field, where a survey found that “87% of those
reporting a POI incidence greater than the median incidence,
declared the use of opioids in their treatment regiments” (2,
69, 70). Inappropriate fluid therapy may contribute to POI
as a result of intestinal wall edema mentioned previously
with inflammation, or electrolyte imbalance (24). Studies in
human patients have demonstrated an association between
ileus and crystalloid overload and report that for each
additional liter of fluid received perioperatively, the overall
risk of postoperative complications increases by 32% (71,
72).

CURRENT THERAPIES

The current therapies for postoperative ileus are broad to address
the multifactorial pathology, but unfortunately, are still largely
ineffective. For example, NSAID therapy has been utilized to
target the role of the inflammatory response in POI development.
NSAID therapy has been shown to decrease time to first flatus
and stool in human patients undergoing colorectal surgery (73).
However, it is imperative to note that the negative impact of
nonselective COX inhibition on intestinal healing continues to
make it a controversial postoperative therapy (73). In addition, in
a study performed on the effects of nonselective COX inhibition
and COX-2 selective inhibition on horses that underwent
surgery for strangulating SI lesions, 38 and 23% of each group,
respectively, still developed POI (74). Prokinetic drugs such as
erythromycin, lidocaine, metoclopramide, or neostigmine would
seem to be the logical choice in a disease process involving
decreased motility, but these drugs have had controversial dosage
and efficacy (69, 70, 75). The most common choice of prokinetic
is lidocaine (75). A study by Salem et al. (76) evaluated the
efficacy of perioperative lidocaine on 318 horses undergoing
surgery for SI lesions. Perioperative lidocaine did not have
a significant impact on volume or duration of gastric reflux
in these horses, an integral part of the clinical definition of
equine POI. The lack of universally effective pharmaceutical
treatment necessitates additional case management strategies
in equine patients including early feeding, supportive fluid
therapy, exercise, and avoidance of formation of infection,
inflammation, endotoxemia, or adhesions (69). Early feeding
encourages gastrointestinal motility and sham feeding in the
form of gum chewing, and placing hay within sight but out of
reach has been used in human and equine patients, respectively
(77, 78). As previouslymentioned,mast cell stabilizers in addition
to IL-1R, p38 mitogen-activated protein kinase and ICAM-1
blockers, may be potential methods to reduce the inflammatory
response (52, 60, 61, 79–81). The Engel et al. (57) group that
studied the involvement of memory Th1 cells suggested that
future therapies may include IL-12 blockade, or other methods of
preventing Th1 cell migration. Vagal nerve stimulation may also
be utilized to reduce the inflammatory response and macrophage
stimulation, and a laparoscopic method has been developed in
pigs (82–84).

EMERGING AREAS OF INTEREST IN ILEUS
RESEARCH

The gut microbiota has been demonstrated to change following
surgical procedures, providing justification for study into its
role in POI and as a novel potential target for more effective
therapy (85, 86). Bifidobacterium and Lactobacillus probiotic
genera have been suggested to provide an anti-inflammatory
role, and potential for improving the intestinal barrier function
(87–89). A 2020 study was performed in guinea pigs using
Enterococcus faecaelis, Bacillus mesentericus, and Clostridium
butyricum as a probiotic once daily for a week prior to initiation
of POI (90). POI was initiated in guinea pigs by laparotomy
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with cecal manipulation. Overall, the probiotic group had
significantly better motility compared to the control group,
which was demonstrated by a significantly higher number and
weight of feces following the procedure. Both Bifidobacterium
and Lactobacillus genera were decreased after the procedure,
which the authors felt as indicative of their potential role in
POI. The fecal butyrate levels were also measured, as butyrate
is involved in colonic transit, contractile responses, and toll
like receptor stimulation (91). The fecal butyrate levels were
decreased in all groups following the procedure, but the probiotic
group had significantly higher levels of butyrate at 5 days post
procedure. Further studies in additional animal models would be
interesting to assess the potential of preoperative probiotic use
in prevention of POI. While many surgeries are emergent, and
do not provide a week prior for probiotic administration, recent
studies in human patients undergoing gastrointestinal surgeries
have shown promise that probiotic therapy initiated at surgery or
up to 3 days after surgery are capable of significantly decreasing
POI development (92, 93).

Within the enteric nervous system, the enteric glial cells
play an increasingly appreciated direct role in regulating
the intestinal barrier, and rapid induction of altered barrier
function by activated glia could prove to be an important
but poorly understood early contributor to POI induction. As
previously discussed, it is hypothesized that tissue handling
increases epithelial permeability, which allows the translocation
of luminal contents, inciting and propriating an inflammatory
response (43). Anup et al. (94) demonstrated in a rat model
that surgical tissue handling of the SI rapidly increased
conductance. Increased conductance was first noted at 30min
post manipulation, and this alteration to barrier function may
be proven to occur in even shorter period of time. The inciting
cause of this increased barrier function has yet to be determined.
A 2020 study by Schneider et al. (95) suggested that purines

like adenosine triphosphate released from tissue affected by
surgical stress could activate enteric glia, which then play an
important role in the inflammatory pathophysiology of POI. Glia
are also reactive to mechanical stimulation, and therefore may
be activated solely by tissue handling (96). Additional pathways
inducing reactive glia include IL-1, S100β, glia endothelin-1, glia
endothelin-B, and palmitoylethanolamide receptor (3, 97). Mice
treated with anakinra, an IL-1 receptor antagonist, or antibodies
against IL-1α or IL-1β had decreased POI development following
intestinal manipulation (97). Activated glia produce IL-6, which
is known to upregulate claudin 2, a potential method of
increasing barrier permeability (97, 98). In addition, activated
glia produce inflammatory products such as nitric oxide as well
as pathologic levels of s-nitroglutathione, which have been shown
to increase barrier permeability (96, 99, 100). If a specific pathway
is identified, the prevention of glial activation may be effective
in blocking the alteration in barrier function and significantly
reduce the inflammatory component of POI development.

DISCUSSION

In conclusion, POI is a multifactorial problem with a serious
impact on human and equine health. Additional study of its
neurogenic and inflammatory components will be critical in
further development of successful methods of treatment and
prevention. A better understanding of how elements like the
microbiota suppressing inflammation or enteric glial cells driving
early changes in barrier permeability could highlight novel
targets for more effective interventions in patients at risk for POI.
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